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Nonlinear light scattering in molecules triggered by an impulsive x-ray Raman process
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The time- and frequency-resolved nonlinear light scattering (NLS) signals from a time-evolving charge
distribution of valence electrons prepared by impulsive x-ray pulses are calculated using a superoperator Green’s
function formalism. The signal consists of a coherent ∼N2-scaling difference-frequency-generation and an
incoherent fluorescence ∼N -scaling component, where N is the number of active molecules. The former is
given by the classical Larmor formula based on the time-dependent charge density. The latter carries additional
information about the electronic structure and may be recast in terms of transition amplitudes representing
quantum matter pathways.
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I. INTRODUCTION

Newly developed attosecond x-ray sources can excite
molecular electronic states impulsively, paving the way for
novel spectroscopic probes of electronic structure and correla-
tions [1–10]. Thanks to their broad bandwidth, such pulses
can prepare molecules or molecular ions in nonstationary
superpositions of electronic states [11]. These states can
be probed by various nonlinear optical techniques, such as
photoelectron spectroscopy [12,13].

Traditional x-ray experiments [14], including x-ray absorp-
tion near-edge structure (XANES), resonant and nonresonant
x-ray emission spectroscopy (RXES and NXES), Auger
electron spectroscopy (AES), and x-ray diffraction [15] (XD),
are mostly related to single-particle characteristics of the
many-body ground-state wave-function. Quantum coherence
(i.e., the phase in a superposition of states), which is ac-
cessible by nonlinear spectroscopy, does not play a role in
these techniques. Coherent x-ray sources can look into these
quantum effects. In particular, the large bandwidth (10 eV for
an 100 as pulse) can be used to create electronic coherences
which provide a higher level of information about orbitals
that goes beyond the charge density [16]. Nonlinear effects
in the x-ray regime have long been observed in the frequency
domain [17], including parametric down conversion [18–20],
hard x-ray frequency doubling [21], and two-photon x-ray
fluorescence [22]. Combined optical plus x-ray nonlinear
techniques can monitor excitations of optically excited states
[18,23,24]. All–x-ray nonlinearities such as pump-probe have
been demonstrated as well [11,19–21,25–27].

Classically, spontaneous emission is related to the acceler-
ation of charges [13]. In the semiclassical approach (classical
field and quantum matter) [28] the emission spectrum is thus
calculated from a time-dependent charge density that acts as
a source. No other information about the matter is needed.
This results in the Larmor formula for the power emitted
by a radiating charge [Eq. (15)] [13,29]. In a more rigorous
description where both field and matter are treated quantum
mechanically [30], we must work in the joint field-matter space
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and calculate the signal perturbatively in the radiation-matter
coupling. Radiation backreaction is then included implicitly
through the joint dynamics of field and matter.

In the present work we study the nonlinear light scattering
(NLS) caused by the time-evolving superposition of electronic
excitations. In order to create such superpositions, the coherent
x-ray source with broad (∼10 eV) bandwidth is required.
We use the many-body Green’s function formalism [31] to
calculate NLS involving two transitions between valence
excitations triggered by the stimulated x-ray Raman process
[10,32,33] (see Fig. 1). Note that NLS results from the
single pulse used for excitation; there is no probe pulse to
stimulate the emission. The resulting time- and/or frequency-
gated signals [34,35] provide direct information on valence
electron motions, coherences, and correlations [10,36]. We
identify two possible mechanisms for this process to quadratic
order in x-ray pulse intensity: difference-frequency-generation
(DFG) and stimulated-Raman-induced fluorescence (SRIF).
The former is a coherent process associated with long-range
valence-state coherence, which can be described in terms of the
time-dependent charge density created by the Raman process,
i.e., the classical Larmor formula. It is highly directional
(phase matched) and scales as N (N − 1) with the number of
active molecules. The latter is an incoherent process coming
from excited-state populations, which requires more detailed
information about the excited states than the simple charge
density. It produces an isotropic signal and scales as N .
For small samples, the coherent process is dominated by a
short-range coherence coming from the neighbor molecules
that gives rise to an isotropic emission and scales linearly with
N . We compare these two contributions amino acid cysteine
excited at the S, O, and N core transitions.

The paper is organized as follows. In Sec. II we present
general formal expressions for the coherent and incoherent
signals that allow us to incorporate an arbitrary sequence
of preparation pulses. The coherent signal is given by the
time-dependent polarization, whereas the incoherent signal is
expressed in terms of a transition amplitude. In Sec. III we
skip the preparation stage (the shaded area in Fig. 2). Assume
that the system has been prepared in a superposition state and
calculate the spontaneous light emission. In Sec. IV we apply
the results of Sec. III to compute the spectra of cysteine induced
by a stimulated x-ray Raman process. We further show that
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FIG. 1. (Color online) (a) Setup for the x-ray–induced NLS and
(b) level scheme of the model system, where g0,..., g1 represent
valence states and f are core excited states.

when the preparation is included as in Sec. II the coherent and
incoherent signals represent difference-frequency-generation
and fluorescence, respectively.

II. COHERENT VS INCOHERENT SPONTANEOUS
LIGHT-SCATTERING SIGNALS

Time- and frequency-gated spontaneous light emission
signals are given by an integrated intensity of the electric field
of the emitted photons. It may be represented by the spectral
and temporal overlap of a bare signal WB and a detector
spectrogram WD [34]:

S(t̄ ,ω̄) =
∫ ∞

−∞
dt ′

dω′

2π
WD(t̄ ,ω̄; t ′,ω′)WB(t ′,ω′). (1)

The detector offers a window of observation centered at
time t̄ and frequency ω̄. Even though t̄ and ω̄ can be
varied independently, the actual temporal σT and spectral σω

resolutions are not independent and satisfy σT σω � 1. This is
guaranteed by Eq. (1). We shall assume a point-size detector,
therefore omitting all effects of spatial resolution, retaining
only temporal and spectral gating [34]. Equation (1) was
introduced originally as signal processing for the classical field
[35], but it more broadly applies to quantum fields as well [34].
The bare signal WB contains all of the relevant information
about the externally driven molecules and is given by a
correlation function of matter that further includes a sum over
the detected modes. In Appendix A we present superoperator
expressions for WB of a system prepared in an arbitrary
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FIG. 2. (Color online) (a) Loop diagram for the bare incoherent
signal in a gated measurement caused by a single molecule α, and (b)
coherent signal generated by a pair of molecules α �= β. Equations
(2) and (3) (coherent) and Eqs. (8) and (9) (incoherent) can be read
off these diagrams (for diagram rules see Ref. [37]). The shaded area
represents an excitation by an arbitrary sequence of pulses, which
prepares the molecule in a superposition state.

nonstationary state without treating the preparation explicitly.
The bare signal (A6) represented by the closed-path time-loop
diagram shown in Figs. 2(a) and 2(b) is given by time-ordered
Green’s functions for superoperators (TIGERS) [31]. It con-
tains a double summation over molecular positions rα and rβ

and contains two types of contributions: incoherent emission
terms with α = β [Fig. 2(a)] and coherent emission α �= β

[Fig. 2(b)].
We start with the coherent emission which is induced by

pairs of molecules labeled α and β. Here we can factor-
ize the matter correlation in Eq. (A6) 〈T V̂ α

L (t ′1)V̂ β†
R (t1)〉 →

〈V̂ α
L (t ′1)〉〈V̂ β†

R (t1)〉. WB is then factorized into a product of
amplitudes (see Appendices B and C):

WBcoh(t ′,ω′)

= A2
∑

μ

∫ ∞

0
dτe−iω′τ

N∑
α=1

N−1∑
β=1

eikn·(Rβ−Rα )

RαRβ

P̈ (α,μ)

× (t ′ − τ/2 − Rα/c)P̈ (β,μ)∗(t ′ + τ/2 − Rβ/c). (2)

The polarization of molecule α in the Cartesian direction μ is
given by

P (α,μ)(t)

=
∑
a,b

ρaa

〈
〈bb|T VμL(t) exp

(
− i

h̄

∫ t

−∞
H ′

−(T )dT

)
|aa〉

〉
α

,

(3)

where ρaa represents the initial equilibrium density ma-
trix, and T is responsible for time ordering of superop-
erators. When using a purely temporal gate, Ff (ω,ω̄) = 1
and we get WD(ω̄,t̄ ; t,τ ) = δ(τ )F ∗

t (t + τ/2,t̄)Ft (t − τ/2,t̄),
where WD(ω̄,t̄ ; t,τ ) = ∫ ∞

−∞
dω
2π

eiωτWD(ω̄,t̄ ; t,ω). For an ideal
time gate, |Ft (t,t̄)|2 = δ(t − t̄) and Eqs. (1) and (2) result in
the time-resolved signal

S(t̄) = |E(t̄)|2, (4)

i.e.,

Scoh(t̄) = A2
∑

μ

∣∣∣∣∣
N∑

α=1

e−ikn·Rα

Rα

P̈ (α,μ)(t̄ − Rα/c)

∣∣∣∣∣
2

, (5)

where A is a normalization constant and the double dot
represents the second time derivative. In the opposite, pure
frequency gating, i.e., Ft (t,t̄) = 1, and the frequency gate is
very narrow, such that Ff (t,ω̄) =

√
γ

π
e−iω̄t−γ t θ (t) at γ → 0,

then WD(ω̄,t̄ ; ω,τ ) = e−iω̄τ . We then obtain the frequency-
resolved signal

S(ω̄) = |E(ω̄)|2, (6)

where E(ω) = ∫ ∞
−∞ dtE(t)eiωt . Using Eq. (2) we obtain

Scoh(ω̄) = A2
∑

μ

∣∣∣∣∣
N∑

α=1

ei(ω̄Rα/c−kn·Rα )

Rα

ω̄2P (α,μ)(ω̄)

∣∣∣∣∣
2

. (7)

It follows from the Larmor formula Eqs. (5) or (7) that only
when the measurement is either solely time- or frequency-
gated can the coherent signal be expressed in terms of the
modulus square of a matter amplitude. The more general
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time- and frequency-gated signals (A1), (A6), and (2) do not
have this form.

We next turn to the incoherent signal [Fig. 2(a)] originating
from processes in which both signal-mode interactions occur
with the same molecule α = β. This signal is not given by
a modulus square of the polarization amplitude. However, by
expanding it in the molecular eigenstates we can express it in
terms of other types of amplitudes. After a bit of algebra (see
Appendix C for details) we obtain

WBinc(t ′,ω′) = A2
∑

μ

∫ ∞

0
dτe−iω′τ

N∑
α=1

1

R2
α

∑
a,b

ρaaT̈
(α,μ)
ba

× (t ′ − τ/2 − Rα/c)T̈ (α,μ)∗
ab (t ′ + τ/2 − Rα/c).

(8)

Here

T
(α,μ)
ba (t) = 〈b(t)|T Vμ(t) exp

(
− i

h̄

∫ t

−∞
H ′(T )dT

)
|a〉α (9)

represents a matter transition amplitude of molecule α starting
with the initial state a and reaching the final state b at time t .

For a pure time domain gating (4), Eq. (8) gives

Sinc(t̄) = A2
∑
μ,a,b

N∑
α=1

1

R2
α

∣∣T̈ (α,μ)
ba (t̄ − Rα/c)

∣∣2
. (10)

Pure frequency gating (6) yields

Sinc(ω̄) = A2
∑
μ,a,b

N∑
α=1

1

R2
α

ω̄4
∣∣T (α,μ)

ba (ω̄)
∣∣2

. (11)

Equations (8)–(11) indicate that the incoherent signal may
not be generally recast in the form of a square of the total
polarization alone [Eq. (3)]. Rather, it depends on a different
set of matter quantities-transition amplitudes (9) that represent
the possible quantum pathways of matter from state a to state
b. This calculation does not require superoperators, since the
amplitudes represent the evolution of the bra or ket separately
and can be recast in Hilbert space. The polarization (3), on the
other hand, is governed by evolution of both bra and ket and
therefore can only be defined using superoperators.

The absence of spatial phase factors in Eq. (8) indicates that
the incoherent emission is isotropic and is independent of the
wave vector of the incoming pulses. The single summation
over molecules yields linear ∼N scaling with the number
of active molecules. The coherent signal (2) in contrast
scales as N (N − 1). This signal is directional and propagates
according to the phase matching condition ks = kn. The
coherent and incoherent signals can always be distinguished
by their N (N − 1) vs N scaling and directionality vs isotropic
emission. A different type of size scaling exists in hyper-
Rayleigh techniques. Consider a sample of M particles each
composed of N molecules. Assuming coherent intraparticle
and incoherent interparticle scattering, the signal will then
scale as MN (N − 1) and will appear to be linearly scaling in
the number of particles. N scaling can be similarly obtained
if each molecule α is near some set of N ′ neighbor molecules
β such that |ks | · |rα − rβ | � 1; then it will emit in phase
with this set of molecules, thus lending an overall factor of
NN ′. Incoherent sum frequency generation is an example of

a hyper-Rayleigh signal [38–40]. This signal scales linearly
with the number of molecules, similar to the incoherent
fluorescence.

Classically, spontaneous light emission from a nonstation-
ary state is given by the Larmor formula (see Appendix D).
All the necessary information is then contained in the charge
density of the accelerating particle and the radiation power is
related to the second-order time derivative of the macroscopic
polarization. The classical derivation apparently applied even
to a single molecule, and the result is then simply multiplied
by the number of molecules. This yields linear N scaling. It
follows from our analysis that the classical formula is valid
only for the coherent signal from a mesoscopic volume and
may not be applied to a single molecule. Light scattering from
a single molecule is incoherent and provides new information
about quantum pathways of matter. It may not be recast using
the charge density alone.

To further evaluate the sum over molecules in Eqs. (2)–(11),
we first consider small samples (compared to the optical wave-
length) where retardation effects can be neglected. In this case
both coherent and incoherent signals are independent of the di-
rection of the incoming pulses. Straightforward analysis yields
for the incoherent signal

∑
α R−2

α ∼ N/R2
c , where Rc is the

characteristic size of the sample. Similarly, since |kn| · |rα −
rβ | � 1, the coherent component yields

∑
α

∑
β(RαRβ)−1 ∼

NN ′/R2
c . Thus, both signals scale linearly with molecular

density and inverse proportional to the square of the sample
size. For extended samples, when retardation becomes impor-
tant, the coherent signal yields a directional emission with
N2 scaling:

∑
α,β ei(ωRα/c−kn·Rα )−i(ω′Rβ/c−kn·Rβ )(RαRβ)−1 �

N (N − 1)δ(ω/c − kn)δ(ω′/c − kn).
When retardation is neglected, the coherent signal (5) can

be recast in the Larmor form. The most striking limitation
is that this form may not be applied to the single-molecule
case, as shown in Eq. (10); it requires pairs of molecules.
The conventional classical derivations define the signal for
a single molecule and then multiply it by the number of
molecules. We showed that the N scaling can be realized
in the coarse-grained system with mesoscopic grains via
hyper-Rayleigh scattering where the short-range coherence
makes the signal scale as N and not N2.

III. LIGHT SCATTERING OFF A NONSTATIONARY STATE

We now calculate the incoherent and coherent signals in
a multilevel system prepared in an arbitrary superposition
state. In Sec. II, the evolution governed by H ′

−(t) and H ′(t) in
Eqs. (3) and (9), respectively, caused by an arbitrary sequence
of pulses which occurs prior to the last emission constitutes the
preparation process that leaves the system in the superposition
state. Here we ignore the details of the preparation (the shaded
area in Fig. 2) and start our analysis after that time period where
the system has been prepared in nonstationary superposition
state: ρcc′ in Fig. 2(a) and two molecules in ρcb and ρbc′ ,
respectively, in Fig. 2(b).

A. The coherent signal

We start with Eq. (3) and omitting the superscript α. For
clarity we can recast the νth component of the polarization in
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the form

P (ν)(t) = Tr[Vνρ(t)]. (12)

After multiple interactions with incoming pulses the matter
density matrix Fig. 2(b) is ρcb. We further define μ

(ν)
cb ≡

〈b|Vν |c〉. We can then write

P (ν)(t) =
∑
b,c

ρcbμ
(ν)
bc e−iωcbt . (13)

Assuming that molecules α, β are identical and neglecting
retardation we obtain the following compact form for the bare
spectrogram:

WB,coh(t ′,ω′)

= N (N − 1)Ã2
∫ ∞

0
dτe−iω′τ P̈ (t ′ − τ/2)P̈ ∗(t ′ + τ/2),

(14)

where we have further averaged over the random dipole ori-
entation

∑
ν P (ν)(t1)P (ν)∗(t2) � 1

3P (t1)P ∗(t2), yielding Ã =
A/

√
3. Since P (t) only depends on a single interaction with the

signal mode, the coherent signal governed by the expectation
value of the signal field is finite and the molecule returns to
state |b〉〈b| at the end of the process. In the case of ideal time
gating, we recover the Larmor formula

Scoh(t̄) = N (N − 1)
Ã2

2
|P̈ (t̄)|2, (15)

where

P̈ (t) =
∑
b,c

ρcbω
2
cbμ

(ν)
bc e−iωcb t̄ . (16)

For purely frequency gating, we similarly get

Scoh(ω̄) = NÃ2
∑
b,c

ω4
cb|μbc|2|ρcb|2δ(ω̄ − ωcb). (17)

B. The incoherent signal

To calculate the α = β terms in Eq. (A6) [see Fig. 2(a)] we
must evaluate the following matter correlation function:

〈V̂L(t ′1)V̂ †
R(t1)〉 = Tr[V̂ †(t1)ρV̂ (t ′1)]

=
∑
b,c,c′

ρc,c′ 〈b|V̂ (t ′1)|c〉〈c′|V̂ †(t1)|b〉

=
∑
b,c,c′

ρcc′μbcμ
∗
bc′e

−iωcbt
′
1eiωc′bt1 , (18)

where the state of the system prior to the emission is given by
the nonstationary density matrix element ρcc′ and the emission
brings it to the population state |b〉〈b|. Combining this with
Eqs. (8) gives

WB,inc(t ′,ω′) = πÃ2N
∑
b,c,c′

ω2
cbω

2
c′bμbcμ

∗
bc′ρcc′

× ei(ωc′b−ωcb)t ′δ

(
ω′ − ωcb + ωc′b

2

)
. (19)

FIG. 3. Various valence level schemes considered in this paper.
(a) A general level scheme with arbitrary transition dipoles. (b) A
two-band model with only interband transition dipole. (c) Two bands
with a single excited state. (d) Two bands with a single ground state.

The incoherent bare spectrogram (19) may not be recast in the
Larmor form [Eq. (14)]. The time-gated incoherent signal is

Sinc(t̄) = NÃ2

2

∑
b,c,c′

ω2
cbω

2
c′bμbcμ

∗
bc′ρcc′ei(ωc′b−ωcb)t̄ . (20)

The frequency-gated signal is

Sinc(ω̄) = NÃ2
∑
b,c

ω4
cbμ

2
bcρccδ(ω̄ − ωcb). (21)

In contrast with the coherent signal, we see that an excited-state
population rather than a coherence in the relevant transitions
is required to produce a signal. This is because all interactions
are with a single molecule, and the radiation signal mode
(initially in a vacuum state) must be brought to a population
of one photon state to generate a signal.

We now apply our results to a level scheme composed of two
manifolds of states with interband dipole elements as shown
in Fig. 3(b), Eqs. (14)–(19), which gives

WB0,coh(t ′,ω′) = πNÃ2
∑

ee′,gg′
ω2

egω
2
e′gμ

∗
geμg′e′ρ∗

geρg′e′

× ei(ωeg−ωe′g′ )t ′δ

(
ω′ − ωeg + ωe′g′

2

)
, (22)

WB0,inc(t ′,ω′) = πNÃ2
∑
gee′

ω2
egω

2
e′gμ

∗
geμge′ρee′ei(ωeg−ωe′g)t ′

× δ

(
ω′ − ωeg + ωe′g

2

)
, (23)

where the subscript “0” signifies the two-band model. In the
case of time and frequency gating, various transitions between
ground and singly excited states become coupled. A time-gated
measurement (4) yields

S0,coh(t̄) = N
Ã2

2

[∑
eg

ω2
egμgeρgee

−iωeg t̄

]2

, (24)

S0,inc(t̄) = N
Ã2

2

∑
g

∑
e,e′

ω2
egω

2
e′gμgeρe′ee

i(ωe′g−ωeg)t̄ . (25)
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For an ideal frequency gating (6), the signal (22) and (23) reads

S0,coh(ω̄) = NÃ2
∑
eg

ω4
eg|μge|2|ρge|2δ(ω̄ − ωeg), (26)

S0,inc(ω̄) = NÃ2
∑
eg

ω4
eg|μge|2ρeeδ(ω̄ − ωeg). (27)

Equations (26) and (27) are very similar, both given in the
form of the Fermi golden rule for spectrally well-separated
states. However, this is no longer the case for time-domain
measurements. In Eq. (24), the initial and final states enter in
the same way (the summations are fully interchangeable and all
transitions are added at the amplitude level), while in Eq. (25),
a trace is taken over final states after adding the amplitudes for
the transitions to a given final state. The consequences of this
difference are most readily seen by comparison of the two level
schemes shown in Fig. 3. In case (c), there is a single excited
state and a manifold of ground states. In case (d), the situation
is reversed and there is a manifold of excited states and a
single ground state. Both cases will generate a beating term
in the coherent signal. In contrast, the incoherent signal (25)
gives a beating term for case (d) but not for case (c). V - and

-type three-level models of atoms are commonly discussed
in quantum optics [28,41]; these correspond to our cases
(d) and (c), respectively. The total signal is S = Scoh + Sinc.
Scoh only has beats for (d). The semiclassical approach only
gives Scoh.

IV. DIFFERENCE-FREQUENCY-GENERATION VS
FLUORESCENCE INDUCED BY A STIMULATED

X-RAY RAMAN PROCESS

We have simulated these signals for cysteine, an amino
acid which serves as an important structural unit in connecting
different regions of proteins by disulfide bonds. The following
excitation by a stimulated x-ray Raman process resonantly
tuned to either the nitrogen, oxygen, or the sulfur K edges.
The signal is given by the diagrams of Fig. 4 and involves
six radiation-matter interactions. In this case the incoherent
signal is SRIF and the coherent signal is DFG, as depicted in
Fig. 4(c). An attosecond x-ray pulse excites the core transition
to state f by absorbing a k1 photon which is then de-excited
with a −k2 photon, leaving the system in a superposition of
valence states g1 and g2 with amplitudes given by Eq. (A7) of
Ref. [23]. This results in a weakly excited, pure-state g3. We
thus expect the incoherent and coherent signals to coincide for
the g1,2 ↔ g0 transition. The relevant diagrams are shown in
Figs. 4(a) and 4(b). For a two-state model system prepared in
a pure state, the state vector reads

|ψ0〉 = κg|g〉 +
∑

e

κe|e〉, (28)

where expressions for κj , j = e,g in Eq. (28) are given in
Ref. [23]. In the limit of weak excitation most of the population
is in the ground state |κg|2 ∼ 1 and |κe|2 � 1∀e (the excitation
is perturbative). Thus Eq. (17) reads

Scoh(ω̄) = NÃ2
∑
b,c

ω4
cb|μbc|2|κb|2|κc|2δ(ω̄ − ωcb). (29)

t1
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FIG. 4. (Color online) The stimulated x-ray Raman-induced NLS
process. Straight arrows correspond to interactions with x-ray pulses,
and wavy arrows represent spontaneous emission. (a) Loop diagram
for the bare SRIF signal and (b) the bare coherent DFG signal.
(c) The level scheme used for cysteine is composed of a ground state
g0 and 50 valence excited states g1 with energies between ∼5.75 and
∼11.5 eV, and f are core excited states.

Since |κe|2 � 1 and |κg|2 ∼ 1, the leading contribution yields

Scoh(ω̄) = NÃ2
∑

c

ω4
cg|μgc|2|κc|2δ(ω̄ − ωcg), (30)

where we assumed b = g. This is clearly a subset of the
incoherent signal [Eq. (21)] which, under the assumption of a
pure state, is given by

Sinc(ω̄) = NÃ2
∑
b,c

ω4
cb|μbc|2|κb|2δ(ω̄ − ωcb). (31)

Thus, for a weakly excited system in a pure state, the incoherent
and coherent signals coincide for transitions from the excited
states to the ground state. When the excited-state manifold
bandwidth is smaller than the band gap, these transitions
appear in the high-energy part of the emission spectra (see
Sec. V). The intraband transitions within the excited-state
manifold then appear in the red part of the spectra and only
show up in the incoherent signal.

The optimized geometry was obtained with the quantum
chemistry package Gaussian09 [42] at the B3LYP [32,43]/6-
311G** level. Core excited states were calculated with re-
stricted excitation window time-dependent density-functional
theory (REW-TDDFT) [33] implemented in NWCHEM code
[44]. Core and valence energy levels and transition dipole
moments were calculated with a locally modified version
of NWCHEM code at the CAM-B3LYP [45]/6-311G** level
of theory and within the Tamm-Dancoff approximation [46].
Additional computational details are given in Ref. [24]. The
calculated frequency-gated SRIF (21) and DFG (17) signals
obtained by excitation of the nitrogen, oxygen, and sulfur K

edges are shown in the top and bottom rows, respectively, of
Fig. 5.
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FIG. 5. (Color online) SRIF (top) and DFG (bottom) NLS signals
of cysteine following stimulated Raman excitation by an x-ray
pulse of width 14.2 eV and central frequency tuned to the nitrogen
(∼404.4 eV), oxygen (∼532.2 eV), or sulfur (∼2473.5 eV) K edges,
as indicated. The two signals coincide for g1,2 ↔ g0 transitions.
Transitions between excited states g1,2 ↔ g3, ω̄ < 5 eV do not show
up in the coherent signal. � ∼ 0.04 eV is used for the gating
bandwidth.

We first note that the SRIF and DFG signals coincide in
the high-frequency regime. The lowest excited state has an
energy ∼5.74 eV, while the excited-state manifold bandwidth
is ∼5.70 eV. These high-energy transitions are from the various
excited states to the ground state. The low-energy ω < 5 eV
features that only appear in the incoherent spectra represent
transitions between excited states g1,2 ↔ g3. The frequency-
gated coherent and incoherent signals are very different.
However, the corresponding time-gated signals shown in Fig. 6
are less distinct.

Figure 7 depicts the time- and frequency-gated
spectrograms of the SRIF signal computed by Eq. (14)
of Ref. [34] with Gaussian gating functions,

Ff (ω,ω̄) = e
− (ω−ω̄)2

2σ2
ω , Ft (t,t̄) = e

− (t−t̄)2

2σ2
T , (32)

t̄ (fs)
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FIG. 6. (Color online) Time-resolved SRIF (solid red line) and
DFG (dotted blue line signals) are compared for x-ray pulses resonant
with S, O, and N in cysteine. � ∼ 0.04 eV is used for the gating
bandwidth.

FIG. 7. (Color online) Time- and frequency-gated SRIF signals
of cysteine [Eq. (1)]. The gating parameters in atomic units σT =
1000, σω = 0.001 (a), σT = 100, σω = 0.01 (b), and σT = 2000,
σω = 0.005 (c). These permit all transitions within ∼0.054, 0.54,
and 0.1 eV of each other to interfere, respectively. Top panel has
optimal gating parameters and reveals both areas of low transition
density (where the intensities are time independent) and areas of
higher densities (where beats develop as a result of interference
between transitions). Note the particularly prominent beating near
9 eV with an approximate period of 120 fs. The actual distance
between these states is ∼0.0126 Ha, well within the allowed detection
bandwidth. The middle panel has low-frequency resolution but rather
high temporal resolution that results in a clear beating signal. The
bottom panel has high spectral but low temporal resolution, which
results in the suppression of formerly prominent beating at ∼9 eV.
Further narrowing the frequency-domain gating widths eliminates it
altogether.

where σω and σT are the corresponding bandwidths of the
frequency and time gates, respectively. These obey the Fourier
uncertainty relation σωσT � 1. Some transitions in Fig. 7(a) do
not vary with time while others beat. Beating occurs because of
interference with nearby transitions and thus indicates a higher
density of transitions. The beating period gives the interval
between the interfering states a,b via |ωab| = 2π

Tbeat
. The gating

parameters determine the maximum energy difference (and
thus the minimum beating period) between interfering states
via

� = σω + 1

σT

, (33)
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FIG. 8. (Color online) Frequency-resolved SRIF, green (light
gray) line, and DFG, red (dark gray) line, following a stimulated
Raman excitation by two pulses of varying width. In all three panels,
the first pulse is tuned to the transition from the bottom of the
nitrogen core band to the ground state (∼388 eV) and has a width of
1.36 eV. The second pulse is tuned to the transition from the bottom
of the nitrogen core band to the top of the valence band (∼374 eV).
The second pulse is gradually broadened to allow for more valence
excitations prior to the NLS ∼1.36 eV (bottom), ∼3 eV (middle), and
∼6 eV (top). � ∼ 0.04 eV is used for the gating bandwidth.

where � is the maximum spacing between interfering states.
Note that these resolutions always satisfy σωσT � 1 [35].
One can thus begin by applying a nearly pure frequency
gating to eliminate interferences and then gradually widen
the gating parameters in the frequency domain to reveal
the density of transitions at various parts of the spectra. A
clear demonstration is the prominently beating transitions
with period ∼120 fs at ∼9 eV, which is visible (to varying
degrees) in all three two-dimensional figures. An optimal
balance for observing this interference is found in Fig. 7(a),
in which the beating period (and thus the state separation)
can be well approximated by visual inspection. In Fig. 7(b),
� is so large that the interference of interest is masked by
the myriad of other possible interferences, while in Fig. 7(c),
� is small enough to almost entirely suppress the ∼9 eV
beating. The coherent DFG signal coincides with SRIF in
the regime ω̄ > 5 eV and vanishes otherwise. Thus it is not
plotted separately.

We note that the choice � = 0.04 eV in Figs. 5, 6, and 8
represents an experimental resolution. The lifetime of the
valence states are of the order of nanoseconds and will give
broadening � ∼ μ eV. The detection parameters are chosen to
capture the specific beating signal between various transitions
that occur on much shorter time scale of tens of femtoseconds.
The low quantum yield at short times poses a challenge for
detection.

V. DISCUSSION

Thanks to the ∼N2 vs ∼N scaling, it is not hard to
separate the coherent signal since it is directed and generally
dominates the incoherent and hyper-Rayleigh coherent signals.
However, it is not generally as simple to distinguish between
the incoherent and hyper-Rayleigh contribution to the coherent
signal, since both are roughly isotropic and ∼N scaling. In
our model of cysteine, the valence manifold bandwidth is
slightly larger than the lowest valence excitation and so the
incoherent and coherent signals can be easily distinguished in
the frequency domain, as shown in Sec. IV.

When the valence-state manifold bandwidth is comparable
to the band gap, both inter- and intraband transitions overlap
spectrally and one needs to identify another procedure for
separating the SRIF and DFG contributions. A single x-ray
pulse cannot accomplish this goal, since any modification
of its bandwidth will affect both the absorption and the
emission profile. However, this can be achieved by using two
x-ray pulses with wave vectors k1 and −k2 for the system
preparation via stimulated Raman excitation. Both pulses must
have narrow bandwidth compared to the g manifold in order to
excite states selectively. The first pulse is tuned to the bottom
of the core-excitation manifold. The second pulse is tuned to
the transition from the bottom of the core-excitation manifold
to the top of the valence band. This combination of pulse
parameters can selectively excite populations and coherences
of the high-energy valence states. Since the excitation is weak,
the square of the ground and excited states coherences are
comparable to the valence populations, but the coherences
between valence states are lower order. Thus the coherences
between valence states created by this two-pulse process do not
contribute significantly to the signal. The overall signal will
then be dominated by the incoherent contribution, in particular,
the transitions from high-energy valence states to lower-energy
valence states and the ground state. Increasing the bandwidth
of pulse −k2 will result in the excitation of a larger number of
valence states, which gives rise to a small coherent contribution
as well as more transitions to appear in the incoherent spectra.
Finally, as the second pulse is broadened so that it excites the
entire valence band, the incoherent and coherent signals again
overlap in the regime of transitions to the ground state. This
behavior is illustrated in Fig. 8.

In summary, by working in the joint field-matter space we
developed closed expressions for the NLS signal and show
that may not be solely expressed in terms of the macroscopic
polarization, as suggested by the semiclassical approach. We
find an isotropic hyper-Rayleigh and directional coherent
component that can be described by the Larmor formula and
an incoherent component that governs the fluorescence. The
microscopic calculation reveals interferences of the quantum
matter pathways.
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APPENDIX A: MICROSCOPIC CALCULATION
OF SPONTANEOUS LIGHT EMISSION

Simultaneously, time- and frequency-gated spontaneous
light emission signals may be described by the spectral and
temporal overlap of a bare signal and a detector spectrogram
[Eq. (1)]. The detector spectrogram WD is an ordinary function
of the time and frequency gating parameters, which are
characterized by standard deviations of the time and frequency
gating σT and σω, respectively. The structure of WD guarantees
that these always satisfy the Fourier uncertainty σωσT � 1. The
bare signal contains all of the relevant information about the
molecules.

In order to maintain the bookkeeping of all interactions
and develop a perturbative expansion for signals, we adopt
superoperator notation. With each ordinary operator O we
associate a pair of superoperators [31] “left” ÔLX = OX,
“right” ÔRX = XO, and the combination Ô− = ÔL − ÔR .
The bare spectrogram WB in the gated photon counting signal
(1) is given in terms of superoperators as

WB(t ′,ω′) =
∫ ∞

0
dτe−iω′τ 〈T Ê†

R(t ′ + τ/2,rD)ÊL

× (t ′ − τ/2,rD)e− i
h̄

∫ ∞
−∞ Ĥ ′

−(T )dT
〉
. (A1)

The positive frequency part of the electric field operator is
given by

Ê(t,r) =
∑
ks ,μ

(
2πh̄ωs

�

)1/2

ε(μ)(ks)âks
e−iωs t+iks ·r, (A2)

where ε(μ)(k) is the unit electric polarization vector of mode
(ks ,μ), μ being the index of polarization, ωs = c|ks |, c is the
speed of light, and � is quantization volume. The polarization
degrees of freedom are necessary to restrict the density of
radiation modes and recover the λ−4 dependence typical for

Rayleigh scattering. The Hamiltonian superoperator in the
interaction picture under the rotating-wave approximation
(RWA) is given by

Ĥ ′
q(t) =

∫
drÊ†

q(t,r)V̂q(t,r) + H.c., q = L,R, (A3)

where V(t,r) = ∑
α Vα(t)δ(r − rα) is a matter operator repre-

senting the lowering (exciton annihilation) part of the dipole
coupling and α runs over molecules in the sample located at
rα , rβ . The operator T maintains positive time ordering of
superoperators and is a key bookkeeping device. It is defined
as follows:

T Êq(t1)Êq ′ (t2) = θ (t1 − t2)Êq(t1)Êq ′(t2)

+ θ (t2 − t1)Êq ′(t2)Êq(t1), (A4)

where θ (t) is the Heaviside step function. Note that the
interaction Hamiltonian (A3) corresponds to the interaction
of the matter with the spontaneously emitted photon between
two electronic states. This energy is in VUV range and is
not related to the preparation of the system that involves an
x-ray Raman process with high-energy photons. Therefore the
dipole approximation for field-matter interaction is justified.

We shall calculate the time-dependent bare signal (A1)
for a collection of molecules α, β in the interaction picture.
We consider a signal governed by the spatial phase factor
eikn·r, where kn is a combination of incoming wave vectors
characteristic to the desired signal. This phase factor repre-
sents a paraxial approximation, such that multiple frequency
components propagate with the same wave vector. The bare
signal is represented by the closed-path time-loop diagram
shown in Figs. 2(a) and 2(b). We first expand the time-ordered
exponent in Eq. (A1) to second order—one interaction with
the bra and one with the ket—and factorize the detected field
and matter correlation functions as follows:

1

h̄2

N∑
α,β

∑
ν,ν ′

∫ t ′+τ/2

−∞
dt1

∫ t ′−τ/2

−∞
dt ′1

〈
T V̂ α

νL(t ′1)V̂ β†
ν ′R(t1)

〉〈
T Ê

(s)†
μR (t ′ + τ/2,rD)Ê(s ′)

μL (t ′ − τ/2,rD)Ê(s ′)†
νL (t ′1,rα)Ê(s)

ν ′R(t1,rβ)
〉
. (A5)

Since Ê(s) is initially in the vacuum state, the field correlation function factorizes using (A2) and the bare signal (A1) is given by

WB(t ′,ω′) =
(

2π

�

)2 ∑
ks ,ks′

∫ ∞

0
dτe−iω′τ

∫ t ′+τ/2

−∞
dt1

∫ t ′−τ/2

−∞
dt ′1ωsωs ′eiωs (t ′+τ/2−t1)−iωs′ (t ′−τ/2−t ′1)

N∑
α,β

ei(ks−kn)·Rβ−i(ks′ −kn)·Rα

×
∑
μ,ν,ν ′

ε(ν)(ks)ε
(μ)(ks)ε

(ν ′)(ks ′ )ε(μ)(ks ′ )
〈
T V̂ α

νL(t ′1)V̂ β†
ν ′R(t1)e− i

h̄

∫ ∞
−∞ Ĥ ′

−(T )dT
〉
, (A6)

where Rα = rα − rD and rD is the position of the detector. Equation (A6) explicitly contains multiple pairs of radiation modes
ks and ks ′ , and acts in the joint field plus matter space. It takes into account all field-matter interactions that lead to the emission
of the detected field modes.

APPENDIX B: SUPEROPERATOR REPRESENTATION OF COHERENT AND INCOHERENT SIGNALS

For the single-molecule (incoherent) signal rα = rβ , and thus the signal reads

WBinc(t ′,ω′) =
(

2π

�

)2 ∑
ks ,k′

s

∫ ∞

0
dτe−iω′τ

N∑
α

ei(ks−ks′ )·Rα

∫ t ′+τ/2

−∞
dt1

∫ t ′−τ/2

−∞
dt ′1ωsω

′
se

iωs (t ′+τ/2−t1)−iω′
s (t ′−τ/2−t ′1)

×
∑
μ,ν,ν ′

ε(ν)(ks)ε
(μ)(ks)ε

(ν ′)(ks ′ )ε(μ)(ks ′ )
〈
T V̂νL(t ′1)V̂ †

ν ′R(t1)e− i
h̄

∫ ∞
−∞ Ĥ ′

−(T )dT
〉
α
. (B1)
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In the absence of dissipation (unitary evolution) we can further factorize the matter correlation function as

〈T V̂νL(t ′1)V̂ †
ν ′R(t1)〉 =

∑
a,b

ρaa〈〈aa|V̂ †
ν ′R(t1)|ab〉〉〈〈ba|V̂νL(t ′1)|aa〉〉

=
∑
a,b

ρaa

〈
〈b(t ′ + τ/2)a|V̂νL(t ′1)T+ exp

[
− i

h̄

∫ t ′1

−∞
Ĥ ′

L(T )dT

]
|aa〉

〉〈
〈aa|V̂ †

ν ′R(t1)T−

× exp

[
i

h̄

∫ t1

−∞
Ĥ ′

R(T )dT

]
|b(t ′ + τ/2)a〉

〉
, (B2)

where we denote 〈〈ba|Ô|aa〉〉 ≡ Tr[|a〉〈b|Ô|a〉〈a|] and b is the final state of the system. We assume that system is initially in
the pure state a described by equilibrium density matrix ρaa . We next define the transition amplitude:

T̃
(α,μ)
ba (t) = −i

∑
ks ,ν

ε(ν)(ks)ε
(μ)(ks)

2πωs

�

∫ t

−∞
dt ′1e

−iωs (t−t ′1)−iωabt−i(ks−k{n})·Rα

〈
〈b(t)a|V̂νL(t ′1)T exp

(
− i

h̄

∫ t ′1

−∞
Ĥ ′

L(T )dT

)
|aa〉

〉
α

.

(B3)

Since all interactions are from the left (L), we can also write the transition amplitude using ordinary operators in Hilbert space,

T̃
(α,μ)
ba (t) = −i

∑
ks ,ν

ε(ν)(ks)ε
(μ)(ks)

2πωs

�

∫ t

−∞
dt ′1e

−iωs (t−t ′1)−iωabt−i(ks−k{n})·Rα 〈b(t)|Vν(t ′1)T exp

(
− i

h̄

∫ t ′1

−∞
H ′(T )dT

)
|a〉α. (B4)

This gives for the bare signal (B1),

WBinc(t ′,ω′) =
∑
a,b,μ

N∑
α=1

ρaa

∫ ∞

0
dτe−iω′τ T̃

(α,μ)
ba (t ′ − τ/2)T̃ (α,μ)∗

ab (t ′ + τ/2). (B5)

In the limit of pure time-resolved measurement (4), signal (B5) transforms into

WBinc(t̄) =
∑
a,b,μ

N∑
α=1

ρaa

∣∣T̃ (α,μ)
ba (t̄)

∣∣2
. (B6)

Similarly, the pure frequency-resolved signal (6) signal (B5) yields

WBinc(ω̄) =
∑
a,b,μ

N∑
α=1

ρaa

∣∣T̃ (α,μ)
ba (ω̄)

∣∣2
, (B7)

where T̃
(α,μ)
ba (ω) = ∫ ∞

−∞ dtT̃
(α,μ)
ba (t)eiωt . The spatial phase factors in Eq. (A6) indicate that the incoherent emission occurs in all

directions and is independent of the wave vector of the incoming pulses as expected. A single summation over the molecule
yields the linear scaling with respect to the number of molecules.

We now turn to coherent emission contribution of α �= β. Since interactions with different molecules are not time ordered,
we may factorize the matter correlation in Eq. (A6) 〈T V̂ α

L (t ′1)V̂ β†
R (t1)〉 → 〈V̂ α

L (t ′1)〉〈V̂ β†
R (t1)〉. Thus the two-molecule (coherent)

signal can be separated into a long-range and a short-range component (as described in Ref. [47]). Using Eqs. (B2) and (B3) the
coherent part of the signal (A6) reads

WBcoh(t ′,ω′) =
∑

μ

N∑
α=1

N−1∑
β=1

∫ ∞

0
dτe−iω′τ P̃ (α,μ)(t ′ − τ/2)P̃ (β,μ)(t ′ + τ/2), (B8)

where

P̃ (α,μ)(t) = −i
∑
ks ,ν

ε(ν)(ks)ε
(μ)(ks)

2πωs

�

∫ t

−∞
dt ′1e

−iωs (t−t ′1)−iωabt−i(ks−k{n})·Rα

×
∑
a,b

ρaa

〈
〈bb|V̂νL(t ′1)T exp

(
− i

h̄

∫ t ′1

−∞
Ĥ ′

L(T )dT

)
|aa〉

〉
α

. (B9)

Here ρaa represents the initial equilibrium density matrix. Note that in contrast with Eq. (B3), which represents the transition
amplitude and thus can be recast in Hilbert space, (B9) is related to polarization and therefore can be written in Liouville space
only. In the limit of pure time-resolved measurement (4) signal (B8) transforms into

WBcoh(t̄) =
∑

μ

N∑
α=1

N−1∑
β=1

P̃ (α,μ)(t̄)P̃ (β,μ)(t̄). (B10)
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Similarly, the pure frequency-resolved signal (6) signal (B8)
yields

WBcoh(ω̄) =
∑

μ

N∑
α=1

N−1∑
β=1

P̃ (α,μ)(ω̄)P̃ (β,μ)(ω̄). (B11)

APPENDIX C: MICROSCOPIC DERIVATION OF THE
LARMOR FORMULA

In order to calculate the signal (A6), we start with amplitude
expression (B3). We first evaluate the summation over the
modes. In the continuum limit

1

�

∑
ks

= 1

(2π )3

∫
dks . (C1)

Recalling that k̂s and polarization vectors ε(ν)(ks), ν = 1,2
form a set of mutually perpendicular unit vectors, it follows
that

ε(ν)(ks)ε
(μ)(ks) = δμν − k̂μk̂ν . (C2)

We further evaluate the momentum integral using dks =
k2
s dksd�. The angular integration yields

1

4π

∫
d�(δμν − k̂μk̂ν)eiks ·R

= 1

k3
s

(−∇2δμν + ∇μ · ∇ν)
sin(ksR)

R
. (C3)

Equation (B3) then yields

T̃
(α,μ)
ba (t) = eikn·Rα

π

∑
ν

∫
dω

2π
T

(α,ν)
ba (ω)e−iωt

×
∫

dωs(−∇2δμν + ∇μ · ∇ν)
sin(ωsRα/c)

Rα

× 1

ω − ωs + iε
, (C4)

where we introduced a matter transition amplitude Tba(ω)
that connects the initial state a with final state b: T

(α,ν)
ba (ω) =∫ ∞

−∞ dteiωtT
(α,ν)
ba (t) and T

α,ν)
ba (t) is given by Eq. (9). We then

note that ∫
dωs

sin(ωsRα/c)

ωs − ω − iε
= πeiωRα/c. (C5)

Taking into account that [36]

(−∇2δμν + ∇μ · ∇ν)
eikR

R

= 1

R3
[(δμν − 3R̂μR̂ν)(ikR − 1) + (δμν − R̂μR̂ν)k2R2]eikR

(C6)

and assuming the random orientation of the molecules,
R̂μR̂ν = 1

3δμν , we obtain

T̃
(α,μ)
ba (t) = − 2

3c2

eikn·Rα

Rα

∂2
t T

(μ,α)
ba (t − Rα/c). (C7)

Taking into account (B5) we therefore obtain (8). Similarly,
we derive for a coherent signal

P̃ (α,μ)(t) = − 2

3c2

eikn·Rα

Rα

∂2
t P (μ,α)(t − Rα/c). (C8)

Thus coherent signal Eq. (B8) can be recast in the form of (2).

APPENDIX D: SEMICLASSICAL THEORY OF EMISSION
DETECTION FROM A RADIATING DIPOLE

According to classical electrodynamics, the electric field
obeys the usual homogeneous wave equation derived from
Maxwell equations:

∇ × ∇ × E(r,t) − 1

c2

∂2E(r,t)
∂t2

= 1

ε0c2

∂2P̃(r,t)
∂t2

. (D1)

Here P̃ is the macroscopic polarization and ε0 is the vacuum
permittivity. Since Eq. (D1) is linear, it applies also for a
quantum field, where the electric field E and P̃ become
operators. Restricting ourselves to the transverse part in far
field E = E⊥, this equation can be recast in the frequency
domain as

∇2E(r,ω) − ω2

c2
E(r,ω) = ω2

ε0c2
P̃ (r,ω). (D2)

The Green’s function solution of Eq. (D2) in infinite space for
a single-point dipole molecule at r = 0 is

E(r,ω) = − 1

ε0c2
ω2 eik0|r|

4π |r| P̃ (0,ω), (D3)

where k0 = ω/c. The latter can be recast in the time domain

E(r,t) = 1

ε0c2

1

4π |r|∂
2
t P̃ (0,t − |r|/c). (D4)

Neglecting retardation effects, the electric field entering the
detector at position rG is given by

E(rG,t) = BP̈ (t), (D5)

where B = (4πε0c
2|rG|)−1 and P (t) ≡ P̃ (0,t). We thus re-

cover the Larmor formula for the time-resolved intensity of
the signal,

S(t) = B2|P̈ (t)|2. (D6)

Generally the signal will be affected by the detector geometry,
depending if an angle is used with a lens or if it enters in
parallel. These details will affect the prefactor B and are not
considered here. The bare signal can be finally calculated as

WB(t ′,ω′) = B2
∫ ∞

0
dτe−iω′τ P̈ ∗(t ′ + τ/2)P̈ (t ′ − τ/2). (D7)
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