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We show how two frequency combs E1, E2 can be used to measure single-photon, two-photon absorption (TPA),
and Raman resonances in a molecule with three electronic bands, by detecting the radio frequency modulation of
the nonlinear transmission signal. Some peaks are independent of the carrier frequency of the comb and others
shift with that frequency and have a width close to the comb width. TPA and Raman resonances independent of
the carrier frequency are selected by measuring the transmission signal ∼ E2

1E2
2 and the single-photon resonances

are selected by measuring the transmission signal ∼ E3
1E2. Sinusoidal spectral phase shaping strongly affects the

TPA, but not the Raman resonances.

DOI: 10.1103/PhysRevA.90.023804 PACS number(s): 42.62.Eh, 06.20.−f, 06.60.Jn, 42.65.Re

I. INTRODUCTION

Optical frequency combs, first introduced in 1999 [1], have
revolutionized meterology [1,2] due to their high resolution of
optical frequencies. They have been employed for calibrating
sources of spectrographs in astronomy [3], identifying multi-
ple molecules simultaneously [4], Doppler-free spectroscopy
[5–7], improving energy efficiency in environmental moni-
toring [8], and forensic analysis, among its many applica-
tions. This technology has also enabled the generation of
attosecond pulses [9]. Because the measurement times of
the interferometric signal can be shortened from seconds
using conventional pulse techniques, such as the scanning-arm
Michelson interferometer [10], to microseconds with dual
comb; future possible applications include the observation of
chemical reactions in real time [11].

Dual-comb Fourier transform spectroscopy [8,12–17] is a
technique employed for its spectral resolution and its concise
recording times compared to conventional Fourier transform
spectroscopy. It employees two coherent broadband optical
frequency combs and records the nonlinear transmission in
the time domain. A Fourier transformation reveals Raman
resonances in the radio-frequency regime [13,15,18–23].
Previously, the spectrum was calculated numerically by means
of calculating the intensity of light transmitted through an
absorbing gas [20] or by means of fitting with the nonlinear
least-squares method [18]. Here we calculate the nonlinear
signal obtained with two frequency combs and connect them to
the third-order susceptibility χ (3). We address several issues:
how the peaks map from the optical to the radio-frequency
regime; how do the single-photon and two-photon resonances
show up in the the transmission spectrum; how to selectively
detect the two-photon absorption (TPA), Raman, and single-
photon resonances in the transmission spectrum; and can we
control these resonances by means of pulse-shaping?

We find the positions of some peaks are sensitive to the
carrier frequency of the frequency comb, while other peaks
not sensitive to carrier frequency. New peaks not studied
previously [13,15,18–23] are calculated.

Pulse-shaping allows the control of the phase φ(ω) and
amplitude Ẽ(ω) of the electric field E(ω)

E(ω) = Ẽ(ω)eiφ(ω) (1)

and has inspired the generation of arbitrary waveforms at
optical frequencies [24–27]. We investigate how a sinusoidal
phase added to the frequency comb affects the peaks in the
spectrum.

This paper is organized as follows. In Sec. II we write
the expressions for the nonlinear transmission spectrum. The
transmission signal with of a Lorentzian pulse is plotted in
Sec. III. The frequency comb in the time and frequency
domains is presented in Sec. IV. The selection of the comb
line numbers in the transmission spectrum and simulation of
the transmission spectrum is given in Secs. V and VI. The
comb transmission for a sinusoidal spectral phase is simulated
in Sec. VII. The summary is presented in Sec. VIII.

II. NONLINEAR TRANSMISSION SIGNAL

We calculate the transmission signal measured in the time
domain and Fourier-transformed to give the transmission
spectrum [28]

St (ωs) = −2

�
I

∫
dteiωs tE∗(t)P (t), (2)

this yields

St (ωs) = −2

�
I

∫
dω′Ẽ∗(ω′ − ωs)P (ω′), (3)

where P (ω) is the polarization induced in the matter by the
light and IA(ω) denotes the imaginary part. The polarization
will be expanded in powers of the radiation field [28]

P (ω) = P (1)(ω) + P (3)(ω). (4)

The first-order polarization is given by

P (1)(ω) = E(ω)χ (1)(ω), (5)

where χ (1)(ω) is the linear susceptibility. Inserting P (1)(ω) into
Eq. (3) gives

S
(1)
t (ωs) = −2

�
I

∫
dω′Ẽ∗(ω′ − ωs)E(ω′)χ (1)(ω′). (6)
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The third-order polarization is given as [28]

P (3)(ω) =
∫

dω1dω2dω3E(ω1)E(ω2)E∗(ω3)χ (3)

× (−ω; ω1,ω2,ω3)2πδ(ω − ω1 − ω2 + ω3), (7)

where the susceptibility will depend upon the model of the
system. Inserting Eq. (7) into Eq. (3) gives

S
(3)
t (ωs) = −2

�
I

∫
dω′dω1dω2dω3Ẽ∗(ω′ − ωs)

× Ẽ(ω2)Ẽ∗(ω3)Ẽ(ω1)2πδ(ω′ − ω1 − ω2 + ω3)

×χ (3)(−ω′,ω1,ω2,ω3). (8)

Equation (8) will be used to calculate the transmission
spectrum with a single broadband pulse and with a shaped-
pulse composed of two frequency combs.

For comparison we also examine the heterodyne detected
signal, i.e., transmission spectrum, measured in the frequency
domain, called the frequency-dispersed transmission spectrum
[28]

Sf (ω) = −2

�
IẼ∗(ω)P (ω). (9)

Inserting Eq. (5), the first-order signal is given as

S (1)
f (ω) = −2

�
I|Ẽ(ω)|2χ (1)(ω). (10)

Unlike Eq. (6), the signal does not depend upon the phase of
the field.

Using Eq. (7), the third-order-dispersed spectrum is given
as

S (3)
f (ω) = I 2

�
E∗(ω)

∫
dω1dω2dω3E(ω1)E(ω2)E∗(ω3)

×χ (3)(−ω; ω1,ω2,ω3)2πδ(ω − ω1 − ω2 + ω3).

(11)

In the next section, we compare Eqs. (8) and (11) for a single
pulse.

III. TRANSMISSION SIGNAL OF A BROADBAND PULSE

We consider a three-band model system Fig. 1 with
electronic states |g〉, |e〉, |f 〉. The linear susceptibility then
reads [28]

χ (1)(ω) =
∑
e1g1

−1

�
|μe1g1 |2Ge1g1 (ω), (12)

where Ge1g1 (ω) = (ω − ωe1g1 + i�e1g1 )−1.
The third-order susceptibility can be read off the diagrams

of Fig. 2 [28]

χ (3)(−ω; ω1,ω2,ω3)

=
( −1

2π�

)3 ∑
gi ,ei ,fi

Vg1e1Ve1g2Vg2e1Ve1g1G
∗
e1

(−ω+ω1 + ω2)

× G∗
g2

(−ω + ω1)Ge1 (ω1) + Vg1e1Ve1f1Vf1e1Ve1g1

×G∗
e1

(−ω + ω1 + ω2)Gf1 (ω1 + ω2)Ge1 (ω1)

+ Vg1e1Ve1g2Vg2e1Ve1g1Gg2 (ω1 − ω3)

FIG. 1. The model level scheme contains three electronic
states with the transition frequencies ωf1g1 = 36 000 cm−1, ωe1g1 =
12 000 cm−1, ωg2g1 = 1200 cm−1. The dephasing rates are �f1g1 =
500 cm−1, �e1g1 = 100 cm−1, �g2g1 = 80 cm−1. The transition dipole
moments are set to 1.

×Ge1 (ω1 − ω3 + ω2)Ge1 (ω1) + Vg1e1Ve1f1Vf1e1Ve1g1

×Ge1 (ω1 + ω2 − ω3)Gf1 (ω1 + ω2)Ge1 (ω1). (13)

The frequency-dispersed transmission spectrum Eq. (11)
with a Lorentzian pulse [29]

E(ω) = σ

ω + iσ
(14)

is calculated analytically and shown in the top row of Fig. 3.
S (3)

f (ω) is plotted in arbitrary units with the dipole moments
set to 1. In Fig. 3(a), the resonances ω = ωf1e1 , ωe1g1 , ωe1g2 are
marked. The transmission spectrum contains the peaks ω =
ωc − ωg2g1 , ωf1g1 − ωc. The ω = ωf1g1 − ωc peak overlaps
with the ω = ωe1g1 peak.

The dominant peak in the transmission spectra is the peak at
the carrier frequency ω = ωc. As the pulse width increases, in
Fig. 3(b), the ω = ωf1g1 , ωe1g2 peaks become seen and the ωc

peak decreases. Increasing the pulse width further, Fig. 3(c),
these peaks become more pronounced.

The Fourier transform of the time-resolved transmission
signal Eq. (8) is shown the bottom row of Fig. 3 for the
electric field (14). In Fig. 3(a), the two-photon transition ωf1g1

interacts two times with the pulse and it is shifted by 2ωc. The
single-photon transitions, ωe1g1 , ωf1e1 , interact once with the
pulse and are shifted by ωc. The Raman peaks are not shifted
since they interact twice with the pulse, once with ωc and a
second with −ωc, which cancels. Increasing the pulse width to
σ = 500 cm−1 in Fig. 3(e) the ωs = ωe1g1 − ωc peak remains
dominant. This is also true for Fig. 3(b). Increasing the pulse
width further, in Fig. 3(f) the peaks become smeared. Overall,
the two signals S (3)

f (ω) and S
(3)
t (ωs) are different.

FIG. 2. (Color online) Loop diagrams for the transmitted signal
Eq. (8) or Eq. (11).
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(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color online) Top: The frequency-dispersed transmission spectrum S (3)
f (ω) Eq. (11) is plotted for a Lorentzian pulse Eq. (14), for

several values of σ . Bottom: The Fourier transform of the time-resolved transmission signal S
(3)
t (ωs) Eq. (8) is plotted for a Lorentzian pulse

Eq. (14), for several values of σ . The signal is plotted in arbitrary units and the carrier frequency is ωc = 19 000 cm−1. All dipole moments are
set to 1.

IV. DUAL FREQUENCY COMB

The frequency comb is generated using a mode-locked laser
that produces a series of optical pulses separated by the round-
trip time of the laser cavity Trep = lc/vg , where vg is the group
velocity and lc is the round-trip length of the laser cavity
[12,30–32]. We consider two femtosecond frequency combs,
with the electric field E(t) = E(t) + E∗(t)

E(t) = e−iωct

N∑
n=1

Ẽ(t − nTrep,1)e−in(	φ−ωcTrep,1)

+ e−iωc(t−	t)
N∑

n=1

Ẽ(t − nTrep,2 − 	t)e−in(	φ−ωcTrep,2),

(15)

where ωc is the carrier frequency and 	t is the delay between
frequency combs. The summation index n represents the pulse
number with a total of N pulses. The envelope function Ẽ(t)
is periodic Ẽ(t) = Ẽ(t + nTrep). The repetition frequencies are
close, such that δωrep � ωrep,1, where δωrep = ωrep,1 − ωrep,2.

The carrier offset phase is ωcTrep,i . The phase 	φ =
(1/vg − 1/vp)lcωc, is the phase shift between the peak of
the envelope and the closest peak of the carrier wave and
vp is the phase velocity. The range of the carrier-envelope
phase is 0 < 	φ < 2π . It is possible to lock ωcTrep,i to
zero [31]. We assume a vanishing phase shift between pulses
ωcTrep,i + 	φ = 0.

The frequency comb can be generated by replacing the
cavity with with a Fabry-Pérot etalon, [33]. In this method
the individual pulse shape in the pulse train becomes
asymmetric. An intracavity etalon is typically employed for

self-stabilization of the optical frequencies and the pulse
repetition rate in conventional frequency comb generation
with high repetition rates 10 GHz [34]. An external molecular
absorption cell can also be employed to stabilize the optical
frequencies and the optical repetition rate [35].

An ideal frequency comb uses an infinite train of pulses
(N → ∞) and the electric field can be represented as a Fourier
series

E(t) = E1(t) + E2(t − 	t) = e−iωct

∞∑
n=−∞

An,1e
−inωrep,1t

+ e−iωc(t−	t)
∞∑

m=−∞
Am,2e

−imωrep,2(t−	t), (16)

where ωrep,1 = 2π/Trep,1 and ωrep,2 = 2π/Trep,2 and An,i is
the Fourier coefficient

An,i = 1

Trep,i

∫ ∞

−∞
Ei(t)e

−i(nωrep,i−ωc)t dt, (17)

Ei(t) is the pulse envelope, the index i represents comb 1 or
comb 2.

The Fourier transform E(ω) = ∫ ∞
−∞ Ẽ(t)eiωtdt of Eq. (15)

produces a frequency comb

E(ω) = Ẽ(ω − ωc)
N∑
n

e−inωTrep,1−in	φ

+ Ẽ(ω − ωc)
N∑
m

e−imωTrep,2−im	φ−iω	t (18)
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(a)

(c)

(b)

FIG. 4. (Color online) (a) Frequency comb, Eq. (18), for a Gaussian envelope Eq. (20) ωrep,1 = 0.0033 cm−1, η = 10−6, ωc = 12 580 cm−1,
and σ = 441 cm−1. (b) The dual comb in (a) is displayed on a much smaller scale to that shown in the individual comb lines of comb 1
(dashed-blue line) and comb 2 (solid-red line). (c) Schematic of E(ω) for the dual frequency comb Eq. (19). (d) Interferogram of the double
comb Eq. (22) is shown for the first three frequency combs resulting from the beating of two frequency combs in the time domain.

with comb envelope Ẽ(ω) = ∫ ∞
−∞ Ẽ(t)e−iωtdt . The summation

of the exponentials in Eq. (18) is a Fourier series with
constructive interference occurring at ωTrep,i + 	φ = 2πn.
The center frequency of line number n, with ω → ωn is
expressed as ωn = n(1 − 1

2π
	φ)ωrep,i . As the number of

pulses N is increased the spectral width of the comb lines
narrows and for N → ∞ Eq. (18) can be simplified as

E(ω) = ωrep,1Ẽ1(ω − ωc)
∞∑

n=−∞
δ(nωrep,1 − ω)

+ωrep,2Ẽ2(ω − ωc)e−iω	t

∞∑
m=−∞

δ(mωrep,2 − ω),

(19)

where we have selected 	φ = 0. Equation (18) is plotted in
Fig. 4 for a Gaussian envelope

Ẽ1(ω − ωc) = E1e
−(ω−ωc)2/2σ 2

,
(20)

Ẽ2(ω − ωc) = E2e
−(ω−ωc)2/2σ 2

,

with σ = 441 cm−1, ωc = 12 580 cm−1, and for 100 pulses.
Figure 4(a) shows the Gaussian envelope of the two overlap-
ping frequency combs. There are 315,416 pulses contained
in the full width half max (FWHM). Figure 4(b) shows the
equidistant delta-like comb lines of the two frequency combs,
in dashed-blue and solid-red, for ωrep,1 = 0.033 cm−1 and
δωrep = 10−6ωrep,1.

The beating of the two combs Eq. (16) creates a time-
resolved interferometric signal I (t) = |E(t)|2, which reads

I (t) = |E(t)|2 =
∑
p,r

Ap,1A
∗
r,1e

i(p−r)ωrep,1t

+
∑
p,r

Ap,2A
∗
r,2e

i(p−r)ωrep,2(t+	t)

+ e−iωc	t
∑
n,m

An,1A
∗
m,2e

i(nωrep,1−mωrep,2)t+imωrep,2	t

+ eiωc	t
∑
n,m

A∗
n,1Am,2e

−i(nωrep,1−mωrep,2)t−imωrep,2	t .

(21)

The last two terms in Eq. (21) contain many possible
beat frequencies: nωrep,1 − mωrep,2. The Fourier transform of
Eq. (21) reads

I (ωs) =
∫

dtI (t)eiωs t . (22)

For n = m, Eq. (22) will give a frequency comb
∑

n δ(ωs −
nδωrep). The application of a second comb thus down-converts
comb 1 by the factor

η = δωrep/ωrep,1. (23)

This frequency comb has line spacing δωrep and its envelope
is the product of the envelopes of the two fields.

The dual frequency comb Eq. (19) is sketched in
Fig. 4(c). Figure 4(c) sketches the Fourier transform of
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the interferometric signal Eq. (21) given by Eq. (22). The
first group of lines corresponds to the selection of the
modes n = m. The second group corresponds to m = n − 1
and has the form

∑
n δ(ωs − ωrep,2 − nδωrep). It is centered

at ωs ≈ ωrep,1 with line spacing δωrep and is identical to
the first group. The third group is at ωs ≈ 2ωrep,1 and
corresponds to the combination m = n − 2. The spectrum
contains an infinite number of identical frequency combs
center at ωs ≈ pωrep,1, where p is an integer. Typically the
only the first group of lines is measured and the higher
frequencies can be cutoff experimentally by using a low-pass
filter in the acquisition circuit [4]. For two combs with THz
carrier frequencies, and repetition frequencies ωrep,1 = 2π

100 MHz, δωrep = 2π100 Hz, the peaks in the spectrum
are multiplied by η = 10−6 and the spectrum lies in the
radio-frequency regime [4]. For unambiguous assignment of
the comb modes, the bandwidth should not exceed ±ωrep,1/2,
which can be derived from the Nyquist theorem.

V. COMB LINE SELECTION IN THE NONLINEAR
TIME-RESOLVED TRANSMISSION SIGNAL WITH

SCALING Ẽ2
1 Ẽ2

2

The time-resolved transmission spectrum for two frequency
combs contains the signals Ẽ2

1 Ẽ2
2 , Ẽ3

1 Ẽ2, and Ẽ1Ẽ3
2 . We analyze

the spectrum separately for Ẽ2
1 Ẽ2

2 and Ẽ3
1 Ẽ2. For 	t = 0, the

expression for the spectrum scaling as Ẽ1Ẽ3
2 are similar to Ẽ3

1 Ẽ2

with the δωrep → −δωrep.
We select terms that scale as Ẽ2

1 Ẽ2
2 . The Fourier transform

of the interferometric signal with two interactions from combs
1 and 2, gives the following possible beat frequencies:

ωs = (n − r)ωrep,1 + (m − p)ωrep,2

= (n + r)ωrep,1 − (m + p)ωrep,2

= (n − r)ωrep,1 − (m − p)ωrep,2. (24)

Note that the exchange of ωrep,1 and ωrep,2 is possible in
Eq. (24). The two interactions with comb 1 correspond the
indices r and n, and two interactions with comb 2 to p and
m. Similar to the interferometric signal Eq. (21), the relation
m − p = r − n, for the first term in Eq. (24), will give a
frequency comb

∑
n,r δ((n − r)δωrep − ωs). The combination

m − p = r − n + 1 will give an identical frequency comb∑
n,r δ((n − r)δωrep + ωrep,2 − ωs), centered at ωs ≈ ωrep,1.

Based on this observation, we use a δ function to select
the correct combination of line numbers. For example, the
combination of the line numbers in Eq. (24) will acquire the

corresponding δ functions

δ(n − r + m − p), δ(n + r − m − p),

δ(n − r − m + p), (25)

respectively. When expanding the field correlation functions
we can insert the corresponding δ function and eliminate one
of the summations over the spectral line numbers. This is done
in Appendix A and the final expression for the time-resolved
transmission spectrum is given in Eq. (A3).

The time-resolved transmission spectrum St (ωs), Eq. (A3),
contains many peaks. The TPA and Raman peaks that do not
depend on n or m are

ωs = ±ηωf1g1 ,

ωs = ±ηωg2g1 . (26)

Other peaks that depend upon n and m and that lie within the
displayed regime ±ωrep,1/2 are

ω̃+
f1g1

= η
[
ωf1g1 − (m + n)ωrep,1

]
,

ω̃+
e1g1

= η
(
ωe1g1 − nωrep,1

)
,

ω̃−
e1g1

= −η
(
ωe1g1 + nωrep,1

)
, (27)

ω̃+
g2g1

= η
[
ωg2g1 − (m + n)ωrep,1

]
,

ω̃−
g2g1

= −η
[
ωg2g1 + (m + n)ωrep,1

]
.

The peaks ωs = −η[ωf1g1 + (m + n)ωrep,1], ωe1g1 ± nωrep,1,
ωg2g1 + (m + n)ωrep,1 lie outside the displayed regime. The
center position of the peaks that depend on n and m can be
found by substituting n = m = ωc/ωrep,1. The single-photon
peaks ω̃−

e1g1
and ω̃+

e1g1
depend on n; while, the range of n

depends upon the width of the frequency comb. Hence, the
width of these peaks will be close to the width of the frequency
comb multiplied by η. The TPA and Raman resonances depend
on m and n, so that these peaks will be twice as broad as the
single-photon peaks.

The down-shifting of the peaks can be understood by
comparing Eqs. (8) and (11). Equation (8) contains an ω′
integration, which is a result of the time-resolved signal
detection. This integration mixes the frequency combs and
shifts the peaks into the radio-frequency range. Using the δ

function in Eq. (8), and inserting it into the field Ẽ∗(ω′ −
ωs), we find E∗(ω1 + ω2 − ω3 − ωs), which mixes the four
frequencies in the diagrams of Fig. 2. In Eq. (11), using the δ

function we have E∗(ω1 + ω2 − ω3), which mixes three of the
frequencies.

The modulation of the transmission signal in the radio-
frequency range, can be seen from the expression Eq. (A3),
which is proportional to

S
(3)
t1122(ωs ; ωrep,1,ωrep,2,τ2) ∝ −I 2

(2π�)4
ω2

rep,1ω
2
rep,2

{
Ẽ∗

2 (mωrep,2 − ωc)Ẽ1(nωrep,1 − ωc)Ẽ∗
2 (pωrep,2 − ωc)

× Ẽ1(rωrep,1 − ωc)Vg1e1Ve1f1Vf1e1Ve1g1

× δ[(r + n)ωrep,1 − (p + m)ωrep,2 − ωs](
rωrep,1 − ωe1g1 + i�e1g1

)[
(n+ r)ωrep,1 − ωf1g1 + i�f1g1

][
(n+ r)ωrep,1 − pωrep,2 − ωe1g1 − i�e1g1

]
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+ Ẽ∗
1 (nωrep,1 − ωc)Ẽ2(mωrep,2 − ωc)Ẽ∗

2 (pωrep,2 − ωc)Ẽ1(rωrep,1 − ωc)Vg2e1Ve1g1Vg1e1Ve1g2

× δ[(r − n)ωrep,1 − (p − m)ωrep,2 − ωs](
rωrep,1 − ωe1g1 + i�e1g1

)(
(p − m)ωrep,2 − ωg2g1 − i�g2g1

)(
pωrep,2 − ωe1g1 − i�e1g1

)
}
. (28)

The Ẽ2
1 Ẽ2

2 scaling signal is designated as 1122. The first term

S
(3)
t1122(ωs) ∝ δ[(r + n)ωrep,1 − (p + m)ωrep,2 − ωs][

(n + r)ωrep,1 − ωf1g1 + i�f1g1

] , (29)

gives the two-photon peaks multiplied by η. Using
n + r = m + p in the δ function gives (n + r)δωrep = ωs .
Substituting (n + r) = ωs/δωrep into the denominator yields
the TPA resonance at ωs = ηωf1g1 . A similar effect occurs
for the second term with the Raman resonances. From the
combination of the terms

S
(3)
t1122(ωs) ∝ δ[(r − n)ωrep,1 − (p − m)ωrep,2 − ωs][

(p − m)ωrep,2 − ωg2g1 − i�g2g1

] , (30)

the selection r − n = p − m in the δ function gives
(p − m)δωrep = ωs . Substituting this combination into the
dominator, we find the Raman resonance at ωs = ηωg2g1 .

Two rather large summations are required to evaluate in the
time-resolved transmission signal Eq. (A3). We performed
them using the Monte Carlo method [36,37], where we
randomly sample the comb line numbers in the frequency
comb. Convergence is verified my changing the sample number
and observing changes in the spectra.

The repetition frequency is selected as ωrep,1 = 0.080 cm−1,
so that the TPA peaks can be observed within the range
±ωrep,1/2. The peaks in the transmission spectra are multiplied

(a)

(b)

FIG. 5. (Color online) (a) The resonant time-resolved transmis-
sion spectrum from Eq. (A3) is plotted. Inset shows an illustration of
frequency comb used ωc = 36 000 cm−1 and bandwidth 2000 cm−1.
(b) The spectrum near ωs = ω̃+

e1g1
is enlarged. The expression for the

peaks are given in Eqs. (26) and (27).

by the factor η = 10−6, which is in the radio-frequency
range. We use a Gaussian envelope Eq. (20) with σ = 1.8 ×
106 cm−1.

The resonant time-resolved transmission signal Eq. (A3)
is displayed in Fig. 5(a), for 	t = 0, and ωc =
36 000 cm−1. The comb bandwidth was selected as ω =
(35 000 cm−1,37 000 cm−1) and contains 25 000 comb lines.
The range was randomly sampled for 2000 pulses (dashed-red
line) or 3500 pulses (solid-blue line). S

(3)
t1122(ωs) is in arbitrary

units with the dipole moments set to 1. The inset shows
an illustration of the frequency comb used. The spectrum
shows the TPA and Raman resonances at ωs = ±ηωf1g1

and ωs = ±ηωg2g1 . The ωs = ω̃+
e1g1

peak is centered at ωs =
η(ωe1g1 − ωc) = −24 000η cm−1 has a width ≈ 2000η cm−1.
The ωs = ω̃+

f1g1
peak is located at ωs = η(ωf1g1 − 2ωc) =

−36 000η cm−1. Since its position depends on both n and m

it will have a width of ≈ 4000 η cm−1. This is the reason why

(a)

(b)

(c)

FIG. 6. (Color online) (a) The off-resonant time-resolved trans-
mission spectrum. Inset shows a frequency comb centered at ωc =
12 580 cm−1. (b) The spectrum about ωs = 0 is enlarged. (c) The
spectrum near ωs = ω̃−

e1g1
is enlarged. The expression for the peaks

are given in Eqs. (26) and (27).
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(a)

(d)

(g) (h) (i)

(e) (f)

(b)
(c)

FIG. 7. (Color online) The time-resolved transmission spectrum S
(3)
t1122(ωs) Eq. (A3) is displayed, for various values of ωc. The inset shows

the frequency comb centered at ωc and width 2000 cm−1. The expression for the peaks are given in Eqs. (26) and (27).

the negative two-photon peak in Fig. 5(a) is more pronounced
than the positive peak.

The boxed region in Fig. 5(a) is replotted in Fig. 5(b) on a
larger scale, which corresponds to ωs = ω̃+

e1g1
. We see that the

width of the peak is ≈ 2000η cm−1 and that it contains both
absorption and emission features. Comparing the dashed-red
line for 2000 sampled pulses to the solid-blue line 3500 pulses,
we see the same features demonstrating that the data for the
2000 sampled pulses represents the spectrum.

The spectrum for ωs > 0 in Fig. 5(a), in the radio-frequency
range, contains only the Raman and TPA peaks. Compared to
the frequency-dispersed transmission spectra Fig. 3(c). Only
the vibrational and TPA peaks are present in Fig. 5(b), while
the Stokes, Rayleigh, single photon and TPA peaks are present
in Fig. 3(c). In Figs. 5(a) and 3(d), the single-photon peaks
are shifted by ηωc or ωc and there are Raman resonances not
shifted by ηωc or ωc. In Fig. 5(a) there are TPA resonances that
are not shifted by 2ηωc and in Fig. 3(d), they are shifted by 2ωc.

The off-resonant transmission spectrum Eq. (A3) is shown
in Fig. 6(a) for ωc = 12 580 cm−1. The comb bandwidth
was selected as ω = (11 580 cm−1,13 580 cm−1) and contains
25 000 comb lines. The range was randomly sampled for
2000 pulses. The TPA peaks are very weak. The spectrum is
composed of Raman resonances at ωs = ±ηωg2g1 , ω̃+

g2g1
ω̃−

g2g1
,

single-photon peaks at ωs = ω̃+
e1g1

, ω̃−
e1g1

, a TPA at ωs = ω̃+
f1g1

,
−ηωf1g1 and a peak at ωs = 0. The peak at ωs = ω̃+

f1g1
=

10 840η cm−1 has a width of ≈ 4000 η cm−1.

(a)

(b)

FIG. 8. (Color online) (a) The time-resolved transmission signal
for three interactions with comb 1, Eq. (B3) is plotted. The inset
shows an illustration of the frequency comb used, ωc = 1258 cm−1.
The peaks in the spectrum are given by Eq. (32). (b) The spectrum in
the purple-dashed region is replotted.
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The region near −24 000η cm−1 is replotted in Fig. 6(c) on
an expanded scale and shows the combination of the peaks
ωs = ω̃−

e1g1
, ω̃+

g2g1
, and ω̃−

g2g1
, centered at ωs = −24 580, −

23 960, − 26 360η cm−1, respectively.
The spectra near zero in Fig. 6(a), is replotted in

Fig. 6(b). Compared to the resonant transmission spectrum
Fig. 5(a), there is an additional peak at ωs = 0. This peak
originates from ωs = (ωe1g1 − nωrep,1), which is not multiplied
by the factor η. For ωe1g1 = nωrep,1, there is a peak which
is located within the regime ωrep,1/2 at zero. The ωs =
ω̃+

e1g1
peak is centered at ω̃+

e1g1
= −580η cm−1, with width

≈ 2000η cm−1.
The spectrum for ωs > 0 in Fig. 6(b) contains only the

Raman peak. This plot can be compared to the experi-
mental results of Ref. [4]. The spectrum shows qualitative
agreement with there findings for measuring the off-resonant
time-resolved transmission spectrum, without the peak at
zero, which originates from the single-photon peak ωs =
(ωe1g1 − nωrep,1). Note that we selected a different repetition
frequency and level scheme Fig. 1 than the authors of
Ref. [4].

The time-resolved transmission spectrum for various values
of ωc is plotted in Fig. 7. The inset shows the frequency comb
that we use with bandwidth 2000 cm−1. The two large summa-
tions in Eq. (A3) are done by randomly sampling the range with
2000 pulses. The transmission spectrum for ωc = 4000 cm−1

is shown in Fig. 7(a). It contains the two-photon and Raman
resonances at ωs = ±ηωf1g1 , ±ηωg2g1 and the five peaks in
Eq. (27). The ωs = ω̃+

e1g1
and ω̃−

e1g1
peaks contain both absorp-

tion and emission features. The Raman peaks at ωs = ω̃+
g2g1

and ω̃−
g2g1

interfere. The ωs = ω̃+
f1g1

peak is an absorption peak.
Increasing ωc = 8000 cm−1, in Fig. 7(b), shifts the five peaks
in Eq. (27) toward the left. In Fig. 7(c), for ωc = 10 000 cm−1

the ωs = ω̃+
e1g1

overlaps the ωs = ±ηωg2g1 peak and amplifies
the peak.

In the Fig. 7(d), for ωc = 12 000 cm−1, there is a peak lo-
cated at zero, corresponding to ωs = (ωe1g1 − nωrep,1), which
is not multiplied by the factor η. This peak only occurs
for ωe1g1 = nωrep,1 = ωc. In addition, the peak ωs = ω̃+

e1g1

is located at zero. Increasing ωc further, in Fig. 7(f), the
ωs = ω̃−

g2g1
position becomes located beyond the detected

regime and all peaks from Eq. (27) are located in the regime
ωs < 0. In Fig. 7(g), the ω̃−

e1g1
peak overlaps the TPA at

ωs = −ωf1g1 , amplifying the TPA. Increasing ωc further, it
is possible to shift the location of the ωs = ω̃+

g2g1
and ω̃−

e1g1

beyond the detected regime, as in Fig. 7(i).

VI. TIME-RESOLVED TRANSMISSION SIGNAL
WITH SCALING Ẽ3

1 Ẽ2

A selection of three interactions with comb 1 and one
interaction with comb 2 will give the down-converted single-
photon resonances, which do not depend upon the comb line
number. The Fourier transform of the interferometric signal
will give the following beat frequencies

ωs = (n − r + m)ωrep,1 − pωrep,2

= (n + r − m)ωrep,1 − pωrep,2

= (n − r − m)ωrep,1 + pωrep,2. (31)

(a)

(c) (d)

(b)

FIG. 9. (Color online) The time-resolved transmission signal for three interactions with comb 1, Eq. (B3) is plotted for two values of ωc:
(a) ωc = 80 000 cm−1, (b) ωc = 240 000 cm−1. The inset shows an illustration of the frequency comb used. The peaks in the spectrum given by
Eq. (32). (c) The spectrum in the near ωs = ηωe1g1 is replotted. (d) The spectrum near �+

f1g1
is replotted.
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Similar to the methods used in Sec. V, we will make use of a
δ function to select the correct combination of line numbers in
the transmission signal. The transmission spectrum Eq. (B3)
is derived in Appendix B. The peaks in the transmission signal
are

ωe1g1 = ±ηωe1g1 ,

�+
f1g1

= η
(
ωf1g1 − mωrep,1

)
,

�−
f1g1

= −η
(
ωf1g1 − nωrep,1

)
,

�+
e1g1

= η
[
ωe1g1 + (n − m)ωrep

]
,

�−
e1g1

= −η
[
ωe1g1 − (n − m)ωrep

]
,

�+
g2g1

= η
(
ωg2g1 + nωrep

)
,

�−
g2g1

= −η
(
ωg2g1 + mωrep

)
. (32)

The center position of the peaks can be found by substituting
n = ωc/ωrep,1 and m = ωc/ωrep,1 into Eq. (32). The peak �±

e1g1

is centered at ±ωe1g1 . The peak positions �±
f1g1

are shifted by
−ηωc, while, the peaks �±

g2g1
are shifted by ηωc. Comparing

to the peaks in Fig. 3, the TPA peaks and Raman peaks in
Fig. 3(c), Sf (ω), are shifted by ωc, while the single-photon
peaks are not shifted by ωc.

The down-conversion of the single-photon peaks can
be seen from the transmission signal Eq. (B3), which is
proportional to

S
(3)
t1112(ωs ; ωrep,1,ωrep,2,τ2)

∝ −I 2

(2π�)4
ω3

rep,1ωrep,2

{
Ẽ∗

1 (mωrep,1 − ωc)Ẽ1(nωrep,1 − ωc)Ẽ∗
2 (rωrep,1 − ωc)Ẽ1(pωrep,2 − ωc)Vg1e1Ve1g2Vg2e1Ve1g1

× δ[(n − r − m)ωrep,1 + pωrep,2 − ωs](
pωrep,2 − ωe1g1 + i�e1g1

)(
pωrep,2 − rωrep,1 − ωg2g1 + i�g2g1

)[
(n − r)ωrep,1 + pωrep,2 − ωe1g1 − i�e1g1

]
}
, (33)

The index 1112 represents the signal scaled as Ẽ3
1 Ẽ2. Equation

(33) is proportional to

S
(3)
t1112(ωs ; ωrep,1,ωrep,2,τ2)

∝ δ[(n − r − m)ωrep,1 + pωrep,2 − ωs](
pωrep,2 − ωe1g1 + i�e1g1

) . (34)

The selection n − r − m = −p from the measurement of
interferometric signal gives p = −ωs/δωrep. Substituting this
into the dominator we find the single-photon resonance at
ωs = −ηωe1g1 .

The two large summations in the transmission signal
S

(3)
t1112(ωs) are calculated using the Monte Carlo method, as in

Sec. V. We used the same values for the repetition frequency
and Gaussian pulse width as in Sec. V. The off-resonant
transmission signal is displayed for ωc = 12 580 cm−1 and
a comb bandwidth ω = (11 580 cm−1,13 580 cm−1) in Fig. 8.
The inset shows an illustration of the frequency comb used.
The range was randomly sampled for 2000 pulses (dashed-red
line) and 3500 pulses (solid-blue line). S(3)

t1112(ωs) is in arbitrary
units with the dipole moments set to 1. The transmission
spectrum in Fig. 8(a) is dominated by the ωs = ωe1g1 peak.
The ωs = �+

e1g1
peak has a width of 4000 η cm−1 and overlaps

the ωs = ωe1g1 peak. The ωs = �+
f1g1

peak has a width
of 2000η cm−1. Comparing the 2000 sampled to the 3500
sampled, the features from the 2000 pulses resemble the 3500.
The boxed region is replotted in Fig. 8(b) on a smaller regime.
The ωs = �+

g2g1
has a width of 2000 cm−1. There is a feature

near ωs = −10 000η cm−1 that corresponds to the ωs = �+
e1g1

peak.
The transmission signal for two values of ωc are shown

in Fig. 9. For ωc < ωe1g1 in Fig. 9(a), the spectrum is
mostly composed of the single-photon peak, which shows
both emission and absorption features. For ωc > ωe1g1 , in
Fig. 9(b), the single-photon peak becomes an emission

peak and all peaks dependent upon comb line number are
suppressed. There are three peaks, ωs = ωe1g1 , �+

g2g1
, �+

e1g1

that overlap. The spectrum near ωs = ηωe1g1 is replotted in
Fig. 9(c), showing that the single-photon resonance has width
according to the dephasing rate. The peak at �+

f1g1
, is plotted

in Fig. 9(d).

VII. TIME-RESOLVED TRANSMISSION SPECTRA
WITH SHAPED SPECTRAL PHASE

The future developments in spectroscopy using the fre-
quency comb include shaping the individual pulses in the
pulse train. This method requires a pulse shaper to have
a spectral resolution that matches the spacing of the comb
lines of the input pulse train. This was demonstrated recently
[24,26,38–40]. Currently, this method is limited to small
frequency combs, say 100 comb lines. The generation of pulse
shaping in dual comb Fourier transform spectroscopy was
recently demonstrated for triangular shaped pulses [25]. The
two frequency combs contained four identically shaped pulses
with slightly different repetition rates. Here, we consider the
pulse shaping of a frequency comb with 25 000 pulses using a
sinusoidal spectral phase function. This was demonstrated in
Doppler free spectroscopy [6] with a repetition frequency of
180 MHz (0.06 cm−1).

The spectrum with two interactions with comb 1 S
(3)
t1122(ω)

contains the peaks ωs = ±ηωg2g1 and ωs = ±ηωf1g1 that are
independent of the comb line numbers. We are interested
in controlling these resonances by means of employing an
oscillating phase onto the pulse envelope

Ẽ1(ω) = E1(ω)eiφ(ω), Ẽ2(ω) = E2(ω)eiφ(ω), (35)

where E1(ω) and E2(ω) represent the real part, which is a
Gaussian, Eq. (20). The sinusoidal spectral phase reads

φ(ω) = α sin(βω + �), (36)
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(a)

(b)

(c)

FIG. 10. (Color online) (a) The resonant time-resolved transmis-
sion signal Eq. (A3) without a sinusoidal phase. The resonant
transmission signal Eq. (A3) using Eq. (35), with an oscillating phase
Eq. (36), for β = 0.25, α = 1.2, and two different values of the �;
(a) � = π/2; (b) � = 0. The inset in (a) shows the frequency comb
used.

where α is the modulation depth, β is inverse modulation
frequency, and � is the modulation phase. A cosine spectral
phase occurs when � = π/2. Adding an oscillating phase
alters the temporal profile, breaking each pulse into a train
of subpulses.

In Fig. 10(a), we show the time-resolved transmission spec-
trum, without an oscillating phase, for ωc = 36 000 cm−1 and
bandwidth ω = (35 000 cm−1,37 000 cm−1). See the inset. For
an even spectral phase Fig. 10(b), � = π/2, both the Raman
and TPA peaks are present. However, for an odd spectral phase
Fig. 10(c), � = 0, only the Raman peak is present.

The suppression of the Raman peak can be done by selection
of the modulation frequency β. In Fig. 11(a), for an even phase
function, the Raman peak in the spectrum is minimized while
the TPA peak is enhanced. The minimization of the Raman
peak is not do to a minimum in the oscillating spectral phase
function. This is verified in Fig. 11(b), where we plot the
transmission spectrum with an odd phase function � = 0. The
inset, which is a plot of Figs. 11(c) and 11(d), demonstrates
that the cosine and sine spectral phase functions are out of
phase.

VIII. SUMMARY

We have shown that dual comb spectroscopy can be
described as the time-resolved transmission signal of single

(a)

(b)

FIG. 11. (Color online) The resonant time-resolved transmission
signal Eq. (A3) for β = 0.5, α = 1.2, and two different values of the
� in Eq. (36). (a) � = π/2; (b) � = 0. The inset in (a) shows the
frequency comb used.

shaped pulse. The selection of the combination of the comb
line numbers in the frequency comb leads to Raman, TPA, and
single-photon resonances in the radio-frequency regime.

For a single broadband pulse, the single-photon peaks were
shifted by ωc. The TPA were shifted by 2ωc and the Raman
peaks are not shifted. For the dual comb, there are several
peaks in the spectrum. The time-resolved transmission signal
proportional to Ẽ2

1 Ẽ2
2 gives single-photon peaks shifted by ηωc.

The TPA and Raman resonances have several peaks in the
spectrum. First, the peaks that are not shifted by ηωc and have
a width equal to the dephasing rate. Second, the peaks that
are shifted by 2ηωc with a width proportional to the width
of the frequency comb. It is the selection of the comb lines
which allows some of the TPA and Raman resonances to not
be shifted by ηωc.

The Ẽ3
1 Ẽ2 time-resolved transmission signal gives TPA and

Raman resonances shifted by ηωc. There are two types of
single-photon resonances: peaks that have a width dependent
upon the width of the frequency comb and peaks with line-
widths according to the dephasing rate.

For a frequency comb, with several hundred thousand comb
lines, the time-resolved transmission spectra will be composed
of the TPA and Raman or single-photon resonances, which are
not shifted by ηωc. For a small frequency comb, with one or
two comb lines, the spectra will be composed mostly of the
peaks which are shifted by ηωc.
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APPENDIX A: TIME-RESOLVED TRANSMISSION SIGNAL Ẽ2
1 Ẽ2

2

Using Eq. (19) and the corresponding δ functions in Eq. (25), the transmission signal Eq. (8) can be cast into the following
form:

S
(3)
t1122(ωs ; ωrep,1,ωrep,2,	t) = −I 2

�
ω2

rep,1ω
2
rep,2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3

× [Ẽ∗
1 (ω1 + ω2 − ω3 − ωs ; nωrep,1)Ẽ2(ω2; mωrep,2)Ẽ∗

2 (ω3; pωrep,2)Ẽ1(ω1; rωrep,1)δ(n − r − m + p)

× ei(ω2−ω3)	t + Ẽ∗
2 (ω1 + ω2 − ω3 − ωs ; mωrep,2)Ẽ1(ω2; nωrep,1)Ẽ∗

1 (ω3; rωrep,1)Ẽ2(ω1; pωrep,2)

× δ(−n + r + m − p)e−i(ω2−ω3−ωs )	t ][χ (3)(−ω1 − ω2 + ω3; ω1,ω2,ω3)

+ χ (3)(−ω1 − ω2 + ω3; ω2,ω1,ω3)] + [Ẽ∗
1 (ω1 + ω2 − ω3 − ωs ; nωrep,1)Ẽ2(ω2; mωrep,2)

× Ẽ∗
1 (ω3; rωrep,1)Ẽ2(ω1; pωrep,2)δ(n + r − m − p)ei(ω2+ω1)	t + Ẽ∗

2 (ω1 + ω2 − ω3 − ωs ; mωrep,2)

× Ẽ1(ω2; nωrep,1)Ẽ∗
2 (ω3; pωrep,2)Ẽ1(ω1; rωrep,1)δ(−n − r + m + p)e−i(ω1+ω2−ωs )	t ]

× χ (3)(−ω1 − ω2 + ω3; ω1,ω2,ω3). (A1)

We used the fact that the signal is invariant to the exchange of ω1 and ω2 in the expressions for the fields Ẽ2(ω2)Ẽ1(ω1). The
integrations over ω1, ω2 and ω3 in Eq. (A1) can be done with the help of the δ function in the fields Eq. (19), giving

S
(3)
t1122(ωs ; ωrep,1,ωrep,2,	t)

= −I 2

�
{E∗(nωrep,1 − ωc)Ẽ(mωrep,2 − ωc)Ẽ∗(pωrep,2 − ωc)Ẽ(rωrep,1 − ωc)

× δ(n − r − m + p)δ[(m − p)ωrep,2 + (r − n)ωrep,1 − ωs]e
−i(p−m)ωrep,2	t

× [χ (3)(−rωrep,1 − (m − p)ωrep,2; rωrep,1,mωrep,2,pωrep,2)

+ χ (3)(−rωrep,1 − (m − p)ωrep,2; mωrep,2,rωrep,1,pωrep,2)] + E∗
2 (mωrep,2 − ωc)

× Ẽ1(nωrep,1 − ωc)Ẽ∗
1 (rωrep,1 − ωc)Ẽ2(pωrep,2 − ωc)δ(−n + r + m − p)

× δ[(n − r)ωrep,1 − (m − p)ωrep,2 − ωs]e
−i[(n−r)ωrep,1−ωs ]	t }

× [χ (3)(−pωrep,2 − (n − r)ωrep,1; pωrep,2,nωrep,1,rωrep,1)

+ χ (3)(−pωrep,2 − (n − r)ωrep,1; nωrep,1,pωrep,2,rωrep,1)] + E∗
1 (nωrep,1 − ωc)Ẽ2(mωrep,2 − ωc)

× Ẽ∗
1 (rωrep,1 − ωc)Ẽ2(pωrep,2 − ωc)δ(n + r − m − p)δ[(m + p)pωrep,2 − (r + n)ωrep,1 − ωs]

× ei(m+p)ωrep,2	tχ (3)( − (p + m)ωrep,2 + rωrep,1; pωrep,2,mωrep,2,rωrep,1)

+ E∗
2 (mωrep,2 − ωc)Ẽ1(nωrep,1 − ωc)Ẽ∗

2 (pωrep,2 − ωc)Ẽ1(rωrep,1 − ωc)δ(−n − r + m + p)

× δ[(n + r)ωrep,1 − (m + p)ωrep,2 − ωs]e
−i[(n+r)ωrep,1−ωs ]	t

× χ (3)( − (r + n)ωrep,1 + pωrep,2; rωrep,1,nωrep,1,pωrep,2). (A2)

The last two δ functions can be used to eliminate two summations, giving

S
(3)
t1122(ωs ; 	t,δωrep,ωrep,1) =

N∑
n,m

S
(3)
t1122

(
ωs ; 	t,δωrep,ωrep,1,n,m,

mδωrep − ωs

ωrep,1
,
nδωrep − ωs

ωrep,1

)
, (A3)

where S
(3)
t1122(ωs) is given as

S
(3)
t1122(ωs ; ωrep,1,ωrep,2,	t,n,m,p,r)

= −I 2

�
[E∗(nωrep,1 − ωc)Ẽ(mωrep,2 − ωc)Ẽ∗(pωrep,2 − ωc)

× Ẽ(rωrep,1 − ωc)e−i(p−m)ωrep,2	t [χ (3)( − rωrep,1 − (m − p)ωrep,2; rωrep,1,mωrep,2,pωrep,2)

+ χ (3)( − rωrep,1 − (m − p)ωrep,2; mωrep,2,rωrep,1,pωrep,2)]

+ E∗(−mωrep,2 − ωc)Ẽ(−nωrep,1 − ωc)Ẽ∗(−rωrep,1 − ωc)Ẽ(−pωrep,2 − ωc)

× e−i[(−n+r)ωrep,1−ωs ]	t [χ (3)(pωrep,2 + (n − r)ωrep,1; −pωrep,2, − nωrep,1, − rωrep,1)

+ χ (3)(pωrep,2 + (n − r)ωrep,1; −nωrep,1, − pωrep,2, − rωrep,1)]
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+ E∗(nωrep,1 − ωc)Ẽ(mωrep,2 − ωc)Ẽ∗(−rωrep,1 − ωc)Ẽ(−pωrep,2 − ωc)ei(m−p)ωrep,2	t

× χ (3)((p − m)ωrep,2 + rωrep,1; −pωrep,2,mωrep,2,rωrep,1) + E∗(−mωrep,2 − ωc)Ẽ(−nωrep,1 − ωc)

× Ẽ∗(pωrep,2 − ωc)Ẽ(rωrep,1 − ωc)e−i[−(n−r)ωrep,1−ωs ]	t

× χ (3)((−r + n)ωrep,1 + pωrep,2; rωrep,1,−nωrep,1,pωrep,2). (A4)

APPENDIX B: TIME-RESOLVED TRANSMISSION SIGNAL Ẽ3
1 Ẽ2

Inserting Eqs. (19) and (25) into the transmission signal Eq. (8), yields

S
(3)
t1112(ωs ; ωrep,1,ωrep,2,	t)

= −I 2

�
ω3

rep,1ωrep,2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

∫ ∞

−∞
dω3

× [Ẽ∗
1 (ω1 + ω2 − ω3 − ωs ; mωrep,1)Ẽ2(ω2; pωrep,2)Ẽ∗

1 (ω3; rωrep,1)Ẽ1(ω1; nωrep,1)

× δ(−n + r + m − p)e−i(ω2−ω3−ωs )	t + Ẽ∗
1 (ω1 + ω2 − ω3 − ωs ; nωrep,1)Ẽ1(ω2; mωrep,1)

× Ẽ∗
2 (ω3; pωrep,2)Ẽ1(ω1; rωrep,1)δ(n − r − m + p)ei(ω2+ω1)	t + Ẽ∗

1 (ω1 + ω2 − ω3 − ωs ; mωrep,1)

× Ẽ1(ω2; nωrep,1)Ẽ∗
1 (ω3; rωrep,1)Ẽ2(ω1; pωrep,2)δ(−n + r + m − p)e−i(ω1+ω2−ωs )	t ]

× χ (3)(−ω1 − ω2 + ω3; ω1,ω2,ω3). (B1)

We used the fact that the signal is invariant to the exchange of ω1 and ω2 in the expressions for the fields Ẽ2(ω2)Ẽ1(ω1). Using
the δ functions in the expressions for the fields Eq. (19), the integrations over ω1, ω2, and ω3 in Eq. (B1) are completed, giving

S
(3)
t1112(ωs ; ωrep,1,ωrep,2,	t,n,m,p,r)

= −I 2

�
ω3

rep,1ωrep,2[Ẽ∗
1 (mωrep,1 − ωc)Ẽ2(pωrep,2 − ωc)Ẽ∗

1 (rωrep,1 − ωc)Ẽ1(nωrep,1 − ωc)δ(−n + r + m − p)

× δ(−pωrep,1 + pωrep,2 − ωs)e
−i(pωrep,2−rωrep,1−ωs )	t

× χ (3)((r − n)ωrep,1 − pωrep,2; nωrep,1,pωrep,2,rωrep,1) + Ẽ∗
1 (nωrep,1 − ωc)

× Ẽ1(mωrep,1 − ωc)Ẽ∗
2 (pωrep,2 − ωc)Ẽ1(rωrep,1 − ωc)δ(n − r − m + p)

× δ(pωrep,1 − pωrep,2 − ωs)e
i(mωrep,1+rωrep,1)	tχ (3)( − (r + m)ωrep,1 + pωrep,2; rωrep,1,mωrep,1,pωrep,2)

+ Ẽ∗
1 (mωrep,1 − ωc)Ẽ1(nωrep,1 − ωc)Ẽ∗

1 (rωrep,1 − ωc)Ẽ2(pωrep,2 − ωc)δ(−n + r + m − p)

× δ(−pωrep,1 + pωrep,2 − ωs)e
−i(pωrep,2+nωrep,1−ωs )	t

× χ (3)( − pωrep,2 − (n − r)ωrep,1; pωrep,2,nωrep,1,rωrep,1)]. (B2)

The last two δ functions can be used to eliminate two of the summations, giving

S
(3)
t1112(ωs ; 	t,δωrep,ωrep,1) =

N∑
n,m

S
(3)
t

(
ωs ; 	t,δωrep,ωrep,1,n,m,

−ωs

δωrep
,
(n − m)δωrep − ωs

δωrep

)
, (B3)

where S
(3)
t1112(ωs) is given as

S
(3)
t1112(ωs ; ωrep,1,ωrep,2,	t,n,m,p,r)

= −I 2

�
ω3

rep,1ωrep,2[Ẽ∗
1 (mωrep,1 − ωc)Ẽ2(pωrep,2 − ωc)Ẽ∗

1 (rωrep,1 − ωc)Ẽ1(nωrep,1 − ωc)e−i(pωrep,2−rωrep,1−ωs )	t

× χ (3)((r − n)ωrep,1 − pωrep,2; nωrep,1,pωrep,2,rωrep,1) + Ẽ∗
1 (nωrep,1 − ωc)Ẽ1(mωrep,1 − ωc)

× Ẽ∗
2 (−pωrep,2 − ωc)Ẽ1(rωrep,1 − ωc)ei(mωrep,1+rωrep,1)	t

× χ (3)( − (r + m) − pωrep,2; rωrep,1,mωrep,1,−pωrep,2) + Ẽ∗
1 (mωrep,1 − ωc)Ẽ1(nωrep,1 − ωc)

× Ẽ∗
1 (rωrep,1 − ωc)Ẽ2(pωrep,2 − ωc)e−i(pωrep,2+nωrep,1−ωs )	t

× χ (3)(−pωrep,2 − (n − r)ωrep,1; pωrep,2,nωrep,1,rωrep,1)]. (B4)
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