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Collective resonances in χ (3): A QED study
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We calculate the third-order susceptibility χ (3) of a pair of two-level atoms that interact via the exchange
of photons. QED corrections to second order in coupling to vacuum field modes yield collective two-photon
absorption resonances, which can be observed in transmission spectroscopy of shaped broadband pulses. While
some collective effects can be obtained by introducing an effective interatomic coupling using a quantum master
equation, the predicted signals contain distinct features that are missed by that level of theory and require a full
diagrammatic QED treatment.

DOI: 10.1103/PhysRevA.87.063831 PACS number(s): 42.65.An, 42.50.Ct, 42.50.Hz

I. INTRODUCTION

Many-body effects strongly influence electronic and optical
properties of atoms, molecules, and materials [1–5]. Collective
resonances that involve several particles in multidimensional
spectroscopy [6] provide clear signatures of these effects.
Delocalized excitons play a key role in the function of light
harvesting antennas and reaction centers [7–10]. Quantum
information processing schemes [11] have been proposed that
exploit collective resonances due to long-range dipole-dipole
coupling [12].

In this paper we use a diagrammatic approach to calculate
the transmission of a broadband pulse to fourth order in
coupling to classical modes and second order in the coupling
to quantum vacuum modes. Calculations are made in the
joint field plus matter space [13] starting with the multipolar
Hamiltonian [13–16] where all couplings are mediated by
the exchange of photons. We find QED contributions to the
semiclassical (SC) susceptibility χ (3) that originate from mixed
time ordering of interactions with vacuum and classical modes.
These result in collective resonances that can be probed by
shaped broadband pulses.

Shaped femtosecond pulses [17,18] have been extensively
used as a tool for coherent control of the fundamental processes
in various systems [19–21]. The combination of narrowband
and broadband laser fields has been used in excited-state coher-
ent anti-Stokes Raman scattering measurements [18,22–26].
We find that such pulses can suppress the background of
the single-particle resonances and highlight the collective
resonances. The phase profile of the broadband field relative to
narrowband provides a coherent control tool for manipulating
the collective resonances.

The response of a quantum system to classical optical fields
is commonly described by SC susceptibilities [6]. These are
calculated by sums over states of matter. Spontaneous emission
is included either phenomenologically or via a quantum master
equation (QME) [27,28]. The new collective resonances are
induced by weak coupling to vacuum modes [29], which
causes QED corrections to SC susceptibilities. The QME
provides an approximate description of QED effects and can
only partially account for these resonances.
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II. THE HAMILTONIAN

The multipolar Hamiltonian for two systems A and B and
the radiation field is given by [13,16] H = H0 + Hint, where
H0 is the unperturbed Hamiltonian

H0 = HA + HB + HF (1)

and the matter Hamiltonian reads

HA + HB = h̄ωAσ̂
(z)
A + h̄ωBσ̂

(z)
B , (2)

with σ (z) Pauli matrices. The field Hamiltonian is

HF = 1

2

∫
dr[ε0|Ê(r)|2 + μ0|Ĥ(r)|2]. (3)

The field-matter interaction in the rotating-wave approxima-
tion written in the interaction picture with respect to H0 is

Hint(t) =
∫

dr Ê†(t,r)V̂(t,r) + H.c., (4)

where V̂(t,r) = ∑
α V̂α(t)δ(r − rα) is a matter operator

representing the lowering (exciton annihilation) part of the
dipole coupling and α run over atoms located at rα . The field
operator is

Ê(t,r) =
∑
ks ,μ

(
2πh̄ωs

	

)1/2

ε(μ)(ks)âks
e−iωs t+iks ·r, (5)

where ε(μ)(k) is the unit electric polarization vector of mode
(ks ,μ) (with μ the index of polarization), ωs = c|ks |, c is
the speed of light, and 	 is the quantization volume. For
classical field modes (represented by, e.g., the coherent state)
we can replace the field operator by its expectation value
E(t,r) = 〈ψ |Ê(t,r)|ψ〉, where ψ represents the state of light.
Otherwise we treat it as an operator. We shall make use of the
commutation relations [13]

[E(l)(τi,rβ ),E(m)†(τj ,rα)] =
∫

dω

2π
D(l,m)

αβ (ω)eiω(τj −τi ), (6)

[E(l)(ωi,rβ),E(m)†(ωj ,rα)] = D(l,m)
αβ (ωi)δ(ωi − ωj ), (7)

where l and m denote Cartesian components of the electric
field, the coupling tensor reads [13,30]

D(l,m)
αβ (ω) = h̄

2πε0
(−∇2δlm + ∇l · ∇m)

sin(ωrαβ/c)

rαβ

, (8)
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FIG. 1. (Color online) Two noninteracting atoms A and B (left)
and corresponding two-particle eigenstates (right). Blue arrows
represent single-particle resonances with an individual atom and
red arrows correspond to a collective two-particle resonance with
frequencies ω+ (sum frequency) and ω− (difference frequency).

and rαβ = |rα − rβ | is the interatomic distance. The
diagonal elements D(l,m)

αα (ω) = h̄ω3/2πε0c
3δlm represent the

self-energy corrections, i.e., energy shifts and the cooperative
emission rate, whereas the off-diagonal contribution (8) yields
the cross relaxation and dipole-dipole coupling.

When classical light interacts with an ensemble of non-
interacting atoms A and B, the response is additive and is
given by S(ω) = SA(ω) + SB(ω), where SA and SB are the
individual responses of each atom. For weakly coupled atoms
the response acquires nonadditive terms SAB(ω), which arise
from interactions between atoms

S(ω) = SA(ω) + SB(ω) + SAB(ω). (9)

We shall calculate these nonadditive contributions pertur-
batively in light-matter interactions using QED and show
that they contain two types of collective resonances: two-
photon absorption (TPA) ω + ω1 = ωa + ωb and Raman type
ω − ω1 = ωa − ωb, where ω and ω1 are two field modes of
the transmitted pulse and ωa and ωb are transition frequencies
of the two atoms A and B, respectively (see Fig. 1). We show
that the signal may not be fully described by an effective
Hamiltonian alone, but a complete QED treatment is needed.
We further show how such resonances may be observed and
distinguished from noncollective single-particle resonances.

III. TRANSMISSION OF A BROADBAND PULSE TO
SECOND ORDER IN COUPLING TO VACUUM MODES

We assume that the system interacts with a classical broad-
band shaped pulse E(ω,r) = ∫ ∞

−∞ dtE(t)eiωt−ik0·r, where we
assume that all frequency components of the incoming pulse
have the same wave vector k0 (paraxial approximation). We
focus on the frequency-dispersed transmission

S(ω) = 2

h̄

∫ ∞

−∞
dr Im[E∗(ω,r)P (ω,r)], (10)

where Im denotes the imaginary part and

P (ω,r) =
∫ ∞

−∞
dtP (t,r)eiωt (11)

is the Fourier transform of the polarization. We shall calculate
P perturbatively in the field-matter interaction [Eq. (4)]. To
maintain a convenient bookkeeping of time-ordered Green’s

functions we adopt superoperator notation. With every or-
dinary operator O we associate two superoperators defined
by their action on an ordinary operator X as OL = OX

acting from the left and OR = XO from the right. We further
define the symmetric and antisymmetric combinations O+ =
1
2 (OL + OR) and O− = OL − OR . Without loss of generality
we assume that the last interaction results in deexcitation of the
matter with consequent emission of the photon and express the
nonlinear polarization using superoperators in the interaction
picture

P (t,r) =
〈
T VL(t,r) exp

(
− i

h̄

∫ t

−∞
H−(τ )dτ

)〉
, (12)

where 〈· · · 〉 = Tr[ρ0 · · · ] is understood with ρ0 the initial field
plus matter density operator and T the time-ordering operator.

The linear response is obtained by calculating the signal
to second order in the coupling to the classical field. QED
corrections to the linear response are obtained to fourth order
in field-matter interactions (two with the classical modes and
two with vacuum modes). The transmitted classical field scales
as ∼|E(ω)|2, which contributes to the linear response. The
latter correction to the linear response is phase independent
and cannot be manipulated by coherent control schemes.
The lowest-order contribution to the nonlinear response that
contains phase information of the incoming pulse and has non-
additive contributions that may reveal collective resonances
involves six field-matter interactions (four with a classical
broadband pulse and two with quantum vacuum modes that
mediate the interaction between atoms).

We assume that the system is initially in the ground state
g. The relevant diagrams responsible for collective effects
when the last emission occurs from atom A are shown in
Fig. 2. Similar set of diagrams can be obtained when the
last emission is from atom B. The total signal is given by
the sum of the pathways corresponding to each diagram,
SA(ω) = ∑

i SAi(ω), and can be read off the diagrams of Fig. 2
(see Appendix A).

The classical response function is given by the diagrams in
Fig. 2. These result in Eqs. (A1)–(A14), which use normally
ordered field operators. The field correlation function of
normally ordered operators when the field is in a coherent state,
which is the closest to the classical, may be factorized into a
product of field amplitudes. Terms where the field operators
are not normally ordered exist in several pathways. They can
be brought into a normally ordered form by making use of
the commutation relations (6) and (7). These apply to the
quantum modes of the radiation field (wavy lines in Fig. 2)
that are initially in a vacuum state.

The total signal including the diagrams where the last
emission is with atom B is

S(ω) = Im
NAB|μa|2|μb|2

2πh̄6

∫ ∞

−∞

dω1

2π

dω2

2π

×E∗(ω)E∗(ω1)E(ω + ω1 − ω2)E(ω2)

×χ
(3)
QED(−ω, − ω1,ω + ω1 − ω2,ω2), (13)

where N denotes the number of A-B pairs. For reasons that
will become clear later, we partition χ

(3)
QED into two groups of

terms χ
(3)
QED = χ

(3)
I + χ

(3)
II . Both can be read from the diagrams
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FIG. 2. (Color online) Loop diagrams (for rules see [31]) for
the frequency-dispersed transmission signal (10) from a pair of
noninteracting atoms A and B, α,β = a,b, that are initially prepared
in the ground state g generated by four interactions with classical light
and two with quantum field modes. Shown are diagrams where the last
interaction is with atom A. Interchanging A and B will yield another
set of diagrams. Straight blue arrows represent the field-matter
interaction of classical light with atoms. Wavy red lines correspond
to quantum modes and dashed red lines represent interactions with
both classical and quantum modes.

in Fig. 2 and are given in Appendix A:

χ (3)I =
3∑

j=1

χ
(3)I
jLLLL(−ω,−ω1,ω + ω1 − ω2,ω2)

+
∑

j=4,5,7

[
χ

(3)I
jLLLR(−ω,−ω1,ω + ω1 − ω2,ω2)

+χ
(3)I
jL↔R

]
, (14)

χ (3)II

=
∫

dω′

2π

[
χ

(5)II
1LLLLLL(−ω,−ω1,ω

′,ω + ω1 − ω2,−ω′,ω2)

+χ
(5)II
2LLLLLL(−ω,ω′,−ω1,−ω′,ω + ω1 − ω2,ω2)

+χ
(5)II
4LLLLLR(−ω,−ω1,ω

′,ω + ω1 − ω2,−ω′,ω2)

+χ
(5)II
4L↔R + χ

(5)II
6LLLLRR

× (−ω,ω′,−ω1,−ω′,ω + ω1 − ω2,ω2) + χ
(5)II
6L↔R

]
, (15)

where the numerical subscript corresponds to the diagrams in
Fig. 2 and various permutations of left and right interactions for
diagrams 4 and 6 are included. It follows from the expressions
given in Appendix A that χ

(3)
QED contains a TPA collective

resonance that contains the Green’s function G
(+)
ab (ω + ω1) =

i/[ω + ω1 − ω+ + iγab] with ω+ = ωa + ωb and γab = γa +
γb. Here γ −1

α (α = a,b) represents the lifetime of state α that
is ultimately related to the coupling constant (27) obtained
from the QME treatment: γα = Lαα(ω) [27]. The collective
resonances ω + ω1 = ω+ + iγab generally washed out by the
ω1 integration. However, we shall demonstrate how these TPA
resonances as well as collective Raman resonances can be
recovered by pulse shaping.

IV. DETECTING COLLECTIVE RESONANCES BY
SPECTROSCOPY WITH SHAPED PULSES

We assume an incoming classical pulse consisting of a long
(picosecond) and broadband (femtosecond) pulses (see Fig. 3).
The electric field reads

E(ω) = 2πE1e
iξ δ(ω − ωp) + 2πE2e

iφ(ω). (16)

We shall use the amplitudes E1 and E2 and the phases ξ and
φ(ω) of these two fields as control parameters. The signal (13)
depends on the product of field amplitudes1

(2π )2
E∗(ω)E∗(ω1)E(ω + ω1 − ω2)E(ω2)

= E2
2E2

1 {δ(ω1 − ωp)[δ(ω2 − ω) + δ(ω2 − ωp)]

+ δ(ω + ω1 − 2ωp)δ(ω2 − ω)ei[2ξ−φ(ω)−φ(ω1)]}
+ E3

2E1{δ(ω1 − ωp)ei[φ(ω+ωp−ω2)+φ(ω2)−φ(ω)−ξ ]

+ δ(ω2 − ωp)ei[φ(ω+ω1−ωp)+ξ−φ(ω)−φ(ω1)]

+ δ(ω + ω1 − ω2 − ωp)ei[φ(ω+ω1−ωp)+ξ−φ(ω)−φ(ω1)]},
(17)

where the last interaction that results in the last emission occurs
with a broadband field E2 and we neglect the term ∼ E4

2 , which
contains no collective resonances in (13). We shall show that
the terms ∼ E3

2E1 contain interesting phase information.
We hold the amplitude and the phase of the narrowband

pulse fixed and calculate the transmission of the broadband
pulse while varying its parameters. Contour integration is
used to evaluate the frequency integrations in (13). We shall
expand the phase φ(ω) in a Taylor series in the vicinity of a
reference frequency ω0,

φ(ω,{Cn}) =
∑

n

Cn · (ω − ω0)n. (18)

τ = 0τ = 0

(a) 

(b) 

(c) 

φ

C(ω − ω0)2

ξ

FIG. 3. (Color online) Pulse shaping for narrowband (picosec-
ond) pulse with phase ξ and broadband (femtosecond) pulse with
phase φ(ω): (a) constant phase φ, (b) linear phase [time delay φ(ω) =
ωT ], and (c) quadratic phase [linearly chirped φ(ω) = C(ω − ω0)2].
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Here C0, C1, and C2 represent a constant phase, pulse
delay, and chirping, respectively. The sign of Cn defines
the direction of the contour in the complex plane for

evaluation of the residues in the frequency integrations.
Assuming a short delay or small chirp rate, the signal (13)
becomes

S(ω,ωp) = SI (ω,ωp) + SII (ω,ωp), (19)

SI (ω,ωp) = I iN |μa|2|μb|2
h̄6

[
E3

2E1

(
G

(+)
ab (ω + ωp)A1(ω,ωp) + G

(+)2
ab (ω + ωp)A2(ω,ωp) +

∑
α,β,δ

[
G

(−)
βα (ω − ωp)A(α)

3 (ω,ωp)

+G
(−)
βα (ω − ωp)G(−)

δα (ω − ωp)A(αβδ)
4 (ω,ωp) + G

(−)†
βα (ωp − ω)G(−)†

δα (ωp − ω)A(αβδ)
5 (ω,ωp)

])

+ E2
2E2

1

[
G

(+)
ab (ω + ωp)A6(ω,ωp) + G

(+)
ab (2ωp)A7(ω,ωp) + G

(+)2
ab (ω + ωp)A8(ω,ωp) + G

(+)2
ab (2ωp)A9(ω,ωp)

]]
,

(20)

SII (ω,ωp) = I iNAB |μa|2|μb|2
h̄6

{
E3

2E1

(
G

(+)
ab (ω + ωp)B1(ω,ωp) + G

(+)
ab (ω + ωp)

[
G

(+)
ab (ω + ωp)B2(ω,ωp)

+G(+)
aa (ω + ωp)B3(ω,ωp) + G

(+)
bb (ω + ωp)B4(ω,ωp)

]
+

∑
α,β

[
G

(−)
βα (ω − ωp)B(αβ)

5 (ω,ωp)

+G
(−)
βα (ωp − ω)B(αβ)

6 (ω,ωp) + G
(−)†
βα (ωp − ω)B(αβ)

7 (ω,ωp)
]) + E2

2E2
1 [G(+)

ab (ω + ωp)B8(ω,ωp)

+G
(+)
ab (2ωp)B9(ω,ωp)]

}
. (21)

The parameters A1, . . . ,A9 and B1, . . . ,B9 are listed in
Appendix B. Here the collective Raman Green’s func-
tion G

(−)
αβ (ω) = i/[ω − ωαβ− + iγαβ] and the collective

TPA Green’s function G
(+)
αβ (ω) = i/[ω − ωαβ+ + iγαβ] with

ωαβ± = ωα ± ωβ , γαβ = γα + γβ , and α,β = a,b.
The signals (20) and (21) contain the TPA Green’s

function G
(+)
ab as well as Raman-type collective resonances

governed by the Green’s function G
(−)
βα . The latter are of

two types: α = β elastic (Rayleigh) scattering and α 
= β

Raman. The Rayleigh resonance contains a factor of 2
compared to the Raman contribution due to permutations
for α ↔ β. This causes N2 vs N scaling of the signal,
respectively.

The narrowband and broadband field amplitudes allow for
additional control over the resonance features. If the broadband
pulse is strong, the signal (20) generated by an A-B pair of
different atoms shows only one type of TPA resonance ω +
ωp = ωa + ωb, whereas (21) has two additional additional
types ω + ωp = 2ωa and 2ωb (see Appendix B). The latter
resonances are missing if multiple interactions occur within
the single atom and therefore constitute a collective nature.
Clearly, these types of resonances will appear in the signal (20)
for a pair of atoms of the same type, A-A or B-B. However,
in an arbitrary sample composed of several species depending
on the density of the sample as well as the dipole moments
μa vs μb it is possible to obtain the couplings between atoms
of different types. In certain parameter regimes, for example,
for a gas of two types of atoms, signals SI and SII predict
different resonances.

V. SIMULATIONS

We now compare the relative strength of the collective
resonances and show how they can be controlled by the
nonlinear phase φ(ω). Consider a system of two atoms
A and B with transition frequencies ωa = 13 000 cm−1 and
ωb = 11 000 cm−1 and linewidth γa = γb = 200 cm−1. In
Fig. 4 we depict the signal S(ω,ωp) vs the broadband frequency
ω for a fixed off-resonant ωp = 4000 cm−1 and μB � 0.99μA.
In this section we discuss only the full signal given by Eq. (19)
(red solid line). The SI contribution from Eq. (20) (black
dashed line) will be discussed in Sec. VI.

It is apparent that only E3
2E1 terms in Eqs. (20) and (21)

contain a Raman-type resonance, whereas the E2
2E2

1 terms
yield TPA resonances. The TPA resonance is weaker than the
Raman and single-photon resonances in most of the parameter
regimes. One can probe the E3

2E1 and E2
2E2

1 terms separately
due to the different intensity dependence.

In the following simulations we focus on the E3
2E1 that

contain both Raman and TPA collective resonances. We
consider three models for the phase φ(ω): (i) a constant
phase φ(ω) = ξ + �φ, (ii) a linear phase [32] φ(ω) = ωT

that induces a delay T of the broadband pulse relative to the
narrowband, and (iii) a quadratic phase φ(ω) = C2(ω − ω0)2

that represents linear chirp [33] with reference frequency
ω0 = (ωa + ωb)/2.

We start with model (i). Figure 4(a) shows that for a
fixed off-resonant narrowband frequency ωp = 4000 cm−1

the spectra has two Raman ω = 2000 and 6000 peaks
and one Rayleigh peak ω ∼ 4000 cm−1, two single-photon
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FIG. 4. (Color online) The top row shows the frequency-dispersed transmission signal for pairs of atoms. The constant phases are (a)
�φ = 0, (b) �φ = π/2, (c) �φ = π , and (d) �φ = 3π/2. The red solid line gives the full signal (19). The black dashed line represents
Eq. (20). The middle row shows the variable delay T for (e) 17 fs, (f) 33 fs, (g) 330 fs, and (h) 3.3 ps. The bottom row shows the linear chirp
C2 equal to (i) 5 × 10−9 cm−2, (j) 10−8 cm−2, (k) 2.5 × 10−8 cm−2, and (l) 5 × 10−8 cm−2.

resonances at ω = ωa and ωb, and a two-photon resonance
ω = ωa + ωb − ωp ∼ 20 000 cm−1. The signal (19) contains
two additional TPA peaks at ω = 2ωa − ωp = 22 000 cm−1

and ω = 2ωb − ωp = 18 000 cm−1. We next turn to the
TPA resonances. If �φ0 = 0,π Figs. 4(a) and 4(c) peak at
ωa + ωb, which corresponds to emission, and have a dip
at 2ωa and 2ωb, corresponding to absorption. For �φ0 =
π/2,3π/2 [Figs. 4(b) and 4(d)] the situation is different.
It corresponds to a destructive quantum interference of
absorption and emission pathways corresponding to two atoms
(e.g., Fano interference) and all three TPA peaks become
asymmetric.

Model (ii) is shown in Figs. 4(e)–4(h). The interplay
between destructive interference (asymmetric), absorption
(dip), and emission (peak) for the TPA resonances is less
susceptible to the delay than model (i) for the phase shift.
All three TPA peaks show quantum interference for the entire
range of delays from 17 fs to 3.3 ps shown in Figs. 4(e)–4(h).

The resonance pattern for model (iii) is more complex. For
small positive chirp rate C2 = 5 × 10−9–10−8 cm−2 [Figs. 4(i)
and 4(j)] all three TPA peaks are symmetric, where 2ωa and
2ωb correspond to absorption (dip) and ωa + ωb has a peak
(emission). For moderate chirp rate C2 = 2.5 × 10−8 cm−2

[Fig. 4(k)] the ωa + ωb peak becomes asymmetric, which
corresponds to the regime of destructive interference, and
two symmetric peaks at 2ωa and 2ωb now have different
sign, corresponding to emission (peak) for one and absorption
(dip) for the other. For larger chirp rate C2 = 5 × 10−8 cm−2

[Fig. 4(k)] the collective resonances are slightly less pro-
nounced compared to the single-photon peaks, whereas for
negative chirp C2 = −5 × 10−8 cm−2 [Fig. 4(l)] the situation
becomes the opposite: Two peaks 2ωa and 2ωb are asymmetric
(interference) and ωa + ωb corresponds to absorption (dip).

To better distinguish between various collective and single
photon resonances we display a two-dimensional signal vs the
broadband ω and the narrowband ωp frequencies. Chirping
[model (iii)] allows us to eliminate the background by looking
at the residue signal shown in Fig. 5 defined as the difference
of two measurements with opposite sign of chirp

Sr (ω,ωp) ≡ S(ω,ωp,C2) − S(ω,ωp,−C2). (22)

Figure 5(a) shows the A-B system. It contains two types of
single-photon resonances shown by vertical lines due to single-
photon resonance with the broadband field at ω = ωa and
ωb and 45◦ inclined lines corresponding to the single-photon
resonance with the narrowband field at ωp = ωa and ωb. In
addition, we observe three collective TPA peaks depicted
by horizontal lines at ω + ωp = ωa + ωb = 24 000 cm−1,
ω + ωp = 2ωa = 26 000 cm−1, and ω + ωp = 2ωb = 22 000
cm−1 as predicted by Eq. (19). For the A-A and B-B systems
shown in Figs. 5(b) and 5(c), respectively, the corresponding
collective resonance is given by a single TPA resonance at
ω + ωp = 2ωa and ω + ωp = 2ωb, respectively.

Calculation using partial signal (20) results in a single
TPA resonance for all three types of system: ωα + ωβ for
α + β, α,β = A,B, which is illustrated in Figs. 5(d)–5(f).
The latter arises from diagram 4 in Fig. 2 and corresponds
to the following situation. Initial excitation by the incoming
pulse that acts on both bra and ket brings the system to
the nonstationary density matrix, which then radiates a
spontaneous photon leaving the system in the excited- to
ground-state coherence. After the second interaction with
incoming pulse, which promotes the system to a single excited
state, the spontaneous photon emitted by the first atom is finally
absorbed by the second atom, which forces the two-atom
system to the double- to single-excited-state coherence. It
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FIG. 5. (Color online) Frequency-dispersed residue signal (22) with linear chirped broadband pulse with chirp rate C2 = 5 × 10−9 cm−2:
left column, the A-B system; middle column, the A-A system; right column, the B-B system; top row, result of Eq. (19); middle row, result
of Eq. (20) corresponding to TPA resonances via Sr (ω + ωp,ω); bottom row, Raman resonances via Sr (ω − ωp,ω) using full signal (19).

then undergoes a stimulated emission via the interaction with
the incoming pulse for the fourth time and the system ends up
in the single-excited-state population state. In the following
we will mostly focus on TPA-type collective resonances.

The bottom row of Fig. 5 shows collective Raman reso-
nances accessible by a signal (19). Figure 5(g) for the A-B
signal contains an elastic (Rayleigh) resonance at ω = ωp

and two Raman resonances ω − ωp = ±ωa ∓ ωb. The A-A
and B-B signals show only a Rayleigh peak [the side peaks
appear due to oscillation of the nonlinear phase in the residue
signal (22)].

VI. COLLECTIVE RESONANCES PREDICTED
BY THE QME

The SC approach describes the coupling mediated by
exchange of photons by a QME for the matter density operator

ρ̇ = −i
∑

α

[
ω(0)

α σ (z)
α ,ρ

] − i
∑
α 
=β

Lαβ[V †
αVβ,ρ]

−
∑
α,β

γαβ(V †
αVβρ − 2VβρV †

α + ρV †
α Vβ) − i

[
H

(c)
int ,ρ

]
,

(23)

where H
(c)
int is the interaction Hamiltonian between matter and

classical field modes, ω(0)
α is the renormalized transition fre-

quency, Lαβ is the dipole-dipole interaction due to interaction
with the common quantum mode, and γαβ is a cooperative
emission rate. The last term represents the interaction with
classical field modes.

Some quantum pathways for the signal (10) can be obtained
directly from the QME (23) as can be deduced from the
corresponding diagrams shown in Fig. 2. If two consecutive
interactions occur with quantum modes, then the signal can
be obtained in the lower-order χ (3) theory rather than χ (5) by
introducing effective interatomic couplings that originate from
emission and reabsorption of the photon by a single excited
state of the system through the ground state (diagrams 1, 2, 4,
and 7 in Fig. 2)

Lαβ (ω) = 1

h̄2

∫ ∞

−∞

dω′

2π
μ(l)∗

α μ
(m)
β D(l,m)

αβ (ω′)Gg(ω − ω′), (24)

where summation is assumed for repeating indices. Similar
two-photon coupling for emission and reabsorption by a
two-photon state of the system through a single-photon state
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(diagrams 3 and 5 in Fig. 2) gives

Ls(ω + ω1) = 1

h̄2

∑
α

∫ ∞

−∞

dω′

2π
Lαα(ω′)Gᾱ(ω + ω1 − ω′),

(25)

where Gα = i/(ω − ωα + iγα) and ᾱ = a if α = b and ᾱ = b

if α = a.
Equations (24) and (25) reveal that diagrams 3, 5, and

7 of Fig. 2 can be recast via master equation (23). This
is not the case for diagram 6, since two interactions with
quantum modes have an additional interaction with a classical
field in between. Using the same reasoning one can show
that the remaining diagrams 1, 2, and 4 have both types of
contributions: ones that can be recast as an effective couplings
and ones that cannot. Thus χ

(3)
I in Eq. (14) represents the QME

contribution, whereas χ
(3)
II in Eq. (15) requires the full QED

description.
To explain the limitations of the QME approach we first note

that the signal strongly depends on the interatomic distance.
We combine the density of radiation modes (8) and coupling
in Eq. (24) using an identity [13]

(−∇2δμν + ∇μ · ∇ν)
eikR

R
= 1

R3
[(δμν − 3R̂μR̂ν)(ikR − 1)

+ (δμν − R̂μR̂ν)k2R2]eikR.

(26)

Assuming randomly orientated atoms R̂μR̂ν = 1
3δμν , we

obtain a dependence on the distance 1/rαβ . Furthermore,
Eqs. (20) and (21) contain coefficients Aj and Bj (j =
1, . . . ,9) that depend on the distance between atoms via two
types of couplings (see Appendix B). The coupling (24) that
gives the cooperative decay rate [27]

Lαβ (ω) = μ∗
αμβω2

3πh̄ε0c2rαβ

sin[ωrαβ/c], Lαα(ω) = |μα|2ω3

3πh̄ε0c3
.

(27)

This rate is typically small compared to the transition frequen-
cies (weak-coupling regime) Lαβ � ωα and is finite at small
distances due to the sin(x/x) factor. It enters the coefficients
for most single-photon resonances and some collective Raman
resonances. In addition, there is a complex coupling (see
Appendix B)

Mαβ(ω) = μ∗
αμβω2

6πh̄ε0c2rαβ

[i cos(ωrαβ/c) + sin(ωrαβ/c)], (28)

where the first term corresponds to a dipole-dipole interaction
and the second term is half of the cooperative spontaneous
emission (superradiance) rate (27). Note that the dipole-dipole
coupling grows rapidly ∼ r−3

αβ at short distances. Our TPA
resonances that depend on coefficients B3 and B4 in Eq. (21)
are prominent at small atomic separation.

Figure 6 shows the variation of spectra with interatomic
distance. For a short distance compared to the wavelength it
gives a significant contribution, showing new collective TPA
resonances along with strong single-photon resonances. This

(a) (b) 

(c) (d) 

0      5     10     15    20    25 
ω (103 cm−1)

S
(a

.u
.)

S
(a

.u
.)

0      5     10     15    20    25 
ω (103 cm−1)

FIG. 6. (Color online) Frequency-dispersed transmission from
two atoms with a shaped pulse with zero phase ξ = 0, φ(ω) = 0,
for different distances between atoms rαβ/λa : (a) 0.001, (b) 0.005, (c)
0.01, and (d) 0.1.

varies at large distances according to Eq. (21). The Raman
resonances behave similarly and become weaker with distance
in both (20) and (21).

Generally, the QED susceptibility (15) cannot be ex-
pressed via the effective coupling through the QME (14).
However, in the absence of a bath, setting the ground-state
frequency and linewidth to be zero ωg = 0 and γg = 0, we
have Gg(ω) � δ(ω). Thus both susceptibilities (14) and (15)
are governed by the small parameter that is related to
the couplings Lαβ and Mαβ given by Eqs. (27) and (28),
where|Lαβ (ω)|,|Mαβ(ω)| � |ωα − ωβ |,σ , where σ is the
bandwidth of the pulse envelopes. As we show below, these
couplings enter both QME and QED contributions in different
ways.

The magnitude of the QED correction is governed by
a combined spectral bandwidth of matter and field degrees
of freedom that enter the susceptibilities. This can be best
understood in the joint field plus matter space. Due to the
consecutive interactions with quantum modes in SC theory, the
effective frequency range that enters SC susceptibility (A29)–
(A32) is governed by the entire spectrum of quantum modes.
In contrast, due to the mixed time ordering of interactions
with quantum and classical modes, the effective frequency
range that enters the QED susceptibility (A33)–(A35) is
limited by a combined classical pulse and matter bandwidth.
To illustrate this we note that Eqs. (A29) and (A33) show
that for the same set of diagrams (1 and 4 in Fig. 2) the
ω2 dependence enters Eqs. (14) and (15) via Gβ(ω2) and
Gβ(ω + ω1 − ω2), with β = a,b, respectively. Therefore, the
frequency range of ω2 in the QED susceptibility is restricted
compared to its SC counterpart. Another way to look at it is
by noting that the collective resonance in both Eqs. (A29)
and (A33) is given by G

(+)
ab (ω + ω1). Because in the SC

signal (A29) the integrations over ω1 and ω2 are uncoupled,
if a collective resonance exists and is not smeared by the
pulse envelope it will enter through the same G

(+)
ab (ω + ω1).

In contrast, due to mixing of the frequency arguments in
the QED contribution (A33), integration over ω2 may give
another collective resonance (e.g., ω2 = ωα − iγα) that will
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now appear through the product of two Green’s functions
G

(+)
ab (ω + ω1)Gβ(ω + ω1 − ωα + iγα), which gives rise to

terms such as G
(+)2
ab (ω + ω1), G(+)2

aa (ω + ω1), and G
(+)2
bb (ω +

ω1). In this case, the characteristic coupling accompanying
such resonances will be M̃αβ(ωα − iγα) given by Eq. (28),
which grows rapidly at small distances. A full QED treatment
contains fine details that are missed by the QME.

VII. DISCUSSION

The QME approach has had many successes and is widely
used for calculating the third-order response of a collection
of two-level atoms. The QME is obtained by a second-order
expansion in the field-matter coupling strength, which is
equivalent to introducing an effective interatomic coupling.
One can further diagonalize the Hamiltonian and take into
account the interatomic coupling to all orders. The perturbative
QED treatment of the present paper shows that in each order
in field-matter coupling there are processes that are missed by
the QME.

We have expressed the transmitted signal in terms of a
four-point correlation function of the classical fields with an
arbitrary number of quantum modes. We presented a QED
calculation of the collective resonances to second order in
the coupling to quantum vacuum modes. Radiative energy
transfer between excited-state populations [34] involves four
interactions with the quantum modes (two with A and two
with B) and goes beyond the present theory. The QME
that is based on the effective coupling stemming from two
interactions with quantum mode can describe only certain
types of collective resonances (Raman), but not TPA. The
QED approach reveals resonant features stemming from
nonconsecutive-in-time interactions with quantum modes, i.e.,
with classical field interaction in between. The magnitude of
these contribution is governed by the dipole-dipole coupling
and the combined spectral bandwidth of the relevant field and
matter degrees of freedom. Generally, the QED contribution to

the susceptibility that involves the sum over radiation modes
over a restricted frequency range is comparable to the SC
susceptibility due to mixed time ordering of interactions. In
contrast, the SC susceptibility contains consecutive interac-
tions with quantum modes and thus requires a summation
over the entire spectrum of these modes. The use of pulse
shaping (the combination of narrowband and broadband
pulses) is crucial for observing these collective resonances.
These resonances in the transmission of the shaped pulse
can be best visualized by two-dimensional plots vs the
narrowband and broadband frequencies. The former serves
as a frequency reference and the latter is dispersed by the
detection. In addition, nonlinear phase shaping involving
positive and negative chirp combination allows to eliminate the
background and obtain a clear picture of the resonant features
that include both collective and single-photon resonances. The
pulse phase and amplitude may be used to manipulate the
desired resonances.

The present approach is not restricted to classical states of
the transmitted pulse and can be easily extended to different
types of light, e.g., stochastic or entangled light. These will
enter the signal (13) via the four-point correlation function
of the incoming field [35,36]. Furthermore, the formalism
is not restricted to stimulated signals and can be applied to
spontaneous signals as well. One of the potential applications
may be to the study of collective vs noncollective features in
aggregates with vibronic couplings [37] using photon-counting
signals [38,39]. This approach is also applicable to high
resolution few molecule studies [40].

ACKNOWLEDGMENTS

The support of the National Science Foundation (Grant
No. CHE-1058791), the Chemical Sciences, Geosciences,
and Biosciences division, Office of Basic Energy Sciences,
Office of Science, US Department of Energy is gratefully
acknowledged.

APPENDIX A: SIGNAL CONTRIBUTIONS CORRESPONDING TO FIG. 2

We read off the Liouville pathways from the diagrams in Fig. 2:

SA1(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E
†
L(ω,ra)E†

L(τ1,r1)EL(τ2,r2)EL(τ3,r3)E†
L(τ4,r4)EL(τ5,r5)〉

× 〈T VL(t,ra)VL(τ1,r1)V †
L(τ2,r2)V †

L(τ3,r3)VL(τ4,r4)V †
L(τ5,r5)〉, (A1)

SA2(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E
†
L(ω,ra)EL(τ1,r1)E†

L(τ2,r2)E†
L(τ3,r3)EL(τ4,r4)EL(τ5,r5)〉

× 〈T VL(t,ra)V †
L(τ1,r1)VL(τ2,r2)VL(τ3,r3)V †

L(τ4,r4)V †
L(τ5,r5)〉, (A2)

SA3(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E
†
L(ω,ra)E†

L(τ1,r1)EL(τ2,r2)E†
L(τ3,r3)EL(τ4,r4)EL(τ5,r5)〉

× 〈T VL(t,ra)VL(τ1,r1)V †
L(τ2,r2)VL(τ3,r3)V †

L(τ4,r4)V †
L(τ5,r5)〉, (A3)
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SA4(ω) = I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E
†
L(ω,ra)EL(τ1,r1)EL(τ2,r2)E†

L(τ3,r3)EL(τ4,r4)E†
R(τ5,r5)〉

× 〈T VL(t,ra)V †
L(τ1,r1)V †

L(τ2,r2)VL(τ3,r3)V †
L(τ4,r4)VR(τ5,r5)〉, (A4)

SA5(ω) = I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E
†
L(ω,ra)EL(τ1,r1)E†

L(τ2,r2)EL(τ3,r3)EL(τ4,r4)E†
R(τ5,r5)〉

× 〈T VL(t,ra)V †
L(τ1,r1)VL(τ2,r2)V †

L(τ3,r3)V †
L(τ4,r4)VR(τ5,r5)〉, (A5)

SA6(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ t

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E
†
L(ω,ra)E†

L(τ1,r1)EL(τ2,r2)EL(τ3,r3)ER(τ4,r4)E†
R(τ5,r5)〉

× 〈T VL(t,ra)VL(τ1,r1)V †
L(τ2,r2)V †

L(τ3,r3)V †
R(τ4,r4)VR(τ5,r5)〉, (A6)

SA7(ω) = I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ t

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E
†
L(ω,ra)EL(τ1,r1)EL(τ2,r2)E†

R(τ3,r3)ER(τ4,r4)E†
R(τ5,r5)〉

× 〈T VL(t,ra)V †
L(τ1,r1)V †

L(τ2,r2)VR(τ3,r3)V †
R(τ4,r4)VR(τ5,r5)〉. (A7)

The above expressions can be recast in Hilbert space:

SA1(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E†(ω,ra)E†(τ1,r1)E(τ2,r2)E(τ3,r3)E†(τ4,r4)E(τ5,r5)〉
× 〈T V (t,ra)V (τ1,r1)V †(τ2,r2)V †(τ3,r3)V (τ4,r4)V †(τ5,r5)〉, (A8)

SA2(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E†(ω,ra)E(τ1,r1)E†(τ2,r2)E†(τ3,r3)E(τ4,r4)E(τ5,r5)〉
× 〈T V (t,ra)V †(τ1,r1)V (τ2,r2)V (τ3,r3)V †(τ4,r4)V †(τ5,r5)〉, (A9)

SA3(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E†(ω,ra)E†(τ1,r1)E(τ2,r2)E†(τ3,r3)E(τ4,r4)E(τ5,r5)〉
× 〈T V (t,ra)V (τ1,r1)V †(τ2,r2)V (τ3,r3)V †(τ4,r4)V †(τ5,r5)〉, (A10)

SA4(ω) = I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E†(τ5,r5)E†(ω,ra)E(τ1,r1)E(τ2,r2)E†(τ3,r3)E(τ4,r4)〉
× 〈T V (τ5,r5)V (t,ra)V †(τ1,r1)V †(τ2,r2)V (τ3,r3)V †(τ4,r4)〉, (A11)

SA5(ω) = I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E†(τ5,r5)E†(ω,ra)E(τ1,r1)E†(τ2,r2)E(τ3,r3)E(τ4,r4)〉
× 〈T V (τ5,r5)V (t,ra)V †(τ1,r1)V (τ2,r2)V †(τ3,r3)V †(τ4,r4)〉, (A12)

SA6(ω) = −I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

∫ t

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E†(τ5,r5)E(τ4,r4)E†(ω,ra)E†(τ1,r1)E(τ2,r2)E(τ3,r3)〉
× 〈T V (τ5,r5)V †(τ4,r4)V (t,ra)V (τ1,r1)V †(τ2,r2)V †(τ3,r3)〉, (A13)
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SA7(ω) = I 2i

h̄6

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1

∫ τ1

−∞
dτ2

∫ t

−∞
dτ3

∫ τ3

−∞
dτ4

∫ τ4

−∞
dτ5

∫
dr1dr2dr3dr4dr5

×〈T E†(τ5,r5)E(τ4,r4)E†(τ3,r3)E†(ω,ra)E(τ1,r1)E(τ2,r2)〉
× 〈T V (τ5,r5)V †(τ4,r4)V (τ3,r3)V (t,ra)V †(τ1,r1)V †(τ2,r2)〉. (A14)

Note that Eqs. (A8)–(A14) contain non-normally ordered correlation functions of the electric field operators and thus contribute
to nonclassical features. Since the classical response of a system of noninteracting atoms contains no collective features,
we shall focus on the nonclassical signal. These equations can be recast in the frequency domain by expanding the field
E(τj ,rα) = ∫ ∞

−∞
dωj

2π
E(ωj ,rα)e−iωj τj and taking into account that V (t,r) = ∑

α Vα(t)δ(r − rα), α = a,b:

SA1(ω) = −I 2i

h̄6

∑
α,β

∫ ∞

−∞

dω1

2π

dω2

2π

dω3

2π

dω4

2π

dω5

2π
{〈E†(ω,ra)E†(ω1,rb)E(ω2,rβ̄)E(ω5,rα)〉[E(ω3,rβ),E†(ω4,rα)]

+〈E†(ω,ra)E†(ω1,rb)E(ω3,rβ )E(ω5,rα)〉[E(ω2,rβ̄),E†(ω4,rα)]}R(αβ)
A1 (ω,ω1,ω2,ω3,ω4,ω5), (A15)

SA2(ω) = −I 2i

h̄6

∑
α,β

∫ ∞

−∞

dω1

2π

dω2

2π

dω3

2π

dω4

2π

dω5

2π
{〈E†(ω,ra)E†(ω2,rβ)E(ω4,rᾱ)E(ω5,rα)〉[E(ω1,ra),E†(ω3,rβ̄)]

+〈E†(ω,ra)E†(ω3,rβ̄)E(ω4,rᾱ)E(ω5,rα)〉[E(ω1,ra),E†(ω2,rβ)]}R(αβ)
A2 (ω,ω1,ω2,ω3,ω4,ω5), (A16)

SA3(ω) = −I 2i

h̄6

∑
α,β

∫ ∞

−∞

dω1

2π

dω2

2π

dω3

2π

dω4

2π

dω5

2π
〈E†(ω,ra)E†(ω1,rb)E(ω4,rᾱ)E(ω5,rα)〉[E(ω2,rβ̄ ),E†(ω3,rβ̄ )]

×R
(αβ)
A3 (ω,ω1,ω2,ω3,ω4,ω5), (A17)

SA4(ω) = I 2i

h̄6

∑
α,β

∫ ∞

−∞

dω1

2π

dω2

2π

dω3

2π

dω4

2π

dω5

2π
{〈E†(ω5,rb)E†(ω,ra)E(ω2,rβ )E(ω4,rα)〉[E(ω1,rβ̄ ),E†(ω3,rα)]

+〈E†(ω5,rb)E†(ω,ra)E(ω1,rβ̄)E(ω4,rα)〉[E(ω2,rβ),E†(ω3,rα)]}R(αβ)
A4 (ω,ω1,ω2,ω3,ω4,ω5), (A18)

SA5(ω) = I 2i

h̄6

∑
α,β

∫ ∞

−∞

dω1

2π

dω2

2π

dω3

2π

dω4

2π

dω5

2π
〈E†(ω5,rb)E†(ω,ra)E(ω3,rᾱ)E(ω4,rα)〉[E(ω1,rβ̄),E†(ω2,rβ̄)]

×R
(αβ)
A5 (ω,ω1,ω2,ω3,ω4,ω5), (A19)

SA6(ω) = −I 2i

h̄6

∑
α,β

∫ ∞

−∞

dω1

2π

dω2

2π

dω3

2π

dω4

2π

dω5

2π
〈E†(ω5,rβ)E†(ω,ra)E(ω2,rᾱ)E(ω3,rα)〉[E(ω4,rβ),E†(ω1,rb)]

×R
(αβ)
A6 (ω,ω1,ω2,ω3,ω4,ω5), (A20)

SA7(ω) = I 2i

h̄6

∑
α,β

∫ ∞

−∞

dω1

2π

dω2

2π

dω3

2π

dω4

2π

dω5

2π
〈E†(ω5,rβ )E†(ω,ra)E(ω1,rᾱ)E(ω2,rα)〉[E(ω4,rβ),E†(ω3,rb)]

×R
(αβ)
A7 (ω,ω1,ω2,ω3,ω4,ω5). (A21)

Here

R
(αβ)
A1 (ω,ω1,ω2,ω3,ω4,ω5) = 2π |μα|2μ∗

βμ∗̄
β
μaμbδ(ω + ω1 − ω2 − ω3 + ω4 − ω5)G(+)

ab (ω + ω1)

×Ga(ω)Gα(ω5)Gβ(ω + ω1 − ω2)Gg(ω5 − ω4), (A22)

R
(αβ)
A2 (ω,ω1,ω2,ω3,ω4,ω5) = 2πμ∗

αμ∗
ᾱμβ̄μβ |μa|2δ(ω − ω1 + ω2 + ω3 − ω4 − ω5)G(+)

ab (ω4 + ω5)

×Ga(ω)Gα(ω5)Gβ(ω + ω2 − ω1)Gg(ω4 + ω5 − ω2 − ω3), (A23)

R
(αβ)
A3 (ω,ω1,ω2,ω3,ω4,ω5) = 2πμ∗

αμ∗
ᾱ|μβ̄ |2μaμbδ(ω + ω1 − ω2 + ω3 − ω4 − ω5)G(+)

ab (ω4 + ω5)G(+)
ab (ω + ω1)

×Ga(ω)Gβ(ω + ω1 − ω2)Gα(ω5), (A24)

R
(αβ)
A4 (ω,ω1,ω2,ω3,ω4,ω5) = 2πμ∗

βμ∗̄
β
|μα|2μaμbδ(ω − ω1 − ω2 + ω3 − ω4 + ω5)G(+)

ab (ω + ω5)

×G
†
b(ω5)Gβ(ω2 + ω4 − ω3)Gα(ω4)Gg(ω4 − ω3), (A25)
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R
(αβ)
A5 (ω,ω1,ω2,ω3,ω4,ω5) = 2πμ∗

αμ∗
ᾱ|μβ̄ |2μaμbδ(ω − ω1 + ω2 − ω3 − ω4 + ω5)G(+)

ab (ω3 + ω4)G(+)
ab (ω + ω5)

×G
†
b(ω5)Gβ(ω + ω5 − ω1)Gα(ω4), (A26)

R
(αβ)
A6 (ω,ω1,ω2,ω3,ω4,ω5) = 2πμ∗

αμ∗
ᾱ|μβ |2μaμbδ(ω + ω1 − ω2 − ω3 − ω4 + ω5)G(+)

ab (ω2 + ω3)

×Ga(ω + ω5 − ω4)G†
β(ω5)Gα(ω3)Gg(ω5 − ω4), (A27)

R
(αβ)
A7 (ω,ω1,ω2,ω3,ω4,ω5) = 2πμ∗

αμ∗
ᾱ|μβ |2μaμbδ(ω − ω1 − ω2 + ω3 − ω4 + ω5)G(+)

ab (ω1 + ω2)

×G
†
b(−ω + ω1 + ω2)G†

β(ω5)Gα(ω2)G†
g(ω5 − ω4). (A28)

Note that due to permutations α,β = a,b a single diagram in Fig. 2 represents four single-quantum pathways. Pathways (A22)–
(A28) contribute for both SC and QED results that differ by a field correlation function. We also note that the field part consists
of a commutator that involves two quantum modes and a four-point correlation function of the classical field. The latter is simply
a product of four classical amplitudes. The former can be calculated using the commutation relations (6) and (7). Performing the
frequency integrations, we obtain the signal (13) with nonlinear susceptibilities given by Eq. (14) where[

χ
(3)I
1LLLL + χ

(3)I
4LLLR + χ

(3)I
4(L↔R)

]
(−ω,−ω1,ω + ω1 − ω2,ω2)

= G
(+)
ab (ω + ω1)[G†

s(ω1) − Gs(ω)]
∑
α,β

L̃αβ(ω2)e−ik0(rα−rβ )Gα(ω2)Gβ(ω2), (A29)

χ
(3)I
3LLLL(−ω,−ω1,ω + ω1 − ω2,ω2) + [

χ
(3)I
5LLLR + χ

(3)I
5(L↔R)

]
(−ω,−ω1,ω + ω1 − ω2,ω2)

= G
(+)2
ab (ω + ω1)[G†

s(ω1) − Gs(ω)]Ls(ω + ω1)Gs(ω + ω1 − ω2), (A30)

χ
(3)I
2LLLL(−ω,−ω1,ω + ω1 − ω2,ω2) = −G

(+)
ab (ω + ω1)Gs(ω + ω1 − ω2)

∑
α,β

Lαβ(ω)e−ik0(rα−rβ )Gα(ω)Gβ(ω), (A31)

[
χ

(3)I
7LLLR + χ

(3)I
7(L↔R)

]
(−ω,−ω1,ω + ω1 − ω2,ω2) = G

(+)
ab (ω + ω1)Gs(ω + ω1 − ω2)

∑
α,β

Lαβ(ω1)e−ik0(rα−rβ )G†
α(ω1)G†

β(ω1),

(A32)
where the couplings Lαβ(ω) and Ls(ω + ω1) are given by Eqs. (24) and (25), respectively, L̃αβ(ω) = Lαβ (ω)|μβ |2/|μα|2, and
Gs(ω) = Ga(ω) + Gb(ω). Similarly, we evaluate the QED contribution to the susceptibility and get[

χ
(5)II
1LLLLLL + χ

(5)II
4LLLLLR + χ

(5)II
4(L↔R)

]
(−ω,−ω1,ω

′,ω + ω1 − ω2,−ω′,ω2)

= G
(+)
ab (ω + ω1)[G†

s(ω1) − Gs(ω)]
∑
α,β

e−ik0(rα−rβ )μ
(l)∗
β μ(m)

α D(l,m)
αβ (ω′)Gg(ω2 − ω′)Gα(ω2)Gβ(ω + ω1 − ω′), (A33)

χ
(5)II
2LLLLLL(−ω,ω′,−ω1,−ω′,ω + ω1 − ω2,ω2)

= −G
(+)
ab (ω + ω1)Gs(ω + ω1 − ω2)

∑
α,β

e−ik0(rα−rβ )μ(l)∗
α μ

(m)
β D(l,m)

αβ (ω′)Gg(ω − ω′)Lαβ(ω)Gα(ω)Gβ(ω + ω1 − ω′), (A34)

[
χ

(5)II
6LLLLRR + χ

(5)II
6(L↔R)

]
(−ω,ω′,−ω1, − ω′,ω + ω1 − ω2,ω2)

= −G
(+)
ab (ω + ω1)Gs(ω2)

∑
α,β

e−ik0(rα−rβ )μ(l)∗
α μ

(m)
β D(l,m)

αβ (ω′)Gg(ω1 − ω′)G†
α(ω1)Gβ(ω + ω1 − ω′). (A35)

In the absence of the bath, assuming the ground-state frequency and linewidth to be zero ωg = 0 and γg = 0, we have
Gg(ω) � δ(ω).

APPENDIX B: TRANSMISSION OF SHAPED PULSES

Substituting susceptibilities (A29)–(A35) into the signal (13) and utilizing the pulse shaping in the field correlation
function (17), we obtain for the semiclassical contribution (20), where

A1(ω,ωp) = [G†
s(ωp) − Gs(ω)]

∫ ∞

−∞
dω2e

i[φ(ω+ωp−ω2)+φ(ω2)−φ(ω)−ξ ]
∑
α,β

L̃αβ(ω2)e−ik0(rα−rβ )Gα(ω2)Gβ(ω2)

− 2π
∑

α

ei[φ(ωα−iγα )+φ(ω+ωp−ωα+iγα )−φ(ω)−ξ ]
∑
β,δ

e−ik0(rβ−rδ )[Lβδ(ω)Gβ(ω)Gδ(ω) − Lβδ(ωp)G†
β(ωp)G†

δ(ωp)], (B1)

A2(ω,ωp) = 2π [G†
s(ωp) − Gs(ω)]

∑
α

ei[φ(ωα−iγα )+φ(ω+ωp−ωα+iγα )−φ(ω)−ξ ]Ls(ω + ωp), (B2)
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A
(α)
3 (ω,ωp) = 2πei[φ(ω−ωp+ωα+iγα )+ξ−φ(ωα+iγα )−φ(ω)]G2

ᾱ(ω)Ls(ω + ωα + iγα), (B3)

A
(αβγ )
4 (ω,ωp) = 2πei[φ(ω−ωp+ωα+iγα )+ξ−φ(ωα+iγα )−φ(ω)]Gᾱ(ω)Mβδ(ω − ωp + ωα + iγα)e−ik0(rβ−rδ ), (B4)

A
(αβγ )
5 (ω,ωp) = 2πei[−φ(ωp−ω+ωα−iγα )+ξ+φ(ωα−iγα )−φ(ω)]Gᾱ(ωp)Mβδ(ωp − ω + ωα − iγα)e−ik0(rβ−rδ ), (B5)

A6(ω,ωp) = [G†
s(ωp) − Gs(ω)]

∑
α,β

L̃αβ(ω)e−ik0(rα−rβ )Gα(ω)Gβ(ω)

+ [Gs(ω) + Gs(ωp)]

[∑
α,β

Lαβ(ωp)e−ik0(rα−rβ )G†
α(ωp)G†

β(ωp) − 1

]
, (B6)

A7(ω,ωp) = ei[2ξ−φ(ω)−φ(2ωp−ω)][G†
s(2ωp − ω) − Gs(ω)]

∑
α,β

L̃αβ(ω)e−ik0(rα−rβ )Gα(ω)Gβ(ω)

+ ei[2ξ−φ(ω)−φ(2ωp−ω)]Gs(2ωp − ω)

[ ∑
α,β

Lαβ (2ωp − ω)e−ik0(rα−rβ )G†
α(2ωp − ω)G†

β(2ωp − ω) − 1

]
, (B7)

A8(ω,ωp) = [G†
s(ωp) − Gs(ω)][Gs(ω) + Gs(ωp)]Ls(ω + ωp), (B8)

A9(ω,ωp) = [G†
s(2ωp − ω) − Gs(ω)]Gs(2ωp − ω)Ls(2ωp)ei[2ξ−φ(ω)−φ(2ωp−ω)]. (B9)

Similarly for the QED contribution, we obtain Eq. (21), where

B1(ω,ωp) = −2π
∑
α,β,δ

ei[φ(ω+ωp−ωα+iγα )+φ(ωα−iγα )−φ(ω)−ξ ]Lβδ(ω)e−ik0(rβ−rδ )[Gβ(ω)Gδ̄(ωp) + G
†
β(ωp)Gδ̄(ω)], (B10)

B2(ω,ωp) = 2π [G†
s(ωp) − Gs(ω)]

∑
α

L̃αα(ωα − iγα)ei[φ(ω+ωp−ωα+iγα )+φ(ωα−iγα )−φ(ω)−ξ ], (B11)

B3(ω,ωp) = 2π [G†
s(ωp) − Gs(ω)]M̃ba(ωa − iγa)e−ik0(rb−ra )ei[φ(ω+ωp−ωa+iγa )+φ(ωa−iγa )−φ(ω)−ξ ], (B12)

B4(ω,ωp) = 2π [G†
s(ωp) − Gs(ω)]M̃ab(ωb − iγb)e−ik0(ra−rb)ei[φ(ω+ωp−ωb+iγb)+φ(ωb−iγb)−φ(ω)−ξ ], (B13)

B
(αβ)
5 (ω,ωp) = 2πGᾱ(ω)ei[φ(ω−ωp+ωα+iγα )+ξ−φ(ω)−φ(ωα+iγα )]{[L̃β̄β̄(ωp) + M̃ββ(ω − ωp + ωα + iγα)]Gβ̄(ωp)

+ [L̃β̄β(ωp) + M̃β̄β(ω − ωp + ωα + iγα)e−ik0(rβ̄−rβ )]Gβ(ωp)}
− 2πGᾱ(ω)ei[φ(ω−ωp+ωα−iγα )+ξ−φ(ω)−φ(ωα−iγα )][Lᾱᾱ(ω)Gᾱ(ω) + Lαᾱ(ω)Gα(ω)], (B14)

B
(αβ)
6 (ω,ωp) = −2πGᾱ(ωp)ei[−φ(ωp−ω+ωα−iγα )+φ(ωα−iγα )+ξ−φ(ω)][Lβ̄β̄(ω)Gβ̄(ω) + Lββ̄(ω)e−ik0(rβ−rβ̄ )Gβ(ω)], (B15)

B
(αβ)
7 (ω,ωp) = −2πGᾱ(ωp)ei[−φ(ωp−ω+ωα−iγα )+φ(ωα−iγα )+ξ−φ(ω)]

× [Mββ(ωp − ω + ωα − iγα)Gβ̄(ω) + Mββ̄ (ωp − ω + ωα − iγα)e−ik0(rβ−rβ̄ )Gβ(ω)], (B16)

B8(ω,ωp) = [G†
s(ωp) − Gs(ω)]

∑
α,β

[L̃αβ(ω)Gα(ω)Gβ̄(ωp) + L̃αβ(ωp)Gᾱβ(ω)Gβ(ωp)]e−ik0(rα−rβ )

− [Gs(ωp) + Gs(ω)]
∑
α,β

[Lαβ(ω)Gα(ω)Gβ̄(ωp) + Lαβ(ωp)G†
α(ωp)Gβ̄(ω)]e−ik0(rα−rβ ), (B17)

B9(ω,ωp) = ei[2ξ−φ(ω)−φ(2ωp−ω)]

(
[G†

s(2ωp − ω) − Gs(ω)]
∑
α,β

L̃αβ(ω)e−ik0(rα−rβ )Gᾱ(2ωp − ω)Gβ(ω)

−Gs(2ωp − ω)
∑
α,β

[Lαβ(ω)Gα(ω)Gβ̄(2ωp − ω) + Lαβ(2ωp − ω)G†
α(2ωp − ω)Gβ̄(ω)]e−ik0(rα−rβ )

)
. (B18)

In the above expressions the couplings are given by Eqs. (27) and (28) and L̃αβ(ω) = Lαβ (ω)|μβ |2/|μα|2 and M̃αβ(ω) =
Mαβ(ω)|μβ |2/|μα|2.
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