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Abstract. We propose an optimized tight-binding electron–hole model of the
photosystem II (PSII) reaction center (RC). Our model incorporates two charge
separation pathways and spatial correlations of both static disorder and fast
fluctuations of energy levels. It captures the main experimental features observed
in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern,
lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific
regions of the 2D spectra of the PSII RC are sensitive to the charge transfer
states. We find that the energy disorder of two peripheral chlorophylls is four
times larger than the other RC pigments.
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1. Introduction

Photosystem II (PSII) is a unique biological system that is capable of oxidizing water to
molecular oxygen [1]. PSII is a complicated pigment–protein structure, containing D1, D2,
CP43 and CP47 subunits. Peripheral complexes, such as light harvesting complex II (LHCII)
absorb sunlight and transfer energy to the D1–D2 proteins, where the initial charge separation
occurs.

The structure of the PSII reaction center (RC) has been resolved by x-ray
crystallography [2–5]. The D1 and D2 branches contain eight pigments responsible for the
long-wavelength absorption: two primary chlorophylls PD1 and PD2 (from analogy with the RC
of photosynthetic bacteria often called the special pair), two accessory chlorophylls ChlD1 and
ChlD2, two pheophytins PheoD1 and PheoD2 and two peripheral chlorophylls ChlzD1 and ChlzD2.
The simplified picture of the arrangement of pigment molecules in the PSII RC is presented in
figure 1. Charge separation proceeds only through the D1 branch [6].

The structure of the PSII RC plays a very important role in determining its charge
transfer (CT) properties. Compared to the bacterial RC, the special pair pigments are more
separated and slightly tilted with respect to each other [7]. Due to these differences in the
structural arrangement, the lowest energy excited state is no longer localized on the special
pair as is the case in the bacterial RC and corresponds to a coherent superposition of several
pigment molecules from the PSII RC, which is known as the multimer state [8]. Moreover,
the contribution from all pigments to this multimer state is not uniform; it strongly depends
on the realization of static disorder as determined by the protein conformation. These spectral
properties also help to increase the redox potential, which allows PSII to perform water splitting.

Numerous optical spectroscopy measurements have been performed on the PSII
RC [9–11]. Important information about the optical properties of different RC pigments was
obtained from the spectra of mutant PSII complexes [12, 13] and different preparations of RC
complexes [14, 15]. Photon echo experiments suggested that ChlD1 is the primary electron
donor and that PheoD1 is the primary electron acceptor [16]. The latter was supported by
transient absorption (TA) measurements [17]. Stark spectroscopy experiments showed that the
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†
PD2|g P+D2P

−
D1

PD1 PD2

PheoD1 PheoD2ChlzD1 ChlzD2

ChlD2ChlD1

Figure 1. Pigment arrangement in the PSII RC. Data taken from [5]. Also an
illustration of the TB model of the PSII RC. Here full circles represent electrons
and open circles represent holes.

low-energy exciton state is mixed with a CT state [18]. Another TA study, involving not only
the chlorophyll/pheophytin absorption Q y band near 680 nm but also the pheophytin Qx band
at 545 nm and the pheophytin anion absorption band at 460 nm, showed the existence of two
distinct electron transfer pathways [19].

Two-dimensional (2D) optical spectroscopy has been recently employed for studying
excited state dynamics in various photosynthetic systems [20–26]. Application to the Fenna–
Matthews–Olson (FMO) complex showed a cascade of energy relaxation pathways [20]. Apart
from well-studied energy relaxation, the 2D spectra of the FMO complex also revealed coherent
long-lasting crosspeak beats [21, 24]. Similar beats were recently observed in the LHCII
complex [23] and in the light harvesting complex of purple bacteria, denoted as LH2 [25].
The 2D spectra thus show a detailed map of coherent and dissipative processes in excitonic
aggregates due to either electronic coherences [27] or vibrational wavepackets [28, 29].

Recently recorded experimental 2D spectra of the PSII RC [30] showed rapid energy
equilibration among the PSII RC pigments and later slow decay of the signal. The 2D studies
provide a detailed picture of the excitation frequency-dependent spectral signatures of charge
separation. The charge separation kinetics derived from the studies were consistent with
previous work [19]: the first steps in separation occur by ∼1–3 ps while secondary charge
separation occurs at ∼40–60 ps.

As the microscopic structure of the PSII system became available [2–5], the detailed
modeling of excitonic structure and relaxation pathways in the PSII RC was undertaken by
several groups. The spectra of the PSII RC and of the RC from photosynthetic bacteria
demonstrate well-pronounced differences, which reflect the differences in the structural
arrangement of the pigment molecules. In the case of PSII, the longest-wavelength transition in
the absorption spectrum contains a broad structureless band. The first model that could explain
various linear spectra of the PSII RC and extract the pigment site energies was the asymmetric
exciton model by Raszewski et al [31]. A similar model was proposed by Novoderezhkin
et al [32] from the simultaneous fit of numerous linear spectroscopic measurements as well
as time-resolved fluorescence and TA. This model was later extended by including a CT state
coupled to the pigment states to explain the experimental Stark spectrum [33].

The updated Novoderezhkin model of the PSII RC is based on the fit of 77 K TA
kinetics [34]. It includes two distinct charge separation pathways, which were inferred from
the experiment [19]: one starting from the active branch accessory chlorophyll ChlD1 (in line
with earlier suggestions [35, 36]), and the other starting from the special pair. Modeling of
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Stark spectra [33] suggested that the CT state associated with the special pair is strongly
mixed with pigment states. It was concluded that the ChlD1 pathway is responsible for the
fast ∼700 fs component of the kinetics and that the special pair pathway gives the slower
∼3 ps component [34]. Modeling with only one CT pathway was not able to reproduce the
experimental kinetics. Regarding electron separation, these simulations [33, 34] extended the
Frenkel exciton model to include CT states on the same level as additional excitonic modes.
However, the fermionic properties of electrons and holes are not accounted for in this approach,
so the double excitations are not defined and the approach in principle cannot account for
excited state absorption. Consequently, the recent simulations of the 2D spectra of the PSII
RC [37], based on the Novoderezhkin model, were inherently limited—they did not treat double
excitations.

The solution to this problem is to start from the electron–hole model [38]. In this approach,
which was developed for semiconductors [39, 40], the electrons and holes are core particles
that comprise both molecular excitations and CT states. Double, triple, etc excitations are
generated by the fermionic creation and annihilation operators. Excited state absorption relevant
for pump–probe or 2D spectroscopy is thus properly accounted for.

In this paper, we employ the two-band tight-binding (TB) approach [38] to treat both
molecular excitations and CT states on an equal footing and optimize the model parameters
with respect to the 2D spectroscopy signals. The model additionally applies some restrictions
on the parameters. For instance, in the Frenkel exciton model the energy fluctuations are usually
assumed as independent for different molecules. In the TB model, additional spatial correlations
between these fluctuations involving CT states become important. We also replace the nuclear
fluctuation spectral density, which had a complicated fine structure in the simulations based
on the Novoderezhkin model [32–34, 37, 38], with a simple broad function that accounts for
high-frequency contributions in a single term. Simulations based on our model reproduce both
absorption and 2D spectra of the PSII RC at 77 K. Also, we obtain a reasonable match between
experimental and simulated peak kinetics.

2. Theory

2.1. Tight-binding Hamiltonian

In the TB electron–hole model [38], each pigment is represented by two electronic orbitals:
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). The model is constructed starting from operators ê†

m (êm) that create (annihilate) an

electron in the LUMO orbital of site m and on ĥ
†

m (ĥm) that create (annihilate) a hole in the
HOMO orbital. These operators satisfy Fermi commutation relations{

êm, ê†
n

}
= êm ê†

n + ê†
n êm = δmn, (1){

ĥm, ĥ
†

n

}
= ĥm ĥ

†

n + ĥ
†

n ĥm = δmn. (2)

When the electron in the LUMO and the hole in the HOMO reside at the same site m, we have
the Frenkel excitonic (FE) state m∗

⇔ ê†
m ĥ

†

m|g〉. Here |g〉 denotes the ground state, the vacuum
of particles. On the other hand, when the electron and the hole are created on different sites m

and n, we have the CT state n+m−
⇔ ê†

m ĥ
†

n|g〉. Different types of states are illustrated in figure 1.
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The Hamiltonian is given by [38]

Ĥ S =

∑
m,n

t e
mn ê†

m ên +
∑
m,n

t h
mn ĥ

†

m ĥn +
m 6=n∑
m,n

W d
mn ê†

m ĥ
†

m ĥn ên −

∑
m,n

V eh
mn ê†

m ĥ
†

n ĥn êm

+
1

2

m 6=n∑
m,n

V e
mn ê†

m ê†
n ên êm +

1

2

m 6=n∑
m,n

V h
mn ĥ

†

m ĥ
†

n ĥn ĥm

+
1

4

k 6=m∑
k,m

l 6=n∑
l,n

Kkl,mn ê†
k ĥ

†

l ê†
m ĥ

†

n ĥn êm ĥl êk. (3)

Here t e
mn (t

h
mn) is the electron (hole) hopping rate between LUMO (HOMO) orbitals of different

pigments. W d
mn is the dipole–dipole-type resonance interaction between excitons on sites m and

n. V e
mn = V (rm − rn) is the electron–electron Coulomb repulsion between sites m and n, V h

mn =

V (rm − rn) is the hole–hole Coulomb repulsion between sites m and n, and V eh
mn = V (rm − rn)

is the electron–hole Coulomb attraction between sites m and n. Note that V e
mn = V h

mn = V eh
mn . In

this model, the last term represents K couplings [41], which are responsible for the shifting of
double-excited state energies. These shifts were not taken into account in [38].

The single-excitation manifold consists of single electron–hole pair states, denoted

|ek hl〉 = ê†
k ĥ

†

l |g〉. The Hamiltonian matrix elements for these states are

〈ek hl |Ĥ S|em hn〉 = t e
kmδln + t h

lnδkm − V eh
kl δlnδkm + W d

km (1 − δkm) δlkδmn. (4)

In the double-excitation manifold, there are two electrons and two holes in the state
|ek el hm hn〉 = ê†

k ê†
l ĥ

†

m ĥ
†

n|g〉 with k > l and m > n. Three kinds of doubly excited states are
possible: FE–FE states m∗n∗ , FE–CT states m∗n+k− and CT–CT states m+n−k+l−. Various
types of single- and double-excitation Hamiltonian matrix elements are given in appendix A.

The single-excitation eigenstates are defined by the transformation

|e〉 =

∑
k,l

ψe,kl |ek hl〉 (5)

while for the double-excitation eigenstates we have

| f 〉 =

k>l∑
k,l

m>n∑
m,n

9 f,klmn|ek el hm hn〉. (6)

The transformation matrices ψe,kl and 9 f,klmn are calculated by diagonalizing the single- and
double-excitation blocks of the system Hamiltonian. We assume that all elements of these
matrices are real.

Additional vibrational degrees of freedom constitute the thermal bath, which is modeled
by an infinite set of harmonic oscillators,

Ĥ B =

∑
j

ω j

2

(
p̂2

j + x̂2
j

)
, (7)

that are linearly coupled to electron and hole orbitals,

Ĥ SB = −

∑
m

∑
j

[
ω j d

e
mj x̂ j ê

†
m êm +ω j d

h
mj x̂ j ĥ

†

m ĥm

]
. (8)
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Here ω j , p̂ j and x̂ j are the frequency, dimensionless momentum and corresponding
dimensionless coordinate of the j th bath mode, respectively. d e

nj (d
h
nj) is the dimensionless

displacement of the equilibrium configuration of the j th bath mode between the ground and
excited states of the electron (hole) at the nth site. Note that we set h̄ = 1 throughout the paper.
We define bath operators F̂ e

m = −
∑

j ω j d e
mj x̂ j and F̂ h

m = −
∑

j ω j dh
mj x̂ j . Then the system–bath

interaction Hamiltonian is expressed as

Ĥ SB =

∑
m

F̂ e
m ê†

m êm +
∑

m

F̂ h
m ĥ

†

m ĥm. (9)

In this picture the bath induces energy fluctuations of HOMO and LUMO levels. All
bath-induced effects to system dynamics are determined by the following bath correlation
functions [42]:

C e
mn(t)= TrB

(
F̂ eI

m (t)F̂
eI

n (0) ρ̂
eq
B

)
, (10)

C h
mn(t)= TrB

(
F̂ hI

m (t)F̂
hI

n (0) ρ̂eq
B

)
, (11)

C eh
mn(t)= TrB

(
F̂ eI

m (t)F̂
hI

n (0) ρ̂eq
B

)
= TrB

(
F̂ hI

m (t)F̂
eI

n (0) ρ̂
eq
B

)
. (12)

Here

F̂ x I

k (t)= eiĤBt F̂ x
k e−iĤBt (13)

denotes operator F̂ x
k in the interaction representation and x = e or h, while

ρ̂
eq
B =

exp
(
−β Ĥ B

)
TrB

(
exp

(
−β Ĥ B

)) (14)

is the bath equilibrium density operator, β = (kBT )−1 is the inverse temperature in energy units
and kB is the Boltzmann constant. The spectral densities are often introduced to characterize the
bath [43]:

C e′′

mn (ω)= π
∑

j

ω2
j d

e
mj d

e
nj

2

[
δ
(
ω−ω j

)
− δ

(
ω +ω j

)]
, (15)

C h′′

mn (ω)= π
∑

j

ω2
j d

h
mj d

h
nj

2

[
δ
(
ω−ω j

)
− δ

(
ω +ω j

)]
, (16)

C eh′′

mn (ω)= π
∑

j

ω2
j d

e
mj d

h
nj

2

[
δ
(
ω−ω j

)
− δ

(
ω +ω j

)]
. (17)

Since the spectral densities are independent of temperature, they are the most convenient
bath characteristics. In practice, the spectral densities are modeled as continuous functions of
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t1 t2 t3
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k1

k2
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t

Figure 2. Scheme of the 2D spectroscopy experiment.

frequency. The corresponding correlation functions and the spectral densities are related by the
fluctuation dissipation theorem [43]:

C x
mn(t)=

1

2π

∫
∞

−∞

cos (ωt) coth

(
βω

2

)
C x′′

mn (ω) dω−
i

2π

∫
∞

−∞

sin (ωt)C x′′

mn (ω) dω, (18)

where x = e, h or eh.
Given this system, the external classical optical field creates or annihilates molecular

excitations:

Ĥ SF = µ̂ ·E(t)≡

∑
m

(
µm ·E(t)

) (
ê†

m ĥ
†

m + ĥm êm

)
, (19)

where µ̂ is the dipole operator and µm is the transition dipole vector for site m. In this
formulation the electric field does not couple with CT states. The total Hamiltonian is then
a sum of system, system–bath, bath and system–field terms.

2.2. Calculation of spectra

The linear absorption spectrum is simulated by summing up all possible transitions from the
electronic ground state to all excited states. It is given by the absorptive part of the Fourier-
transformed linear response function [43, 44]

I (ω)∝ ω Im
∫

∞

0
dt S(1)(t) eiωt . (20)

The two-dimensional optical spectroscopy is a four-pulse four-wave-mixing experiment
[43, 45]. The sample is excited by three time-ordered laser pulses with wavevectors k1 (first
pulse), k2 (second pulse) and k3 (third pulse). These pulses are separated by intervals t1 and t2,
producing signals that are emitted along directions kS = ±k1 ± k2 ± k3 in the time interval t3

(see figure 2). The rephasing part is, however, detected in direction kI = −k1 + k2 + k3, while the
non-rephasing part in direction kII = +k1 − k2 + k3. The 2D spectrum is obtained by performing
a 2D Fourier transform t1 → ω1 and t3 → ω3. The second time interval, t2, is left as an evolution
parameter of the system.
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In this work we model the so-called total 2D spectrum, which is the sum of rephasing WkI

and non-rephasing WkII contributions. It is directly obtained in the pump–probe configuration.
The total 2D signal is

W (ω1, t2, ω3)= WkI (−ω1, t2, ω3)+ WkII (ω1, t2, ω3) . (21)

Using the response function formalism [43–45] and with the assumption of δ-shaped pulses,
these terms are expressed as [46]

WkI (ω1, t2, ω3)=

∫
∞

0
dt1 e−iω1t1

∫
∞

0
dt3 e−iω3t3 SkI (t1, t2, t3) , (22)

WkII (−ω1, t2, ω3)=

∫
∞

0
dt1 eiω1t1

∫
∞

0
dt3 e−iω3t3 SkII (t1, t2, t3) . (23)

Here SkI/II (t1, t2, t3) is the contribution to the system response function corresponding to either
the kI or the kII signal.

In the following the electronic energy levels are included explicitly, while the nuclear part
is divided into two parts—the diagonal fluctuations in the eigenstate basis are treated exactly
via the second-order cumulant expansion, while the off-diagonal fluctuations are included
perturbatively to second order. The electronic response functions are then modified by the
eigenstate representation spectral lineshape functions, which encapsulate the effect of diagonal
nuclear fluctuations [43]:

gαβ,γ δ(t)=
1

2π

∫
∞

−∞

dω

(
1 + coth

(
βω

2

)) C ′′

αβ,γ δ (ω)

ω2

[
1 − e−iωt

− iωt
]
. (24)

Here α, β, γ and δ represent arbitrary single- or double-excitation eigenstates. C ′′

αβ,γ δ (ω) is
the spectral density of the eigenstate basis. The relevant spectral densities are C ′′

e1e2,e3e4
(ω),

which describes fluctuations in the single-excitation manifold, C ′′

e1e2, f1 f2
(ω), which describes

correlations between fluctuations in single- and double-excitation manifolds, and C ′′

f1 f2, f3 f4
(ω),

which describes fluctuations in the double-excitation manifold. These spectral densities are
given by a linear transformation of the real-space spectral densities defined by (15)–(17), as
shown in appendix B.

Population transport is significant for absorption due to lifetime broadening and is directly
detected in the 2D spectrum. The transport is essentially described by the Pauli master equation
approach. Its rates are given by the modified Redfield theory [47], which reduces to Förster
and traditional Redfield theories in their respective ranges of validity [48]. The electron transfer
theory of Marcus [49] is also reproduced by the modified Redfield theory [38]. It gives the
following population transfer rate from state e′ to state e:

Ree′ = 2Re
∫

∞

0
dt exp

{
iωe′et − gee,ee(t)− ge′e′,e′e′(t)+ ge′e′,ee(t)+ gee,e′e′(t)

−2i
(
λe′e′,e′e′ − λee,e′e′

)
t
}{

g̈ee′,e′e(t)− [ġe′e,ee(t)− ġe′e,e′e′(t)− 2iλe′e,e′e′]

×[ġee,ee′(t)− ġe′e′,ee′(t)− 2iλee′,e′e′]
}
. (25)

Here the dot denotes the time derivative and

λαβ,γ δ ≡ −Im lim
t→∞

ġαβ,γ δ(t)=
1

π

∫
∞

0

C ′′

αβ,γ δ (ω)

ω
dω (26)
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is a type of reorganization energy of cross-correlation between the (ĤSB)αβ and (ĤSB)γ δ
elements.

The absorption spectrum is calculated as [50]

I (ω)= ω
∑

e

〈
µgeµeg

〉
or

Re
∫

∞

0
dt ei(ω−ωeg)t−gee,ee(t)−ξet , (27)

where e labels the single-excited eigenstate, µeg = 〈e|µ̂|g〉 is the transition dipole moment
between the ground state and the state e, 〈•〉or denotes orientational averaging [44], ωeg =

εe − εg is the energy difference of state e and the ground state g (usually εg = 0) and ξe =

1
2

∑e′
6=e

e′ Re′e is the lifetime broadening. The third-order response functions for the 2D signals
are calculated by summing up the relevant Liouville space pathways [43] as described in [44]
(we used equations (141)–(153) with (166) and (179) and orientational averaging was performed
using expressions from appendix L).

3. Model of the photosystem II (PSII) reaction center (RC)

The PSII RC consists of eight pigment states, so we can have up to 8 × 8 = 64 singly excited
states (8 molecular excitations and 56 CT states). However, in our simulations we include only
a few CT states—those that have been suggested to participate in the charge separation process.
We thus include six CT states that describe two available electron transfer pathways [19, 34]:

Chl+
D1Pheo−

D1 → P+
D1Pheo−

D1,

P+
D2P−

D1 → P+
D2Chl−D1 → P+

D1Chl−D1 → P+
D1Pheo−

D1.

We denote the first pathway as the ChlD1 pathway and the second as the special pair pathway.
Now we consider the elements of the single-excitation Hamiltonian. First, we note that

complete knowledge of all the parameters defined in the TB Hamiltonian (3) is not necessary
for calculations of optical spectra: only their specific combinations resulting in state energies
and couplings (see (A.1)–(A.5)) need to be specified. The energies of the single-excited states
in our model were obtained as follows. The energies of the core pigments and P+

D2P−

D1 state were
taken from [34], where they were obtained from a fit of various low-temperature spectra. The
energies of the peripheral chlorophylls were based on [33], while those of the remaining CT
states were based on [34, 38]. The energies of the pigments and of the CT states were fine tuned
to better fit the absorption and the 2D spectra at zero t2 delay.

Considering the couplings of the single-excited states, those between the Frenkel
excitations were taken from [51], where they were calculated using the TrEsp method [52] from
the 1.9 Å resolution structural data [5]. In order to obtain the couplings involving CT states,
we have assumed that the electron and hole hopping rates are equal, that is t e

mn = t h
mn. Then, we

have taken t e
PD1PD2

= 45 cm−1 based on JP∗

D1,P
+
D2P−

D1
from [34], where it was extracted from a fit of

various low-temperature spectra, and we have also taken t e
ChlD1PheoD1

= 70 cm−1 and t e
PD1ChlD1

=

40 cm−1 from couplings JChl∗D1,Chl+D1Pheo−

D1
and JP+

D1Pheo−

D1,Chl+D1Pheo−

D1
given in [34], where they were

estimated from the fit of 77 K TA kinetics. We also assume that t e
PD2ChlD1

= t e
PD1PheoD1

= 0 due to
the relatively larger distance between the pigments. Then all the couplings involving CT states
were calculated using (A.4) and (A.5). The single-excitation Hamiltonian used in our model is
presented in table 1.
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Table 1. Matrix elements of the single excitation Hamiltonian in cm−1 in the site
basis.

P∗

D1 P∗

D2 Chl∗D1 Chl∗D2 Pheo∗

D1 Pheo∗

D2 Chlz∗

D1 Chlz∗

D2 P+
D2P−

D1 Chl+D1Pheo−

D1 P+
D2Chl−D1 P+

D1Chl−D1 P+
D1Pheo−

D1

P∗

D1 15 280

P∗

D2 150 15 210

Chl∗D1 −42 −56 15 020

Chl∗D2 −55 −35 7 15 120

Pheo∗

D1 −6 20 46 −5 15 050

Pheo∗

D2 17 −2 −4 37 −3 15 040

Chlz∗

D1 1 1 3 0 −4 0 15 515

Chlz∗

D2 1 1 0 2 0 −4 0 15 420

P+
D2P−

D1 45 45 0 0 0 0 0 0 15 200

Chl+D1Pheo−

D1 0 0 70 0 70 0 0 0 0 15 870

P+
D2Chl−D1 0 0 0 0 0 0 0 0 40 0 16 210

P+
D1Chl−D1 40 0 40 0 0 0 0 0 0 0 45 15 740

P+
D1Pheo−

D1 0 0 0 0 0 0 0 0 0 70 0 40 15 510

Now we turn to the double-excitation block of the electronic Hamiltonian. It involves
Frenkel-type couplings, electron and hole hopping terms, electron–electron and hole–hole
repulsion and electron–hole attraction terms and K coupling terms. Frenkel-type couplings
and electron and hole hopping terms define the off-diagonal elements of the double-excitation
Hamiltonian block. These are directly related to the single-excitation Hamiltonian elements
as shown in appendix A. The electron–electron repulsion, hole–hole repulsion, electron–hole
attraction and K couplings determine the shifts of double-excitation state energies, i.e. they
appear on the diagonal. The repulsion and attraction terms can be evaluated as was done in [38].
The values of K couplings need to be additionally specified. Since the K couplings depend on
the product of static dipoles of the states [41], and CT states have much bigger static dipoles than
FE states [33, 34], the K couplings may be very different depending on the spatial configurations
of electrons and holes in specific double-excited states. We can thus identify the FE–FE-type
state where electron and hole pairs are two Frenkel excitations. We assume that the K couplings
in such FE–FE states are relatively small and set Kmm,nn = 0 [41]. The next type of double
excitations are those composed of two CT states. Due to the large dipole value of a CT state,
the K coupling strengths should be huge and they induce large shifts of the energies of CT–CT
states, effectively decoupling them from the rest of the double-excited states. As the optical
fields are resonant with the FE transitions, the CT–CT states are off-resonant and are ignored
in our model. Finally, we can have the double-excited state composed of one CT state and one
Frenkel exciton. We assume that the energies of all CT–FE-type states are shifted by the same
value K ′, which can be determined from the fit of the simulated 2D spectra. K ′

= 100 cm−1 was
obtained from our simulations. Given these assumptions, all the double-excitation Hamiltonian
elements were calculated using (A.7)–(A.15).

Dipole moments for pigments have been obtained from crystallographic data [5], assuming
that the transition dipole is pointing from NB to ND atoms for both chlorophylls and
pheophytins. The strengths of the transition dipoles are 4.4 and 3.4 Debye for chlorophylls
and pheophytins, respectively [53]. The transition dipole moments used in the calculations are
presented in table 2.

We next describe the model of the bath. The bath-induced fluctuations are separated into
fast and slow modes. The slow modes are slower than the experiment timescale, so they can be
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Table 2. Single-excited state energy standard deviations σ (in cm−1), multiplier
of spectral density χ and transition dipole moments µi (in D) used in
calculations.

σ χ µx µy µz

P∗

D1 25 1 4.244 804 0.711 589 0.913 937
P∗

D2 25 1 −3.197 378 1.997 388 2.268 748
Chl∗D1 25 1 −3.457 537 2.111 151 1.717 114
Chl∗D2 25 1 4.211 905 −0.367 653 1.218 476
Pheo∗

D1 25 1 0.289 396 −0.469 428 −3.354 979
Pheo∗

D2 25 1 −1.344 651 −2.873 315 −1.223 100
Chlz∗

D1 100 1 1.003 701 0.361 201 4.268 737
Chlz∗

D2 100 1 0.375 354 3.999 387 1.795 554
P+

D2P−

D1 50 1.5 0 0 0
Chl+D1Pheo−

D1 100 3 0 0 0
P+

D2Chl−D1 80 2.25 0 0 0
P+

D1Chl−D1 80 2.25 0 0 0
P+

D1Pheo−

D1 80 2.25 0 0 0

considered as static, determining the inhomogeneous broadening of the spectra. We model this
part as the diagonal disorder in our model. According to the bath model, the disorder is due to
the shifts of electron and hole orbital energies t e

mm and t h
nn; the term V eh

mn corresponding to the
electron–hole Coulomb attraction remains constant. The energies of the FE and CT states are
given in (A.1) and (A.2). A single realization of single-excited state energies is

ε̃m∗ = 〈ε̃m∗〉 + x̃ e
m + x̃ h

m, (28)

ε̃m+n− = 〈ε̃m+n−〉 + x̃ e
n + x̃ h

m. (29)

Here the tilde denotes random variables, 〈ε̃m∗〉 = εm∗ , 〈ε̃m+n−〉 = εm+n− and x̃ e/h
m = t̃ e/h

mm −
〈
t̃ e/h
mm

〉
is

the random shift of electron or hole orbital energy from the mean. We next assume that electron
and hole orbital energy shifts at the same site have the same standard deviations,〈(

x̃ e
m

)2
〉
=

〈(
x̃ h

m

)2
〉
= σ 2

m, (30)

and can be correlated,〈
x̃ e

m x̃ h
m

〉
= νmσ

2
m. (31)

Here σm is the standard deviation of orbital energies on site m and νm ∈ [−1, 1] is the correlation
coefficient between LUMO and HOMO orbital energies. Orbital energies on different sites are
uncorrelated; thus〈

x̃ e
m x̃ e

n

〉
=

〈
x̃ e

m x̃ h
n

〉
=

〈
x̃ h

m x̃ e
n

〉
=

〈
x̃ h

m x̃ h
n

〉
= 0 (32)

when m 6= n. Then standard deviations of the single-excited state energies are

σ 2
m∗ = 2 (1 + νm) σ

2
m, (33)

σ 2
m+n− = σ 2

m + σ 2
n . (34)
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Note that if shifts of electron and hole orbital energies are completely anticorrelated, the Frenkel
excitation energy has no fluctuation. In that case an increase of the energy of the HOMO orbital
would be accompanied by a decrease of the LUMO orbital energy (or vice versa), resulting
in no fluctuation of the FE state. Standard deviations of single-excited state energies were
optimized to fit both absorption and 2D spectra and are presented in table 2. We have taken
σPD1 = σPD2 = 35 cm−1, σChlD1 = σPheoD2 = 70 cm−1, νPD1 = νPD2 = −

3
4 and νChlD1 = νPheoD1 = −

15
16 .

This choice of ν values means that P+
D2P−

D1 and Chl+
D1Pheo−

D1 have, respectively, two and four
times wider disorder than the core pigments, as was suggested in [34]. Since other pigments do
not participate in the CT states present in our model, the rest of the σm and νm do not have to
be specified explicitly. In our formulation, CT states have correlated disorder with other states
involving the same pigments. These correlations are described in appendix C. Note that in our
model, peripheral chlorophylls have significantly larger disorder than the rest of the pigments.

The same formulation holds for fast fluctuations, which are responsible for the
homogeneous broadening of the spectra, however, their correlation coefficients should be
different. We assume that the electron and hole orbital energy fluctuations at the same site are
described by the same spectral densities and may be correlated:

C e′′

mn (ω)= C h′′

mn (ω)= δmnC ′′

m (ω) , (35)

C eh′′

mn (ω)= δmnηmC ′′

m (ω) . (36)

The correlation parameter is ηm ∈ [−1, 1]. The fast fluctuations of electron and hole orbital
energies at different sites are uncorrelated.

We assume that all FE states have the same spectral density

C ′′

m∗ (ω)= 2 (1 + ηm)C ′′

m (ω)≡ C ′′ (ω) . (37)

Then the spectral density of CT states is

C ′′

n+m− (ω)= C ′′ (ω)
2 + ηm + ηn

2 (1 + ηm) (1 + ηn)
≡ C ′′ (ω) χmn. (38)

The values ηPD1 = ηPD2 = −
1
3 and ηChlD1 = ηPheoD1 = −

2
3 reproduce χP+

D2P−

D1
= 1.5 and

χChl+D1Pheo−

D1
= 3.0 as in [34]. While these coupling values are not as large as in some

other studies [54, 55], they were inferred in earlier simulations in the framework of modified
Redfield theory [33]. Application of a more advanced theory, capable of reproducing polaronic
effects due to strong system–bath coupling [56], especially for the CT states, might require
revision of these values. This specifies the spectral density of all the CT states of our model in
terms of C ′′ (ω). The values of χmn are given in table 2. Note that for FE states χmm = 1. As
is the case with static disorder, fast fluctuations of CT states are correlated with other states
involving the same pigments—these correlations are given in appendix C.

The fast fluctuations are now described by a single spectral density C ′′ (ω). We assume it
to consist of two terms:

C ′′ (ω)=
2λLγLω

ω2 + γ 2
L

+
2
√

2λHωω
2
HγH(

ω2 −ω2
H

)2
+ 2γ 2

Hω
2
. (39)

The first term describes coupling with low-frequency overdamped vibrations modeled by the
Debye spectral density [57] with λL = 40 cm−1 and γL = 40 cm−1. These values were obtained
from simulations of absorption and 2D spectra, as the low-frequency part of the spectral density
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Figure 3. (a) The bath spectral density used in this work compared with the one
used in [34]—denoted as ‘Novoderezhkin et al’, Raszewski’s model [31, 53] and
Jang’s model [59]. (b) Comparison of the single monomer absorption spectrum
at 77 K calculated using these spectral densities (the green arrow on top of
Raszewski’s absorption indicates the ZPL; see the main text).

gives the homogeneous broadening. The second, damped, term represents coupling with high-
frequency bath modes and was obtained by reducing the spectral density of Novoderezhkin
et al [34]. Their function includes 48 vibrational modes, obtained from fluorescence line
narrowing experiments [58], thus giving experiment-based detailed vibrational sidebands in
the spectrum. Our parameters λH = 500 cm−1, γH = 500 cm−1 and ωH = 1250 cm−1 lead to the
same total reorganization energy for FE states λ= λL + λH = 540 cm−1 as in [34]. This spectral
density is presented in figure 3(a) alongside the spectral density used in [34]. Additionally, for
comparison we also plot the spectral density of Raszewski et al [31, 53], which was used for
the PSII RC, as well as the one by Jang and Silbey [59]. These two last models are similar
in the range 50–1000 cm−1 but have different low-frequency behavior (see the inset in the
figure). Additionally they both lack the high-frequency component of Novoderezhkin’s model,
responsible for the large reorganization energy.

Single monomer absorption spectra at 77 K without static disorder calculated using the
spectral densities shown in figure 3(a) are presented in figure 3(b). Our spectral density gives
very similar vibrational sidebands at this temperature compared to Novoderezhkin’s model. The
homogeneous absorption linewidth of Jang’s and Raszewski’s models is similar to ours, while
Raszewski’s model additionally has a sharp δ-function-like peak, resembling the zero-phonon-
line (ZPL) indicated by an arrow in figure 3(b) (this is related to ω5 behavior of this model at
ω→ 0).

Our formulation allows us to describe the ensemble-averaged eigenstate properties. The
excited state energy distributions of our model, which depend on contributions of these states to
the eigenstates of the system and their energy spectrum, are defined by [7, 31, 53]

Dm (ω)=

〈∑
e

|ψem|
2δ

(
ω−

(
ωeg − λee,ee

))〉
dis

, (40)
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Figure 4. Excited state energy distributions of the corresponding energy states in
the PSII RC.

where m denotes either the FE or CT state in the site basis, e labels the single-excited eigenstate
and 〈•〉dis denotes averaging over disorder. We include reorganization energies λee,ee because
the bath induces relatively large reorganization shifts. These distributions calculated using our
Hamiltonian and disorder parameters are presented in figure 4. They incorporate not only
energetic disorder of the states but also excitonic effects, as is most clearly seen from the
fact that both special pair pigments contribute to two dimeric states. A few things should be
noted. First, the Chl∗D1 state has a lower energy than the lower-energy state of the special pair.
Therefore, it should be energetically favorable to start charge separation from this pigment,
especially at lower temperatures. Another thing to consider is that since CT states have quite
wide energy distributions, it is clear that any electron transfer timescales in the RC are very
strongly dependent on particular realizations of disorder. Also we note that despite having
considerably larger disorder than the rest of the pigments, the peripheral chlorophylls do not
show wide energy distributions, which can be attributed to their electronic states being mostly
localized.

4. Simulations of spectra of the PSII RC

Our model of the PSII RC is able to reproduce the experimental 77 K absorption spectrum as
shown in figure 5. Two peaks at ∼670 and ∼680 nm and their lineshapes are well reproduced,
especially at the lower-energy shoulder. The deviation on the high-energy part of the spectrum,
starting at ∼665 nm, may be related to vibrational sidebands, which we include approximately.
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Figure 5. Comparison of experimental and simulated absorption spectra of the
PSII RC at 77 K. Simulated results were averaged over 6000 realizations of
disorder. Experimental data were taken from [14].

The simulations allow to exclude one of the two CT pathways from the model. In
simulations without the ChlD1 pathway we removed the Chl+

D1Pheo−

D1 state, and in simulations
without the special pair pathway we removed the P+

D2P−

D1, P+
D2Chl−D1 and P+

D1Chl−D1 states. The
absorption spectrum without either the ChlD1 or the special pair CT pathway is shown by points
in figure 5. It can be seen that the absorption spectrum of the PSII RC is not sensitive to CT
states, as can be expected. Removing CT pathways only reduces the amplitude of the ∼670 nm
peak.

The main results of this work are simulations of the 2D spectra of the PSII RC at 77 K.
A comparison of experimental and simulated 2D spectra for various t2 values is presented in
figure 6. In both theoretical and experimental data, the strongest peak is at ∼680 nm. The peak
at ∼670 nm is much weaker. That is correctly reproduced in our model. The lower crosspeak
is present in both simulations and experiment. Its amplitude and overall shape are captured
by our model. Our simulations show the upper crosspeak, which, however, is absent from the
experimental data. Instead, experimental spectra show a negative feature that is due to excited
state absorption. That is related to double-excited states. Since our model treats the K couplings
as one effective parameter, it is not able to precisely reproduce double-excited state features.
This is of no consequence, however, when talking about single-excited state dynamics. Another
potential explanation for lineshape distortion at early times, particularly for the crosspeaks,
may come from directional filtering or signal reabsorption effects [60] in our experimental data.
While our data were taken in the pump–probe geometry with a 4◦ crossing angle, there might
still be a directional effect. We also note that our model correctly captures both homogeneous
and inhomogeneous broadening.

The time evolution of the 2D spectra is also correctly described by our model. Both
simulations and experiment show decay of the ∼670 nm diagonal peak. The amplitude of this
peak decays quickly within 1 ps and then continues to decay slowly up to 100 ps. The ∼680 nm
peak also shows gradual decay with increasing t2. The lower crosspeak shows an increase in
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Figure 6. Comparison of experimental 2D spectra of the PSII RC with
simulations at 77 K. Simulated spectra were obtained by averaging over 600
realizations of disorder. Both experimental and simulated spectra were scaled
to their respective values at t2 = 50 fs. Black squares in the spectra presented in
the upper row denote peaks for which kinetics were taken (see text and figure 7).

amplitude with increased waiting time, signaling the presence of energy transfer. The upper
crosspeak is absent from experimental data during the entire spectral evolution, while it remains
present in the simulations. At long times (t2 = 100 ps), the presence of this peak in the simulated
2D spectrum is the only difference from the experimental data.

Simulations without either of the CT pathways show that only some regions of the 2D
spectra are sensitive to CT states included in the model. Overall, all sets of simulated 2D spectra
are quite similar.

To demonstrate the time evolution of the 2D spectra more explicitly, we present the kinetics
of selected points of the spectra (see figure 7). We have also calculated kinetics without the
ChlD1 or the special pair CT pathway. Points for the Diag1 peak were selected at maximum
amplitude at the diagonal, the Diag3 peak represents 0.4 times that maximum value and the
Diag2 peak is in the middle of the other two diagonal peaks. Crosspeaks CP1 and CP2 were
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Figure 7. Kinetics of selected peaks from 2D spectra of the PSII RC. Squares
denote experimental data, circles—simulations, triangles—simulations without
the ChlD1 CT pathway and stars—simulations without the special pair CT
pathway. Kinetics for all points were normalized for both experiment and
simulations by assuming the value at t2 = 50 fs to be equal to 1.

chosen as crossing points of lines going through the diagonal peaks. Note that because of these
definitions, the wavelengths of the peaks from experimental and simulated spectra do not match
precisely—see figure 6 for the exact position of the selected peaks. For simulations without
either of the CT pathways, the positions of selected peaks were chosen to be the same as in full
simulations.

Regarding the Diag1 peak kinetics, our model does not match the initial experimental time
evolution, yet gives the correct final amplitude. Simulations without either of the CT pathways
show larger deviations from the experimental data. The Diag2 kinetics are well reproduced by
our model for times up to 500 fs. Simulations with one CT pathway removed do not show any
noticeable difference. The kinetics of the Diag3 peak are reproduced very well by our model. For
this peak, simulations without the ChlD1 CT pathway show poorer agreement with experimental
data, if compared to full simulations or simulations without the special pair pathway.

Turning to the crosspeak kinetics, we can see that the evolution of the CP1 peak is
reproduced well by our model. Simulations without the ChlD1 pathway show poorer agreement
with experiment while those without the special pair pathway are even poorer. For the CP2
kinetics, our simulations miss the initial fast component, yet the rest of the kinetics are very
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similar to the experiment. Simulations without either of the CT pathways are not much different
than the full simulations, except for the final amplitude.

5. Discussion

Our optimized electron–hole TB model properly defines the single- and the double-excitation
manifolds and allows simulations of the linear absorption and the 2D spectra. The simulated
results show very good correspondence with the experiment. Yet there are some disagreements,
which may be related to several issues. One of them is the application of the modified Redfield
theory. The theory implies the existence of excitons and describes all properties in the exciton
basis. In our opinion, this is the most crude approximation in our simulations since we have
demonstrated that polaronic effects may be very relevant when exciton reorganization energies
are significant [56].

Another important issue in the modeling of the PSII RC is the construction of the double-
excitation manifold. Application of the TB model allowed us to correctly incorporate CT states
in our model. However, since we treated K couplings as a single shift parameter, we have
obtained an approximate picture of the excited state absorption. This resulted in deviations of
the upper crosspeak and its time evolutions. A more detailed modeling is necessary. This could
be achieved by calculating the K couplings explicitly, as was done for the FMO aggregate
in [41].

Even though we use a novel theoretical formulation—the TB model—we still use many
parameters determined in earlier work on the PSII RC. Notice that the TB model reduces
unambiguously to the Frenkel exciton model when CT states are excluded. Hence, we must
ensure that our model remains consistent with earlier modeling of various experiments. The
parameters of the CT states have been optimized by Novoderezhkin et al [33, 34, 61]; our
simulations should be consistent with these as well. Hence, CT state parameters were adapted
to the theoretical framework of the TB model. Since the TB model is more detailed, some
parameters remain undefined, e.g. K couplings in the double-exciton manifold. These have been
adjusted to match the present experiment. As the microscopic structure of the whole protein is
known, the complete construction of the TB Hamiltonian parameters should be possible as was
done for the Frenkel exciton model for FMO [62], PSI [63], as well as for LH2 [64] and LH3
aggregates [65].

An important result of our simulations is that we set the disorder of the peripheral
chlorophylls to be four times wider than for the rest of the pigments. Earlier PSII RC models
had the same disorder for all pigments [31–33, 53]. Peripheral chlorophylls are a considerable
distance away from the core pigments (see figure 1) and their surrounding protein environment
might be different, thus inducing stronger disorder. To check the validity of our assignment, we
also calculated the absorption difference spectrum of full RC complexes with those lacking
one of the peripheral chlorophylls, denoted in the literature as the RC5 complexes [14].
A comparison of simulated and experimental spectrum at 77 K is given in figure 8. It shows
that while our simulations show wider bleaching at ∼667 nm, the difference is not that big. This
implies that our assignment of larger disorder to the peripheral chlorophylls is consistent with
experimental data.

In simulations, we calculate the 2D spectra without including laser pulse properties, e.g.
finite pulse duration and finite bandwidth. In experiments these two properties may affect the
peak profiles due to two effects. Firstly, the finite pulse duration creates the conditions in
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Figure 8. Absorption difference spectrum of full PSII RC complexes and the
RC5 complexes at 77 K. Experimental data were taken from [14].

experiments where different pulses overlap and so other resonant contributions to the signal
may squeeze in, apart from the rephasing and non-rephasing ones. However, this is a small
contribution as shown in [46]. Secondly, the amplitudes of the peaks, which are shifted away
from the pulse central frequency, become reduced to some degree by weaker laser field intensity
in this specific spectral region. However, we only show experimental data outside of the pulse
overlap region. We note that our simulations were done by assuming δ-shaped pulses; hence,
our simulated spectra are independent of the laser pulses. The simulations, thus, show pure
system properties and reveal all possible details of the system, which could be available in an
ideal experiment. Here we do not attempt to reproduce spectral distortions that result from finite
pulses but rather explore the predictions of our model free from such effects.

In recent years there has been a lot of discussion about the observed beatings in 2D spectra.
Although usually attributed to electronic coherences [21, 24, 66–68], there has recently been
an influx of work to analyze beatings that are of vibrational origin [28, 29]. The amplitude
of observed beatings can decrease dramatically due to the presence of static disorder, as has
been clearly shown in simulations of 2D spectra of J-aggregates [69]. Recently, it was shown
that 2D spectroscopy can distinguish between decoherence and inhomogeneous dephasing [70].
In experimental 2D spectra of the PSII RC, no beatings were clearly resolved [30]. However,
the use of shorter pulses and polarization-dependent studies may reveal such features. Our
modeling does not show any beatings either. Due to the presence of disorder, this cannot rule
out the possible existence of noticeable electronic coherences. However, we also performed
simulations of 2D spectra of the PSII RC for a single realization of disorder, which showed that
all beatings decay within a few tens of femtoseconds. Therefore, we can conclude that due to
large reorganization energies in the PSII RC we do not have any noticeable coherent dynamics
and that observed energy and CT timescales and kinetics are not affected by it. Of course, this
conclusion must be supported by explicitly including vibrational modes.

One of the biggest advantages of 2D spectroscopy is its ability to estimate homogeneous
broadening, coming from system–bath interaction, and inhomogeneous broadening, coming
from disorder. As seen from figure 6, our model captures both of these aspects very well.
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Figure 9. Temperature dependence of absorption spectra of the PSII RC.
The spectra at different temperatures are shifted vertically for better visibility.
Simulated results were averaged over 6000 realizations of disorder. Experimental
data at 77 K were taken from [14] and at 150 and 277 K from [72].

The most important parameter of the system–bath interaction is the bath spectral density. Its
low-frequency part characterizes the homogeneous broadening of the single-pigment absorption
spectrum (see figure 3(b)). In our model for a decaying bath correlation function in a finite time,
e.g. in τc, we get the lineshape function g (t)→ 0t , when t > τc. The homogeneous broadening
is then described by Re0 = kBT · C ′′(ω)/ω, in the limit when ω→ 0. Neglecting the second
term in equation (39), which is a small contribution at ω→ 0, our spectral density gives Re0 =

2λLkBT/γL ∼ 100 cm−1 at 77 K temperature. Radiative and non-radiative relaxation as well as
energy transfer should be taken into consideration when describing the homogeneous linewidth
in a molecular aggregate. In this case each excitonic transition has its own homogeneous
broadening. The homogeneous broadening and the spectral density behavior at ω→ 0 become
non-trivial at low (4–10 K) temperatures, where the ZPL becomes important [71]; however, this
region is beyond the scope of our present study.

We also note that our model is able to explain the temperature dependence of the absorption
spectrum of the PSII RC, as shown in figure 9, where we obtain a good match of both the peak
pattern and spectral lineshapes. This gives further credence to our choice of spectral density
form and parameters.

The observed time evolution of the 2D spectra of the PSII RC contains information about
the CT processes in the system. Recent publications propose the existence of two distinct
electron transfer pathways [19, 34]. We developed the improved model by using the TB
Hamiltonian to represent both molecular excitations and CT states on an equal footing. Our
model gives reasonable agreement with the experimental kinetics of 2D spectra. Therefore, we
can make observations regarding the CT processes and pathways. Our simulations show that
there is little difference in the simulated kinetics of Diag1, Diag2 and CP2 peaks when we
remove either the ChlD1 or the special pair pathway. Only the Diag3 and CP1 peak simulated
kinetics are different when different CT pathways are removed. This means that only specific
regions of the 2D spectra of the PSII RC are sensitive to the CT states, which are included in the
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model. This can also be seen from figure 6, where we present simulations of 2D spectra with
either the ChlD1 or the special pair pathway removed. We note that our simulations show that
inclusion of both CT pathways provides better agreement with experimental data.

6. Conclusions

We have constructed a TB model Hamiltonian of the PSII RC and used it for simulating the
2D spectra. Our model properly includes CT states, and describes double excitations as well as
correlated energy disorder and fluctuations. We find that the peripheral chlorophylls have four
times larger disorder than the other RC pigments.

We showed that our model is capable of reproducing the majority of features present in the
experimental 2D spectra. Excellent agreement of homogeneous and inhomogeneous broadening
in experimental and simulated spectra gives credibility to our choice of bath spectral density and
disorder parameters. Analysis of 2D spectra kinetics showed that inclusion of the two electron
transfer pathways helps us obtain better agreement with experiment.
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Appendix A. Hamiltonian matrix elements in single- and double-excitation manifolds

Here the explicit expressions of the Hamiltonian matrix elements in the TB model are presented.
In the single-excitation manifold, we have the following types of Hamiltonian matrix

elements:

εm∗ = t e
mm + t h

mm − V eh
mm, (A.1)

εm+n− = t e
nn + t h

mm − V eh
nm , (A.2)

Jm∗,n∗ = W d
mn, (A.3)

Jm∗,n+k− = t e
mkδmn + t h

mnδmk, (A.4)

Jm+n−,k+l− = t e
nlδmk + t h

mkδnl . (A.5)

Here εm∗ is the excitation energy of FE state m∗, εm+n− is the excitation energy of CT state m+n−,
Jm∗,n∗ is the coupling between FE states m∗ and n∗, Jm∗,n+k− is the coupling between FE state m∗

and CT state n+k− and Jm+n−,k+l− is the coupling between CT states m+n− and k+l−.
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In the double-excitation manifold, the Hamiltonian matrix elements are

〈ek el hm hn|Ĥ S|ek′ el ′ hm′ hn′〉 =
(
t e
kk′δll ′ + t e

kl ′δlk′ + t e
lk′δkl ′ + t e

ll ′δkk′

)
δmm′δnn′

+
(
t h
mm′δnn′ + t h

mn′δnm′ + t h
nm′δmn′ + t h

nn′δmm′

)
δkk′δll ′

+
(
V e

kl + V h
mn − V eh

km − V eh
lm − V eh

kn − V eh
ln + Kkm,ln

)
δkk′δll ′δmm′δnn′

+W d
kk′ (1 − δkk′) δll ′

{
δmk (δk′m′δnn′ + δk′l ′δnm′)+ δnk (δk′m′δmn′ + δk′n′δmm′)

}
+W d

kl ′ (1 − δkl ′) δlk′

{
δmk (δl ′m′δnn′ + δl ′n′δnm′)+ δnk (δl ′m′δmn′ + δl ′n′δmm′)

}
+W d

lk′ (1 − δlk′) δkl ′

{
δml (δk′m′δnn′ + δk′n′δnm′)+ δnl (δk′m′δmn′ + δk′n′δmm′)

}
+W d

ll ′ (1 − δll ′) δkk′

{
δml (δl ′m′δnn′ + δl ′n′δnm′)+ δnl (δl ′m′δmn′ + δl ′n′δmm′)

}
. (A.6)

Different types of these elements are given by

εm∗n∗ = εm∗ + εn∗ + Kmm,nn, (A.7)

εm∗n+k− = εm∗ + εn+k− + Kmm,kn, (A.8)

εm+n−k+l− = εm+n− + εk+l− + V e
nl + V h

mk − V eh
nk − V eh

ml + Knm,lk, (A.9)

Jm∗n∗,m′∗ n′∗ = Jm∗,m′∗ (1 − δmm′) δnn′ + Jm∗,n′∗ (1 − δmn′) δnm′ + Jn∗,m′∗ (1 − δnm′) δmn′

+ Jn∗,n′∗ (1 − δnn′) δmm′, (A.10)

Jm∗n+k−,m′∗n′∗ = δmm′ Jm′∗ ,m+k− + δmn′ Jm′∗ ,n+k−, (A.11)

Jm+n−k+l−,m′∗n′∗ = 0, (A.12)

Jm∗n+k−,m′∗n′+ k′− = δmm′ Jn+k−,n′+ k′− + δnn′δkk′ (1 − δmm′) Jm∗,m′∗ + δmn′δnm′δkk′ Jm∗,m+m′−

+ δmk′δnn′δkm′ Jm∗,m′+ m−, (A.13)

Jm+n−k+l−,m′∗n′+ k′− = δnk′δkn′ Jm′∗ ,m+l− + δkn′δlk′ Jm′∗ ,m+n− + δmn′δlk′ Jm′∗ ,k+n− + δmn′δnk′ Jm′,k+l−, (A.14)

Jm+n−k+l−,m′+ n′− k′+ l ′− = δkk′δll ′ Jm+n−,m′+ n′− + δmm′δnn′ Jk+l−,k′+ l ′− + δkk′δln′ Jm+n−,m′+ l ′−

+ δmm′δnl ′ Jk+l−,k′+ n′− + δmk′δll ′ Jk+n−,m′+ n′− + δkm′δln′ Jm+n−,k′+ l ′−

+ δmk′δnl ′ Jk+l−,m′+ n′− + δnn′δkm′ Jm+l−,k′+ l ′− . (A.15)

Here εm∗n∗ is the excitation energy of FE–FE state m∗n∗, εm∗n+k− is the excitation energy of
FE–CT state m∗n+k−, εm+n−k+l− is the excitation energy of CT–CT state m+n−k+l−, Jm∗n∗,m′∗n′∗

is the coupling between FE–FE states m∗n∗ and m ′∗n′∗, Jm∗n+k−,m′∗n′∗ is the coupling between
FE–CT state m∗n+k− and FE–FE state m ′∗n′∗, Jm+n−k+l−,m′∗n′∗ is the coupling between CT–CT
state m+n−k+l− and FE–FE state m ′∗n′∗, Jm∗n+k−,m′∗n′+k′− is the coupling between FE–CT states
m∗n+k− and m ′∗n′+k ′−, Jm+n−k+l−,m′∗n′+k′− is the coupling between CT–CT state m+n−k+l− and
FE–CT state m ′∗n′+k ′− and Jm+n−k+l−,m′+n′−k′+l ′− is the coupling between CT–CT states m+n−k+l−

and m ′+n′−k ′+l ′−.
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Appendix B. Eigenstate representation of spectral densities

Here we present transformations between the eigenstate and real space representations of
spectral densities:

C ′′

e1e2,e3e4
(ω)=

∑
k,l

∑
m,n

ψe1,klψe2,klψe3,mnψe4,mn

(
C e′′

km (ω)+ C eh′′

kn (ω)+ C eh′′

lm (ω)+ C h′′

ln (ω)
)
,

(B.1)

C ′′

e1e2, f1 f2
(ω)=

∑
k1,m1

k2>l2∑
k2,l2

m2>n2∑
m2,n2

ψe1,k1m1ψe2,k1m19 f1,k2l2m2n29 f2,k2l2m2n2

×

(
C e′′

k1k2
(ω)+ C e′′

k1l2
(ω)+ C eh′′

k1m2
(ω)+ C eh′′

k1n2
(ω)+ C eh′′

m1k2
(ω)+ C eh′′

m1l2
(ω)

+C h′′

m1m2
(ω)+ C h′′

m1n2
(ω)

)
, (B.2)

C ′′

f1 f2, f3 f4
(ω)=

k1>l1∑
k1,l1

m1>n1∑
m1,n1

k2>l2∑
k2,l2

m2>n2∑
m2,n2

9 f1,k1l1m1n19 f2,k1l1m1n19 f3,k2l2m2n29 f4,k2l2m2n2

×

(
C e′′

k1k2
(ω)+ C e′′

k1l2
(ω)+ C eh′′

k1m2
(ω)+ C eh′′

k1n2
(ω)+ C e′′

l1k2
(ω)+ C e′′

l1l2
(ω)+ C eh′′

l1m2
(ω)

+C eh′′

l1n2
(ω)+ C eh′′

m1k2
(ω)+ C eh′′

m1l2
(ω)+ C h′′

m1m2
(ω)+ C h′′

m1n2
(ω)+ C eh′′

n1k2
(ω)

+C eh′′

n1l2
(ω)+ C h′′

n1m2
(ω)+ C h′′

n1n2
(ω)

)
. (B.3)

Appendix C. Correlations of disorder and fast fluctuations for CT states

In table C.1 we present correlations of both disorder and fast fluctuations for CT states.
Correlation coefficients of energies of CT states with other states are

Cor (ε̃k∗, ε̃m+n−)=
σk

√
1 + νk (δkn + δkm)√

2
(
σ 2

m + σ 2
n

) , (C.1)

Cor (ε̃k+l−, ε̃m+n−)=
σ 2

k (δkm + νkδkn)+ σ 2
l (δln + νlδlm)√(

σ 2
k + σ 2

l

) (
σ 2

m + σ 2
n

) .

Spectral densities of correlated fluctuations involving CT states are

C ′′

k∗,m+n− (ω)= (δkm + δkn)
1
2C ′′ (ω) , (C.2)

C ′′

k+l−,m+n− (ω)=
1

2
C ′′ (ω)

{
δkm + δknηk

(1 + ηk)
+
δln + δlmηl

(1 + ηl)

}
. (C.3)

New Journal of Physics 15 (2013) 075013 (http://www.njp.org/)

http://www.njp.org/


24

Table C.1. Correlation coefficients between the energies of single-excited
states\spectral densities of fluctuation correlations in terms of C ′′ (ω).

P+
D2P−

D1 Chl+D1Pheo−

D1 P+
D2Chl−D1 P+

D1Chl−D1 P+
D1Pheo−

D1

P∗

D1 0.25\0.5 0\0 0\0 0.158\0.5 0.158\0.5

P∗

D2 0.25\0.5 0\0 0.158\0.5 0\0 0\0

Chl∗D1 0\0 0.125\0.5 0.158\0.5 0.158\0.5 0\0

Chl∗D2 0\0 0\0 0\0 0\0 0\0

Pheo∗

D1 0\0 0.125\0.5 0\0 0\0 0.158\0.5

Pheo∗

D2 0\0 0\0 0\0 0\0 0\0

Chlz∗

D1 0\0 0\0 0\0 0\0 0\0

Chlz∗

D2 0\0 0\0 0\0 0\0 0\0

P+
D2P−

D1 0\0 0.015\0.75 −0.011\ − 0.25 −0.011\ − 0.25

Chl+D1Pheo−

D1 −0.028\ − 0.25 −0.028\ − 1 0.030\1.5

P+
D2Chl−D1 0.038\1.5 0\0

P+
D1Chl−D1 0.009\0.75
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