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Time-resolved broadband Raman spectroscopies: A unified
six-wave-mixing representation
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Excited-state vibrational dynamics in molecules can be studied by an electronically off-resonant
Raman process induced by a probe pulse with variable delay with respect to an actinic pulse. We
establish the connection between several variants of the technique that involve either spontaneous
or stimulated Raman detection and different pulse configurations. By using loop diagrams in the
frequency domain, we show that all signals can be described as six wave mixing which depend
on the same four point molecular correlation functions involving two transition dipoles and two
polarizabilities and accompanied by a different gating. Simulations for the stochastic two-state-jump
model illustrate the origin of the absorptive and dispersive features observed experimentally. © 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821228]

I. INTRODUCTION

Numerous types of time and frequency resolved Raman
techniques have been developed towards monitoring ex-
cited and ground state vibrational dynamics in molecules.1–8

Multidimensional Raman techniques9–11 employ a series of
Raman processes to measure correlations between several
coherence periods. Here, we consider a different class of
techniques that start with a preparation (actinic) pulse Ep

which brings the molecule into an excited electronic state and
launches a vibrational dynamical response. After a variable
time delay, a Raman process involving a pump E2 and a probe
E3 generates the vibrational spectra. We compare four Raman
techniques: homodyne-detected Frequency-Resolved Spon-
taneous Raman Signal (FR-SPRS),12–14 heterodyne-detected
Time-Resolved Impulsive Stimulated Raman Signal (TR-
ISRS),15, 16 Transient Grating Impulsive Stimulated Raman
Signal (TG-ISRS),17–20 and Femtosecond Stimulated Raman
Signal (FSRS).6, 8, 21–24 All provide 2D signals when displayed
vs one time delay variable and a second frequency variable
that reveals the Raman resonances. The factors that control
the temporal and spectral resolutions are discussed.

For simplicity, we assume that the Raman process is
electronically off-resonant. The effective interaction radia-
tion/matter Hamiltonian then reads

H ′(t) = α
∑
i,j

E†
i (t)Ej (t) + V E†

p(t) + H.c., (1)

where V is the lowering (exciton annihilation) part of the
dipole coupling with the actinic pulse and α is the excited
state polarizability that couples parametrically pump and/or
the probe Raman pulses. The sum over i and j represents the
Raman process that excites the system with pulse Ej and deex-
cites it with E†

i . We use complex pulse amplitudes. The elec-
tronically off-resonant Raman process induced by pulses i and
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j is instantaneous and represented by α since by Heisenberg
uncertainty the system can only spend a very short time in the
intermediate state.

The various configurations of excitation and deexcitation
pulses for different Raman techniques will be specified below.
All signals can be defined as a change of the energy of the
electromagnetic field

S =
∫ ∞

−∞
dt

d

dt
〈a†

i (t)ai(t)〉 = I 2

¯

∫ ∞

−∞
dt〈E†

i (t)Ej (t)α(t)〉,
(2)

where ai(a
†
i ) is annihilation (creation) operator for the field

Ei and the last equality follows from the Heisenberg equation
of motion with Hamiltonian Eq. (C2). All considered tech-
niques are related to the nonlinear susceptibility χ (5). How-
ever, we do not use the semiclassical χ (5) approach but rather
calculate the signal directly using a unified quantum field de-
scription starting with Eq. (2). This is more direct and allows
to treat stimulated and spontaneous Raman processes in the
same fashion. Our picture uses a compact intuitive diagram-
matic representation which views all techniques as sums over
paths in the joint matter/field space involving six field mat-
ter modes and four-point material correlation functions. We
show that all signals can be described in the frequency do-
main as a six wave mixing process with the same molecular
correlation function but convoluted with different detection
windows. The role of pulse shaping can be readily discussed.

As we show in the following, all four signals depend on
two quantities that carry all the relevant information about the
matter

Fi(t1, t2, t3) = 〈V G†(t1)αG†(t2)αG(t3)V †〉, (3)

Fii(t1, t2, t3) = 〈V G†(t1)αG(t2)αG(t3)V †〉, (4)

where G(t) = (−i/¯)θ (t)e−iH/¯t is the retarded Green’s func-
tion that represents forward time evolution with the free-
molecule Hamiltonian H. G† represents backward evolution.
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Fi involves one forward and two backward evolution period of
a vibrational wave packet. Fii contains two forward followed
by one backward propagations.

Alternatively, one can express the matter correlation
functions Eqs. (3) and (4) in the frequency domain

Fi(ω1, ω2, ω3) = 〈V G†(ω1)αG†(ω2)αG(ω3)V †〉, (5)

Fii(ω1, ω2, ω3) = 〈V G†(ω1)αG(ω2)αG(ω3)V †〉, (6)

where G(ω) = h−1/[ω + ωg − H/¯ + iε] and ¯ωg is the
ground state energy. Equations (3) and (4) are convenient for
microscopic wave packet simulations.25 Equations (5) and (6)
will be used in the six-wave-mixing frequency-domain repre-
sentation of the signals.

The paper is organized as follows. In Sec. II, we present
the frequency-domain expression for the homodyne-detected
FR-SPRS signal and calculate it for semiclassical bath dy-
namics, FSRS is discussed in Sec. III, TG-ISRS and TR-ISRS
in Sec. IV. These Raman signals are compared in Sec. V for
the stochastic two-state-jump (TSJ) model of line broadening.
We then conclude in Sec. VI.

II. THE FREQUENCY-RESOLVED SPONTANEOUS
RAMAN SIGNAL

The spontaneous Raman signal is commonly measured
using homodyne detection. In the FR-SPRS signal (Fig. 1),
first, the actinic pulse Ep launches the excited state dynam-
ics. After a delay period T, off-resonant excitation by the
pump E2 is followed by a spontaneous emission of the Ra-
man shifted photon. Most generally, this photon may be de-
tected by a time-and-frequency gated detector according to
Eq. (A6) and the signal is given by an overlap between de-
tector and bare signal Wigner spectrograms. This time-and-
frequency resolved detection is discussed in Appendixes A
and B and the relevant set of diagrams is shown in Fig. 7. For
a more direct comparison with the stimulated Raman tech-
niques, we shall consider here the simpler frequency-gating.
One can then eliminate two interactions with the detector and

use the definition of the signal for a single mode of the radia-
tion field Eq. (2). The relevant diagrams are shown in Fig. 1.
Note that in diagram (i) the last interaction occurs with the
ket, whereas in diagram (ii) it is with the bra.

The diagram rules26 allow to write the expressions di-
rectly from the diagrams without loss of generality. To illus-
trate how this works let us examine diagram (i) (Fig. 1(b)). It
can be understood using a forward and backward time evolv-
ing vibronic wave packet. First, the actinic pulse Ep(ω′

1) elec-
tronically excites the molecule via V † to state |a〉. The wave-
function then propagates forward in time from τ 1 to t′. Then
the off-resonant pump pulse E2(ω′

2) excites and instantaneous
spontaneously emitted photon E†

s (ω) deexcites the electronic
transition to a different vibrational level |c〉 via α which then
propagates backward in time from t′ to t′ − τ . The sponta-
neous photon Es(ω) deexcites and pump pulse E∗

2 (ω2) excites
the electronic transition from state 〈c| to 〈a′| via α and the
wavefunction propagates backward in time from t′ − τ to
τ 5. The final deexcitation by pulse E∗

p(ω1) returns the sys-
tem to its initial state by acting with V . Diagram (ii) can
be interpreted similarly. The diagram rules imply that the
sum of the six frequencies of the various fields must be zero
ω′

1 + ω′
2 − ω + ω − ω2 − ω1 = 0. This reflects time transla-

tional invariance. For an ideal frequency-resolved detection
Ff (ω, ω̄) = δ(ω − ω̄), and Eqs. (B6) and (B7) yield

SFR−SPRS(ω̄, T )

= − i¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π

× D2(ω̄)E∗
2 (ω2)E2(ω1 − ω′

1 + ω2)E∗
p(ω1)Ep(ω′

1)ei(ω1−ω′
1)T

× [Fi(ω1, ω1 + ω2 − ω̄, ω′
1) − Fii(ω1, ω1 + ω2 − ω̄, ω′

1)],
(7)

where D(ω) = ω3/2π2c3 is the density of states for sponta-
neous modes. D(ω) has taken the place of the probe pulse in
the stimulated techniques. Equation (7) can be alternatively
recast in time domain. This is done in Appendix B.
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FIG. 1. Schematic layout – (a) and loop diagrams – (b) for the FR-SPRS signal. Time translational invariance yields in this case ω′
1 + ω′

2 − ω + ω − ω2 − ω1
= 0. Note that in contrast with the stimulated techniques where the last interaction is with the bra, here the last interaction may be either with the bra
– (i) τ > 0 or with the ket – (ii) τ < 0.
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A simplified physical picture is obtained by a semiclas-
sical treatment of the bath. Expanding the matter correlation
function in system eigenstates (see Fig. 1(b)), the Green’s
function for the initially prepared excited state is Ga(t1, t2)
= (−i/¯)θ (t1 − t2)e−(iωa+γa )(t1−t2) and for the final Raman-

shifted excited vibrational state25, 27 we have G
†
c(t, τ3)

= (−i/¯)θ (t − τ3)eiωa (t−τ3) exp−[ i
¯

∫ t

τ3
dτωac(τ )], where

ωac(τ ) is the vibrational frequency evolving with clas-
sical trajectories. Assuming an impulsive actinic pulse
Ep(t) � Epδ(t), we obtain

SFR−SPRS(ω, T ) = RD2(ω)

¯2
|Ep|2

∑
a,c

|μag|2α2
ac

∫ ∞

−∞

dω2

2π

d�

2π
E∗

2 (ω2)E2(ω2 + �)ei�T

×
∫ ∞

−∞
dt

∫ t

−∞
dτe−γa (t+τ )ei(ω−ω2)(t−τ )−i�τ exp

[
−i

∫ t

τ

ωac(τ )dτ

]
, (8)

where R denotes the real part and � = ω1 − ω′
1 defines the

spectral bandwidth of the pump pulse which translates into
the spectral bandwidth of the relevant matter degrees of free-
dom. We have chosen to consider the entire process includ-
ing the actinic pulse as a single six wave mixing event. If the
actinic pulse is short enough to impulsively trigger bath dy-
namics but long compare to the vibrational periods so that
it does not have the bandwidth to create coherences ρaa′ in
the relevant modes, we can exclude it from the description of
the optical process. The process can then be viewed as a four
wave mixing from a non-stationary state created by the actinic
pump. This is a simpler, widely used picture but it only holds
in a limit parameter regime. If no dynamics is initiated and
the state ρaa is stationary, then the pulsed experiment can be
viewed as many stationary Raman experiments done in par-
allel. The pulse duration becomes immaterial. Note, that the
above argument holds for both spontaneous and stimulated
signals.

For each pair of vibrational states a and c, the signal
(8) can be further recast as a modulus square of a transition
amplitude

SFR−SPRS(ω, T ) =
∑
a,c

|Tca(ω, T )|2, (9)

where

Tca(ω, T ) = D(ω)

¯
μ∗

agαacEp

∫ ∞

−∞
dt

dω2

2π
E2(ω2)

× e[i(ω−ω2)−γa ]t+iω2T exp

[
i

∫ t

0
ωac(τ )dτ

]
.

(10)

As a consequence, in the limit of ideal frequency gating, the
detection modes enter as frequency independent functions.
Equations (9) and (10) follow straightforwardly from more
general expressions Eqs. (A10) and (A11). They show that
the FR-SPRS signal is always positive and consists of purely
absorptive peaks.

III. THE FEMTOSECOND STIMULATED RAMAN
SIGNAL

The stimulated signals are read off the diagrams given in
Fig. 2 as we did for FR-SPRS, a detailed derivation is given in
Appendix C, again starting with Eq. (2). Following the actinic
pulse p, after a delay T, pulse 2 and the probe 3 induce the
Raman process. The signal is given by frequency dispersed
probe transmission E3(ω). Diagram (i) for FSRS can be
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E3(ω + Δ)

E∗
2 (ω2)

E∗
p (ω1)Ep(ω1) E∗

p (ω1)Ep(ω1)

|c c|

|g

|a a|

g| |g

|a a|

g|

|a a|

|c

FIG. 2. Schematic layout – (a) and loop diagrams – (b) for the FSRS signal. Time translational invariance yields ω′
1 + ω2 − ω + (ω + �) − ω2 − ω1 = 0.
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described similar to FR-SPRS by replacing the spontaneously
generated field Es by a broadband probe pulse E3. Diagram (ii)
on the other hand is different. Following the initial electronic
excitation by actinic pulse Ep(ω′

1), the wavefunction |a′〉 prop-
agates forward in time from τ 5 to τ 3. At this point, a Raman
process involving the pump E∗

2 (ω2) and the probe E3(ω + �)
promotes it to the vibrational state |c〉 and the wavefunction

propagates forward in time from τ 3 to t. After Raman deexci-
tation governed by E2(ω2)E∗

3 (ω), it then propagates backward
from t to τ 1 in 〈a| where an electronic excitation via the ac-
tinic pulse E∗

p(ω1) brings the system back in its initial ground
state. Assuming that pulse 2 has a narrow bandwidth we set
E2(t − T ) = E2e

−iω2(t−T ) and the FSRS signal for the Raman
shift 
 = ω − ω2 then reads25

SFSRS(
, T ) = I 4π

¯

∫ ∞

−∞

d�

2π

dω1

2π

dω′
1

2π
δ(ω1 − ω′

1 − �)E∗
3 (
 + ω2)E3(
 + ω2 + �)|E2|2E∗

p(ω1)Ep(ω′
1)ei�T

×[Fi(ω1, ω
′
1 − 
,ω′

1) + Fii(ω1, ω1 + 
,ω′
1)], (11)

where I denotes the imaginary part. In Appendix D, we recast Eq. (11) in the time domain. In contrast to FR-SPRS where
the gating enters as a modulus square of an amplitude, in FSRS the symmetry between both loop branches is broken and FSRS
cannot be recast as an amplitude square. While the narrowband picosecond component corresponds to E2 and enters as amplitude
square, the femtosecond probe field E3 enters as E3(ω)E3(ω + �). Time translational invariance implies ω′

1 + ω2 − ω + (ω
+ �) − ω2 − ω1 = 0.

Using a semiclassical description of the bath, the signal (11) reads

SFSRS(ω − ω2, T ) = − I 4

¯4
|Ep|2|E2|2

∑
a,c

|μag|2α2
ac

∫ ∞

−∞

d�

2π
E∗

3 (ω)E3(ω + �)ei�T

×
∫ ∞

−∞
dt

∫ t

−∞
dτ3e

−γa (t+τ3)+i(ω−ω2)(t−τ3)−i�τ3 sin

[∫ t

τ3

ωac(τ )dτ

]
. (12)

Here, a path integral over the stochastic vibrational fre-
quency ωac(t) determines the matter contribution to the signal.

IV. HETERODYNE-DETECTED TRANSIENT-GRATING
AND TIME-RESOLVED IMPULSIVE RAMAN SIGNALS

In the TG-ISRS technique, two coincident short pulses
with wave vectors k1 and k2 interact with the system af-
ter a delay T1 with respect to the actinic pulse and form an
interference pattern with wave vector k1 − k2. After a sec-
ond delay period T2, a third beam with wave vector k3 is
scattered off the grating to generate a signal with wave vec-
tor ks = k1 − k2 + k3, which can be recorded in amplitude
and phase by heterodyne detection. Traditionally, TG-ISRS
signals have been measured using homodyne detection of
the intensity. In the heterodyne-detected TR-ISRS signals,
the field is mixed with the transmitted probe field. Homo-
dyne detection suffers from various artifacts including the
artificial enhancement of the modulation decay and broad-
ening of the bandwidths in the Fourier spectra. These lim-

itations are usually corrected by the introduction of an ex-
ternal local oscillator,28, 29 which can be generated in situ
by additional molecules in the same solution. Since such a
molecular local oscillator contains some dynamics, the re-
sponse of a combined system is not the same as from a pure
optical local oscillator. The heterodyne-detected TG signals
have been recently introduced to correct some of the arti-
facts of the homodyne detection.16 In the following, we com-

pare both TG-ISRS and TR-ISRS signals using heterodyne
detection.

By Fourier transforming the signal with respect to T2, we
obtain the vibrational spectra for different values of the first
delay T1. The two loop diagrams are shown in Fig. 3 and the
TG-ISRS is given by

ST G−ISRS(
, T1) = IS̃T G−ISRS(
, T1)

×
∫ ∞

−∞

dω′

2π
E∗

s (ω′)E3(ω′ − 
), (13)

where 
 is the frequency conjugated to T2 and

S̃T G−ISRS(
, T1) = 2

¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π
E∗

p(ω1)Ep(ω′
1)E∗

2 (ω2)E1(ω1 − ω′
1 + ω2 + 
)ei(ω1−ω′

1)T1

×[Fi(ω1, ω
′
1 − 
,ω′

1) + Fii(ω1, ω1 + 
,ω′
1)]. (14)
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FIG. 3. Schematic layout – (a) and loop diagrams – (b) for the TG-ISRS signal. Time translational invariance yields ω′
1 + (ω′ + 
) − ω′ + ω′

2 − ω2 − ω1 = 0.

Again, the same correlation functions Fi and Fii as in FR-
SPRS and FSRS fully determine the matter response. De-
spite the fact that Eq. (14) closely resembles Eq. (11) the
difference in detection can become crucial. In contrast to
FSRS that records the frequency dispersed transmission of
the probe pulse E3, in TG-ISRS the signal is measured in
the time domain vs two delays T1, T2. T1 controls the time
resolution, whereas T2 governs the spectral resolution. Fur-
thermore, the narrowband pump E2 in FSRS enters as a mod-
ulus square |E2|2, whereas broadband fields E1 and E2 enter
as E∗

2 (ω2)E1(ω1 − ω′
1 + ω2 + 
). Instead of a single probe E3

in FSRS, a probe pulse E3 is scattered off the grating and

gives rise to a field Es . Therefore, the four fields in TG-ISRS
provide more control parameters for manipulating the signal
compared to FSRS/FR-SPRS.

The TR-ISRS experiment uses collinear pump and probe
and the probe transmission is measured. This signal is a spe-
cial case of the TG-ISRS with a single pump pulse E1 = E2

and Es = E3 is a probe pulse (see Fig. 4)

ST R−ISRS(
, T1) = IS̃T R−ISRS(
, T1)

×
∫ ∞

−∞

dω′

2π
E∗

3 (ω′)E3(ω′ − 
), (15)

where

S̃T R−ISRS(
, T1) = 2

¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π
E∗

p(ω1)Ep(ω′
1)E∗

2 (ω2)E2(ω1 − ω′
1 + ω2 + 
)ei(ω1−ω′

1)T1

×[Fi(ω1, ω
′
1 − 
,ω′

1) + Fii(ω1, ω1 + 
,ω′
1)]. (16)

In Appendix E, we recast Eqs. (14) and (16) in the time
domain.

Even though the TR-ISRS and TG-ISRS techniques are
performed in a very different experimental configurations,

they carry the same information about the matter. TG-ISRS
allows for spatial selection and manipulation of the field en-
velopes and phases, whereas TR-ISRS depends on |E2|2 and is
thus independent on the phase of the pump field. Furthermore,
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FIG. 4. Schematic layout – (a) and loop diagrams – (b) for the TR-ISRS signal. Time translational invariance yields ω′
1 + (ω′ + 
) − ω′ + ω′

2 − ω2 − ω1 = 0.



124113-6 Dorfman, Fingerhut, and Mukamel J. Chem. Phys. 139, 124113 (2013)

if we compare TR-ISRS to the FSRS we note, that the main
difference is that the pump pulse E2 in FSRS is narrowband
and thus enters the signal (11) as |E2|2δ(ω1 − ω′

1 − �) which
is independent of its phase, whereas in the case of TR-ISRS
the broadband pump yields phase dependent contribution to
Eq. (16): E∗

2 (ω2)E2(ω1 − ω′
1 + ω2 + 
).

Treating the bath semiclassically, Eqs. (13)–(16) yield

ST G−ISRS(
, T1)

= − I 4

¯4
|Ep|2

∑
a,c

|μag|2α2
ac

∫ ∞

−∞

dω′

2π
E∗

s (ω′)E3(ω′ − 
)e−i
T1

×
∫ ∞

−∞

dω2

2π

d�

2π
E∗

2 (ω2)E1(ω2 + �)ei�T1

×
∫ ∞

−∞
dt

∫ t

−∞
dτ3e

−γa (t+τ3)+i
t−i�τ3 sin

[∫ t

τ3

ωac(τ )dτ

]
,

(17)

ST R−ISRS(
, T1)

= − I 4

¯4
|Ep|2

∑
a,c

|μag|2α2
ac

∫ ∞

−∞

dω′

2π
E∗

3 (ω′)E3(ω′ − 
)e−i
T1

×
∫ ∞

−∞

dω2

2π

d�

2π
E∗

2 (ω2)E2(ω2 + �)ei�T1

×
∫ ∞

−∞
dt

∫ t

−∞
dτ3e

−γa (t+τ3)+i
t−i�τ3 sin

[∫ t

τ3

ωac(τ )dτ

]
.

(18)

V. COMPARISON OF RAMAN SIGNALS FOR THE
TWO-STATE-JUMP MODEL

The stochastic Liouville equation (SLE)30–34 is a power-
ful tool for the modeling of spectral line shapes. It assumes
that the observed quantum system is coupled to a classical
bath that undergoes stochastic dynamics; the bath affects the
system but the system does not affect the bath. The SLE as-
sumes that the bath dynamics is described by a Markovian
master equation and is given by

dρ

dt
= L̂ρ(t) = − i

¯
[H, ρ(t)] + L̂ρ(t). (19)

The SLE does not account for system/bath entanglement
but provides a very convenient level of modeling for line
shapes.

The TSJ model is the simplest stochastic model for line
shapes. In this model, the bath has two states which we denote
“up” u and “down” d. The system has two vibrational states
a and c with ωac being the vibrational frequency unperturbed
by the bath. The TSJ coupling to the vibrations is introduced
by assuming that the vibrational frequency depends on the
TSJ states: ω+ ≡ ωac + δ for u and ω− ≡ ωac − δ for d.
The total system plus bath density matrix has eight compo-

nents |νν ′s〉 which represent the direct product of four Liou-
ville space states |νν ′〉, ν, ν ′ = a, c and two bath spin states
s = u, d corresponding to “up” and “down” states. The
up (down) jump rates ku(kd) are connected by the detailed-
balance relation ku/kd = exp [(εd − εu)/kBT], where εd − εu is
the energy difference between d and u states and T is the tem-
perature. In the low temperature limit, kBT 	 εu − εd and ku

= 0. The system-bath coupling is determined by the param-
eter δ which represents the shift of the vibrational frequency
when the bath is in the u and d state. Thus, the TSJ model
at low temperature depends on two parameters – jump rate
k ≡ kd and splitting δ. Details of the general TSJ model are
given in Appendix F. The high temperature limit is discussed
in Appendix H.

We now present observables using the low temperature
TSJ model. We first discuss the linear infrared absorption be-
tween the initial vibrational state a and and the final state c
coupled to the spin. Taking the slow modulation limit (SML)
(k 	 δ), the linear absorption (F8) gives a single peak with
central frequency ω = ω+ and width k + γ a where γ a is the
dephasing rate added phenomenologically

S
(SML)
l (ω) = 2

¯2
|E(ω)|2|μac|2 k + γa

(ω − ω+)2 + (k + γa)2
. (20)

In the opposite, fast modulation (FML) – motional narrowing
limit k 
 δ Eq. (F8) gives a peak at ω = ω− with width γ a

S
(FML)
l (ω) = 2

¯2
|E(ω)|2|μac|2 γa

(ω − ω−)2 + γ 2
a

. (21)

We now discuss the Raman signals for this model. The TSJ
model is a special case of the semiclassical expressions given
earlier. It gives simple closed expressions for the Green’s
functions. We first note from Eq. (19), that unlike the signals
Eqs. (7)–(18) that have been written using loop diagrams in
Hilbert space, the TSJ model requires a fully time ordered de-
scription in Liouville space. Each loop diagram in Figs. 1–4
should be split into several ladder diagrams. However, in the
case of an impulsive actinic pulse Ep(t) = Epδ(t), each loop
diagram corresponds to a single ladder diagram and the total
number of diagrams will remain the same. Second, the sig-
nal in Liouville space will be recast using the matter quantity
given by Eq. (G4) where we assume that excitation by the
actinic pulse results in the state u.

Below we present closed expressions for the Raman sig-
nals in the SML. The general expressions for the Raman sig-
nals using TSJ model along with the derivation are given in
Appendix G. We further assume short pulses compared to the
jump rate k−1, dephasing γ −1

a , and delay T: σ j 
 T−1, k, γ a

where σ j is the spectral bandwidth of the pump and probe
pulses j = 2, 3, respectively.

The FR-SPRS signal in the SML is given by

S
(SML)
FR−SPRS(ω, T ) = D2(ω)

¯2
|Ep|2

∑
a,c

α2
ac|μag|2e−2γaT (|E2(ω − ω−)|2[1 − e−kT ] + |E2(ω − ω+)|2e−kT ). (22)
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The FSRS signal for the TSJ model in the SML reads

S
(SML)
FSRS (
, T )

= 1

¯4
|Ep|2|E2|2|E3(
 + ω2)|2

∑
a,c

α2
ac|μag|2

×e−2γaT

(
γa(1 − e−kT )

(
 − ω−)2 + γ 2
a

+ (γa + k)e−kT

(
 − ω+)2 + (γa + k)2

+ k

2δ
e−kT

[

 − ω−

(
 − ω−)2 + γ 2
a

− 
 − ω+
(
 − ω+)2 + (γa + k)2

])

− [ω± ↔ −ω∓], (23)

where 
 = ω − ω2 and the last line corresponds to the signal
above with the exchanged up and down states which accounts
for the anti-Stokes Raman transitions (e.g., Stokes transition

 − ω+ becomes anti-Stokes 
 + ω−, etc.)

The TG-ISRS signal in the SML yields

S
(SML)
T G−ISRS(
, T )

= 1

¯4
|Ep|2

∑
a,c

α2
ac|μag|2

×
∫ ∞

−∞

dω′

2π
Es(ω

′)E3(ω′ − 
)
∫ ∞

−∞

dω2

2π
E2(ω2)E1(ω2 + 
)

× e−2γaT

(
γa(1 − e−kT )

(
 − ω−)2 + γ 2
a

+ (γa + k)e−kT

(
 − ω+)2 + (γa + k)2

+ k

2δ
e−kT

[

 − ω−

(
 − ω−)2 + γ 2
a

− 
 − ω+
(
 − ω+)2 + (γa + k)2

])

− [ω± ↔ −ω∓]. (24)

The TR-ISRS is given by Eq. (24) by simply replacing
Es → E3 and E1 → E2.

Raman signals in the high temperature limit where
ku = kd = k are given in Appendix H.

We have simulated the Raman signals Eqs. (22)–(24).
Short pulses provide high temporal resolution. Depending on
the relation between the field and matter spectral bandwidths,
the pulse duration may be optimized to obtain both high tem-
poral and spectral resolution. We assume square pulses with
corresponding spectral envelope: Ej (ω) = Ej sinc(ω−ωj0

σj
),

j = 2, 3. Fig. 5 depicts the Raman signals for short probe
pulse E3 compared to δ−1 assuming a 5 fs probe pulse E3,
150 fs pump pulse E2 and setting the jump timescale to be
k−1 = 300 fs, the dephasing γ −1

a = 620 fs, and the splitting δ

= 100 cm−1. The left column of Fig. 5 depicts the snapshot
dynamics of the FR-SPRS signal. The FR-SPRS spectra
consist of two broad pulse envelopes centered around ω±
according to Eq. (22). For small delay time T, the dominating
peak is at ω+ corresponding to a u state which exponentially
decays with time. The d state appears as a weak peak which
grows as 1 − e−kT. The FSRS (Eq. (23)) is depicted in
the middle column of Fig. 5. Since the probe pulse E3 is

broadband it does not affect the shape of the spectra. Two
peaks corresponding to jump frequencies 
 ≡ ω − ω2 = ω±
which are visible and highlighted by red dashed lines. De-
pending on the delay between the actinic pulse and the probe
the profile of ω+ is reduced and ω− peak is enhanced. Note,
that the vibrational coherence survives the jump since γ a < k.
At short times, the dominant contribution to the spectra is
coming from the u state 
 = ω+. The linewidth is governed
by a combined width of jump rate and dephasing k + γ a

and is dominated by the jump rate k. However, at long times
the spectra have a single peak corresponding to a d state 


= ω− and its width is governed by a pure vibrational dephas-
ing rate γ a. Thus, the dephasing determines the system dy-
namics at long times. The right column of Fig. 5 shows the
TG-ISRS, using the same pulse envelope for Es(ω) = E3(ω)
and E1(ω) = E2(ω) which effectively makes it indistinguish-
able from the TR-ISRS. Equations (23) and (24) clearly man-
ifest the dispersive line shapes caused by the heterodyne
detection and the broken symmetry between bra- and ket-
branches of the loop. Equation (24) indicates that the TG-
ISRS is very similar to the FSRS spectra if pump pulse E2 is
broader than the splitting δ. Moreover, both signals coincide

T=2 fs

T=10 fs

T=20 fs

T=40 fs

T=80 fs

T=120 fs

T=160 fs

T=200 fs

T=400 fs

T=800 fs

FR-SPRS FSRS TG-ISRS 

-300 -100 100 300 0 -300 -100 100 300 0 
ω − ω20, cm−1 Ω − ωac, cm−1Ω − ωac, cm−1

-300 -100 100 300 0 

FIG. 5. Spontaneous FR-SPRS signal in Eq. (22) – left column, stimulated
Raman signals – FSRS in Eq. (23) – middle and TG-ISRS (for E2 = E1 and
Es = E3 normalized to yield positive absorption peaks) in Eq. (24) – right
for a TSJ model that consists of a single vibrational mode for successive
values of the inter-pulse delay T for 2 fs < T < 800 fs that corresponds to a
jump dynamics. 150 fs pump E2 for the FR-SPRS and TG-ISRS, 10 ps pump
for FSRS with central frequency of the pump ω20, and 5 fs probe E3 are
centered around 800 nm wavelength. Red dashed vertical lines correspond to
±δ. The unperturbed vibrational frequency ωac = 1000 cm−1. The splitting
magnitude δ = 100 cm−1, the inverse jump rate k−1 = 300 fs, the inverse
vibrational dephasing γ −1

a = 620 fs. If the pump pulse E2 in TG technique
is shortened down to 5 fs, TG-ISRS panel coincide with FSRS and FR-SPRS
becomes broad enough to make two peak indistinguishable.
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for a specific configuration of the pulses (see Sec. VI). Dy-
namics in the FML occurs on a very short timescale and the
spectra show a single peak corresponding to the d state (see
Appendix G).

VI. DISCUSSION AND CONCLUSIONS

Equations (7), (11), (14), and (16) show that all four
Raman techniques considered here depend on the same two
material quantities Fi and Fii given in Eqs. (3)–(6). In the
frequency domain, all techniques can be viewed as six wave
mixing with constraints given by the pulse envelopes and
frequency detection. In FSRS, ω is fixed by the detection.
Time translational invariance implies ω1 − ω′

1 = �. There-
fore, the four frequency integrations reduce to two. In FR-
SPRS, ω is fixed by the detection. Translational invariance
ω1 − ω′

1 + ω′
2 − ω2 = 0 reduces the number of integrations

from four to three. Similarly in TG-ISRS and TR-ISRS, time
translational invariance ω′

1 − ω1 + ω′
2 − ω2 + 
 = 0 reduces

the number of integrations from four to three. Electronically
resonant Raman signals can be treated similarly but will re-
quire six point matter correlation functions since the up and
down Raman transitions are no longer simultaneous. In ad-
dition, resonant excitation provides a stronger signal. In this
case, instead of two time variables corresponding to inter-
action times with the Raman probe two more time variable
will enter the expression for the signals. At the same time,
the dephasing of the electronic states is typically very short.
This will keep the essential part of the formalism intact except
for the information about specific electronic state that is ex-
cited resonantly and enters the summation currently hidden in
the polarizability. Nevertheless, our formalism can be easily
extended to six-field matter interactions and the correspond-
ing expressions can be read off the same diagrams shown in
Figs. 1–4. The general six-wave mixing formalism is out-
side of the scope of the present paper and will be published
elsewhere.

It is interesting to note that under certain conditions the
FSRS in Eq. (11), TG-ISRS Eq. (14) with Es = E3 and E1

= E2, and TR-ISRS (16) signals are identical. For exam-
ple, square pulses that have been used in simulations FSRS
contain |E2|2|E3|2sinc2(
+ω2−ω30

σ3
). At the same time, the TG-

ISRS reads |E2|2|E3|2sinc( 

σ2

)sinc( 

σ3

). Thus, all three tech-
niques yield the same signal: SFSRS(
, T) � STG − ISRS(
,
T) � STR − ISRS(
, T) provided that the bandwidth of the
pump and probe pulse in TG-ISRS are same as for the
probe pulse in FSRS σ 2 = σ 3 and narrowband frequency of
the pump in FSRS is equal to the central frequency of the
probe ω2 = ω30.

We now compare the semiclassical expressions in
Eqs. (8), (12), (17), and (18). FSRS looks different from
the other techniques since the signal has only two rather
than three frequency integrations. This is why it has a bet-
ter time resolution; the information of Fi and Fii is less av-
eraged. TR-ISRS and TG-ISRS and more closely related to
TR-SPRS than to FSRS. Another important point is that only
the FR-SPRS signal can be recast as a modulus square of the
transition amplitude. This implies that the spectra consist of

purely absorptive peaks. FSRS, TG-ISRS, and TR-ISRS also
contain dispersive features. The underlying physical reason
is clear. The spontaneous signal is dissipative where at the
end of the process the system is in a population state. Stim-
ulated signals on the other hand contain diagrams that allow
the system to be in a coherence state. The asymmetry between
modes in ISRS signals arises since the signal is defined as a
transmission of one field, whereas the dissipative signal will
require measuring the transmission of all fields.26 In the case
of FSRS, the asymmetry is caused by the frequency dispersed
detection of the probe pulse which occurs only at the ket-; the
bra- interacts with all the frequency components of the probe
field.

We next compare the TSJ model expressions in the low
temperature SML in Eqs. (22), (23), and (24). Note that in FR-
SPRS (Eq. (22)) the spectra consist of two pump envelopes
displaced by 2δ as all the resonant features are contained
within a pump envelope. We next note that FSRS – Eq. (23)
does not contain any integration over the field envelopes. As
shown in Sec. III, this is attributed to the frequency dispersed
detection and using narrowband pump pulse overlapping with
a probe. The resolution is primarily determined by the mat-
ter parameters given by k – jump rate and γ a – vibrational
dephasing. We also note that the FSRS signal contains two
contributions. The first term in the square brackets in Eq. (23)
corresponds to the absorptive line shape centered around the
frequencies ω± dominated by a u state for the short time and
by a d for a long time. The last term represents a dispersive
line shape centered around the frequency ω± which decays
exponentially for both u and d states and is weakened by a fac-
tor of k/2δ. Thus, for a short time the spectra are dominated
by a mixed absorptive plus dispersive peak for u state with
small dispersive line shape corresponding to d state. At long
times, the dispersive features decay exponentially whereas the
spectra contain single absorptive resonance for the d state.
It has been demonstrated experimentally by Kukura5 that at
moderate times the behavior is dominated by dispersive line
shapes whereas it becomes absorptive at very long times. Sim-
ilar to FSRS, TG-ISRS, and TR-ISRS given by Eq. (24) con-
tain both absorptive and dispersive features. Therefore, all the
arguments given for FSRS apply here. Furthermore, we note
that in contrast with FSRS, TG-ISRS contains two frequency
integrals which are not coupled to the Raman resonances 


= ±ω±. In addition, the TG-ISRS has more freedom in tun-
ing the pulses since it involves four pulses vs two pulses
for TR-ISRS. Therefore, the resolution of the TG-ISRS and
TR-ISRS are more strongly affected by the pulse envelopes
than in FSRS.

Similarly, one can analyze the TSJ signals in the high
temperature limit. Equations (H8), (H11), and (H14) show
that the signals are dominated by a dispersive line shape in
the short time and are close to absorptive for the long times.
In contrast to low temperatures, where the population is mi-
grated from the u state at short time to d state at long times
in the high temperature limit, both peaks corresponding for
u and d state are pronounced at long times with equilibrium
population in both u and d states.

The effect of the duration of the pump pulse E2 is
illustrated in Fig. 6. For a long pump pulse compared to the
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FIG. 6. Effect of the pump pulse duration. FR-SPRS in Eq. (G5) – left and
TG-ISRS in Eq. (G13) – right in the SML for various pump pulse duration
σ 2. The rest of the parameters are listed in the caption of Fig. 5.

splitting, the FR-SPRS yields two well separated peaks with
the widths σ 2 corresponding to the pulse bandwidth. For a
shorter pump pulse, the peaks become broadened and finally
one cannot resolve the spectra for short enough pulse. In the
case of TG-ISRS and TR-ISRS, the situation is the opposite,
since the effective line shape is determined by the jump rate
k and dephasing γ a. The pulse envelope results in a back-
ground which may interfere with the spectra for long enough
pulses. However, if the pump pulse becomes shorter than the
splitting the background is uniform and the spectra contains
background-free features.

In summary, we have compared four off-resonant Ra-
man processes for studying excited-state vibrational dynam-
ics: homodyne-detected FR-SPRS and heterodyne-detected
FSRS, TG-ISRS and TR-ISRS. Using the diagram tech-
niques, we showed that all four techniques can be repre-
sented by six field-matter interactions on the loop with the
same matter information detected in a different way. Homo-
dyne detection always yields positive signal with absorptive
features determined by a pump pulse configuration which
yields relatively low time and frequency resolution. Hetero-
dyne detection yields higher temporal and spectral resolution
and contains dispersive features in the spectra. Generally, het-
erodyne detection provides a better control of the resolution.
TG-ISRS and TR-ISRS allow one to manipulate both pump
and probe pulses reducing background of the signal by taking
the pump short enough. In the limit of the ultrashort pump
TG-ISRS/TR-ISRS yield the same resolution as the FSRS
which possesses the highest resolution among all techniques
utilizing overlapping narrowband pump and broadband probe
pulses. The resolution of the techniques was illustrated using
a two-state-jump model.
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APPENDIX A: SPONTANEOUS SIGNALS

The spontaneous photon-counting signal is defined as an
integrated number of photons registered by the detector

S(t̄ , ω̄) =
∫ ∞

−∞
dt

∑
s,s ′

〈
Ê

(tf )†
sR (t̄ , ω̄; rD, t)Ê(tf )

s ′L (t̄ , ω̄; rD, t)
〉
,

(A1)
where the angular brackets denote 〈. . .〉 ≡ Tr[ρ(t) . . .]. The
density operator ρ(t) is defined in the joint field-matter space
of the entire system. Note, that Eq. (A1) represents the observ-
able homodyne-detected signal, and is always positive since it
can be recast as a modulus square of an amplitude Eq. (9). For
clarity, we hereafter omit the position dependence in the fields
assuming that propagation between rG and rD is included in
the spectral gate function Ff. In the case when detection is rep-
resented by a consecutive time gate Ft with central time t̄ and
frequency gate Ff with central frequency ω̄, the corresponding
time-and-frequency resolved electric field reads

E(tf )(t̄ , ω̄; rD, t) =
∫ ∞

−∞
dt ′Ff (t − t ′, ω̄)Ft (t

′, t̄ )Ê(rG, t ′),

(A2)

where the positive frequency part of the electric field operator
is given by

Ê(t, r) =
∑
ks ,μ

(
2π¯ωs




)1/2

ε(μ)(ks)âks
e−iωs t+iks ·r, (A3)

and ε(μ)(k) is the unit electric polarization vector of mode
(ks , μ), μ being the index of polarization, ωs = c|ks |, c
is speed of light, 
 is quantization volume. Similarly, one
can apply the frequency gate first and obtain frequency-
and-time-gated field E(ft). Introducing the detector’s Wigner
spectrogram

WD(t̄ , ω̄; t ′, ω′) =
∫ ∞

−∞

dω

2π
|Ff (ω, ω̄)|2Wt (t̄ ; t

′, ω′ − ω),

(A4)
where

Wt (t̄ ; t
′, ω) =

∫ ∞

−∞
dτF ∗

t (t ′ + τ/2, t̄ )Ft (t
′ − τ/2, t̄ )eiωτ .

(A5)
The detector spectrogram WD is an ordinary function of the
gating time and frequency parameters which are character-
ized by standard deviations of the time and frequency gating
σ T and σω, respectively. The structure of WD guarantees that
these always satisfy the Fourier uncertainty σωσ T ≥ 1. Com-
bining Eqs. (A2)–(A5), we can recast Eq. (A1) in the form

S(t̄ , ω̄) =
∫ ∞

−∞
dt ′

dω′

2π
WD(t̄ , ω̄; t ′, ω′)WB(t ′, ω′). (A6)

The signal is given by the spectral and temporal overlap of a
bare signal and a detector spectrogram. The bare signal con-
tains all of the relevant information about the molecules. In
order to maintain the bookkeeping of all interactions and de-
velop a perturbative expansion for signals, we adopt super-
operator notation. With each ordinary operator O, we asso-
ciate a pair of superoperators35 “left” ÔLX = OX, “right”
ÔRX = XO, and the combination Ô− = ÔL − ÔR . The bare
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FIG. 7. Loop diagrams for the time-and-frequency SPRS signal including
interactions with the detector. Time translational invariance yields ω′

1 + ω′
2− ωs + ωs − ω′

s + ω′
s − ω2 − ω1.

spectrogram WB in the gated photon counting signal (A6) is
given in terms of superoperators as

WB(t ′, ω′) = D2(ω′)
¯2

∫ ∞

−∞
dτe−iω′τE∗

2 (t ′ + τ )E2(t ′)

× 〈T αnR(t ′ + τ )αnL(t ′)e− i
¯

∫ t ′
−∞ Ĥ ′

−(T )dT 〉. (A7)

The Hamiltonian superoperator in the interaction picture un-
der the rotating-wave approximation (RWA) is given by

Ĥ ′
q(t) =

∫
drÊ†

q (t, r)V̂q(t, r) + H.c, q = L,R, (A8)

where V(t, r) = ∑
α Vα(t)δ(r − rα) is a matter operator rep-

resenting the lowering (exciton annihilation) part of the dipole
coupling and α runs over molecules in the sample located at
rα . The operator T maintains positive time ordering of super-
operators, and is a key bookkeeping device. It is defined as
follows:

T Êq(t1)Êq ′(t2) = θ (t1 − t2)Êq(t1)Êq ′(t2)

+ θ (t2 − t1)Êq ′(t2)Êq(t1), (A9)

where θ (t) is the Heaviside step function. In the absence of the
frequency gate Ff (ω, ω̄) = 1 and taking the limit of the nar-
row time gating WD(t ′, ω′; t̄ , ω̄) = δ(t ′ − t̄ ), the signal (A6)
reads

S(t̄ ) = |Tf i(t̄ )|2, (A10)

where

Tf i(t) = D(ωf i)

¯
E2(t)〈T α(t)e− i

¯

∫ t

−∞ H ′(T )dT 〉 (A11)

is a transition amplitude, ωfi is the transition frequency of the
matter. Similarly, in the absence of time gate Ft (t ′, t̄ ) = 1
taking the limit of narrow frequency gate WD(t ′, ω′; t̄ , ω̄)

= δ(ω′ − ω̄), the signal (A6) reads

S(ω̄) = |Tf i(ω̄)|2, (A12)

where Tf i(ω) = ∫ ∞
−∞ dteiωtTf i(t). Therefore, in the pure time

or frequency detection the signal is given by the modulus
square of the transition amplitude as expected.36 In this pa-
per, we use Eqs. (A12) for FR-SPRS but the results can be
extended by using Eqs. (A6) and (A7).

APPENDIX B: FR-SPRS

We read the bare signal (see Eq. (A6)) off the diagram in Fig. 7 as

W
(i)
B (t ′, ω′, T ) = −i¯

∫ ∞

0
dτeiω′τ

∫ t ′

−∞
dτ1

∫ t ′−τ

−∞
dτ5D2(ω̄)E∗

2 (t ′ − τ − T )E2(t ′ − T )E∗
p(τ5)Ep(τ1)Fi(t

′ − τ − τ5, τ, t
′ − τ1),

(B1)

W
(ii)
B (t ′, ω′, T ) = i¯

∫ ∞

0
dτe−iω′τ

∫ t ′

−∞
dτ1

∫ t ′+τ

−∞
dτ5D2(ω̄)E∗

2 (t ′ + τ − T )E2(t ′ − T )E∗
p(τ5)Ep(τ1)Fii(t

′ + τ − τ5, τ, t
′ − τ1).

(B2)

The bare signal (B1) and (B2) can be alternatively recast in the frequency domain

W
(i)
B (t ′, ω′, T ) = −i¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π

dω′
2

2π
D2(ω̄)E∗

2 (ω2)E2(ω′
2)E∗

p(ω1)Ep(ω′
1)ei(ω2−ω′

2+ω1−ω′
1)t ′

×Fi(ω1, ω1 + ω2 − ω′, ω′
1)ei(ω′

2−ω2)T , (B3)

W
(ii)
B (t ′, ω′, T ) = i¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π

dω′
2

2π
D2(ω̄)E∗

2 (ω2)E2(ω′
2)E∗

p(ω1)Ep(ω′
1)ei(ω2−ω′

2+ω1−ω′
1)t ′

×Fii(ω1, ω1 + ω2 − ω′, ω′
1)ei(ω′

2−ω2)T . (B4)

To draw a full analogy with the stimulated signals, we assume no time gate. In this case, the detector spectrogram
WD(t̄ , ω̄; t ′, ω′) = |Ff (ω′; ω̄)|2. The time translational invariance yields∫ ∞

−∞
dt ′ei(ω2−ω′

2+ω1−ω′
1)t ′ = 2πδ(ω2 − ω′

2 + ω1 − ω′
1), (B5)
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which yields the signal

SFR−SPRS(ω̄, T ) = S
(i)
FR−SPRS(ω̄, T ) + S

(ii)
FR−SPRS(ω̄, T ),

S
(i)
FR−SPRS(ω̄, T ) = −i¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π

dω′

2π
D2(ω̄)|Ff (ω′; ω̄)|2E∗

2 (ω2)E2(ω1 − ω′
1 + ω2)E∗

p(ω1)Ep(ω′
1)

×Fi(ω1, ω1 + ω2 − ω′, ω′
1)ei(ω1−ω′

1)T , (B6)

S
(ii)
FR−SPRS(ω̄, T ) = i¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π

dω′

2π
D2(ω̄)|Ff (ω′; ω̄)|2E∗

2 (ω2)E2(ω1 − ω′
1 + ω2)E∗

p(ω1)Ep(ω′
1)

×Fii(ω1, ω1 + ω2 − ω′, ω′
1)ei(ω1−ω′

1)T . (B7)

For an ideal frequency gate, Eqs. (B6) and (B7) become Eq. (7).

APPENDIX C: STIMULATED SIGNALS

Stimulated (heterodyne-detected) optical signals are de-
fined as the energy change of the electromagnetic field

S =
∫ ∞

−∞

d

dt
〈a†(t)a(t)〉dt, (C1)

where a(a†) is annihilation (creation) operator for the field E .
The radiation-matter interaction Hamiltonian in the RWA is

H ′(t) = V (t)E†(t) + H.c., (C2)

where V (t) + V †(t) is a Heisenberg dipole operator and the
electric field operator E(t) = E(t) + E†(t). Both are sepa-
rated into positive (non-dagger) and negative (dagger) fre-
quency components (lowering and raising photon operators,
respectively).

The Heisenberg equation of motion for the field operator
E(t) then gives for the above integrated signal

S = 2

¯

∫ ∞

−∞
dt ′I〈V (t ′)E†(t ′)〉

= 2

¯

∫ ∞

−∞

dω′

2π
I〈V (ω′)E†(ω′)〉, (C3)

where I denotes the imaginary part. The angular brackets de-
note 〈. . .〉 = Tr[ρ(t) . . .] with the density operator ρ(t) de-
fined in the joint field-matter space of the entire system. In
practice, the temporal or spectral range of the integrations in
Eq. (C3) is restricted by the response function of the detec-
tor. For a classical optical pulse, one can replace the electric
field operator by the expectation value 〈E〉 = E . If the detector
contains a narrow time gate with nearly δ function response
δ(t′ − t), Eq. (C3) yields

St (t ; �) = 2

¯
IE∗(t)P (t), (C4)

where P (t) = 〈V (t)〉 is polarization, � denotes a set of pa-
rameters that characterize the various laser pulses. Similarly,

if the detector consists of a spectrometer with narrow fre-
quency response δ(ω′ − ω), we obtain the frequency-gated
signal

Sf (ω; �) = 2

¯
IE∗(ω)P (ω), (C5)

where P (ω) = ∫ ∞
−∞ dtP (t)eiωt . Note that the two signals

Eqs. (C4) and (C5) carry different information and are not
related by a simple Fourier transform. A Wigner spectro-
gram representation36–38 was used in Ref. 39 for the integrated
pump probe signals Eq. (A1). Here, we use loop diagrams
to describe the more detailed time- or frequency-gated sig-
nals (C4) and (C5), respectively. We can also recast signals
(C4) and (C5) in the superoperator notation for arbitrary field
operator

St (t ; �) = 2

¯
I〈E†

L(t)VL(t)e− i
¯

∫ ∞
−∞ Ĥ ′

−(T )dT 〉, (C6)

where � denotes a set of parameters that characterize the
various laser pulses. Similarly, if the detector consists of a
spectrometer with narrow frequency response δ(ω′ − ω), we
obtain the frequency-gated signal

Sf (ω; �) = 2

¯
I

∫ ∞

−∞
dteiωt 〈E†

L(ω)VL(t)e− i
¯

∫ ∞
−∞ Ĥ ′

−(T )dT 〉.
(C7)

This expression is our starting point for computing the three
stimulated TG-ISRS, TR-ISRS, and FSRS signals.

APPENDIX D: FSRS

We read the signal off the diagrams given in Fig. 2(b)

SFSRS(ω, T ) = I
∫ ∞

−∞

d�

2π
E∗

3 (ω)E3(ω + �)S̃FSRS(ω, T ; �),

(D1)

where S̃FSRS(ω, T ; �) = S̃
(i)
FSRS(ω, T ; �) + S̃

(ii)
FSRS(ω, T ; �)

and

S̃
(i)
FSRS(ω, T ; �) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5E∗

2 (τ3)E2(t)E∗
p(τ5)Ep(τ1)eiω(t−τ3)−i�(τ3−T )Fi(τ3 − τ5, t − τ3, t − τ1),

(D2)
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S̃
(ii)
FSRS(ω, T ; �) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5E∗

2 (τ3)E2(t)Ep(τ5)E∗
p(τ1)eiω(t−τ3)−i�(τ3−T )Fii(t − τ1, t − τ3, τ3 − τ5).

(D3)

We can recast (D2) and (D3) using frequency domain matter correlation functions

S̃
(i)
FSRS(ω, T ; �) = I 2

¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π
E∗

2 (ω2)E2(ω2 + � + ω′
1 − ω1)E∗

p(ω1)Ep(ω′
1)ei(ω1−ω′

1)T

×Fi(ω1, ω1 + ω2 − ω − �,ω′
1), (D4)

S̃
(ii)
FSRS(ω, T ; �) = I 2

¯

∫ ∞

−∞

dω1

2π

dω′
1

2π

dω2

2π
E∗

2 (ω2)E2(ω2 + � + ω′
1 − ω1)E∗

p(ω1)Ep(ω′
1)ei(ω1−ω′

1)T

×Fii(ω1, ω + � − ω2 + ω′
1, ω

′
1). (D5)

Assuming that pulse 2 is narrow band (picosecond) and
set E2(t − T ) = E2e

−iω2(t−T ) the FSRS signal for the Raman
shift 
 = ω − ω2 then reads

SFSRS(
, T ) = I
∫ ∞

−∞

d�

2π
E∗

3 (
 + ω2)E3(
 + ω2 + �)

× S̃FSRS(
, T ; �), (D6)

S̃
(i)
FSRS(
, T ; �) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5

× |E2|2E∗
p(τ5)Ep(τ1)ei
(t−τ3)−i�(τ3−T )

× Fi(τ3 − τ5, t − τ3, t − τ1), (D7)

S̃
(ii)
FSRS(
, T ; �) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5

× |E2|2Ep(τ5)E∗
p(τ1)ei
(t−τ3)−i�(τ3−T )

× Fii(t − τ1, t − τ3, τ3 − τ5). (D8)

We can recast (D6)–(D8) using frequency domain matter cor-
relation functions and obtain Eq. (11).

APPENDIX E: TG-ISRS AND TR-ISRS

We read the TG-ISRS signal off the diagrams in Fig. 3(b)

S̃
(i)
T G−ISRS(
, T1) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5E∗

p(τ5)Ep(τ1)E∗
2 (τ3 − T )E1(τ3 − T )ei
(t−T1)

×Fi(τ3 − τ5, t − τ3, t − τ1), (E1)

S̃
(ii)
T G−ISRS(
, T1) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5E∗

p(τ1)Ep(τ5)E∗
2 (τ3 − T )E1(τ3 − T )ei
(t−T1)

×Fii(t − τ1, t − τ3, τ3 − τ5). (E2)

One can alternatively express the signals (E1) and (E2) via
frequency domain correlation function of matter and obtain
Eq. (14).

Similarly, we read TR-ISRS off the diagrams 4(b)

S̃
(i)
T R−ISRS(
, T1) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5

× E∗
p(τ5)Ep(τ1)|E2(τ3 − T )|2ei
(t−T1)

× Fi(τ3 − τ5, t − τ3, t − τ1), (E3)

S̃
(ii)
T R−ISRS(
, T1) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ1

∫ t

−∞
dτ3

∫ τ3

−∞
dτ5

× E∗
p(τ1)Ep(τ5)|E2(τ3 − T )|2ei
(t−T1)

× Fii(t − τ1, t − τ3, τ3 − τ5). (E4)

Similarly, one can recast Eqs. (E3) and (E4) in the frequency
domain and obtain Eq. (16).

APPENDIX F: TWO-STATE-JUMP MODEL

The Liouville operator L̂ in SLE (19) is diagonal in the
vibrational Liouville space and is thus given by four 2 × 2
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diagonal blocks in spin space34

[L̂]νν ′s,ν1ν
′
1s

′ = δνν1δν ′ν ′
1
[L̂S]s,s ′ + δνν1δν ′ν ′

1
δss ′ [L̂S]νν ′s,νν ′s ,

(F1)

where L̂S describes the two-state-jump kinetics given by

[L̂S] =
(

−kd ku

kd −ku

)
. (F2)

The coherent part L̂S = −(i/¯)[HS, . . .] vanishes for the
states |aa〉〉, |cc〉〉 blocks [L̂S]aaaa = [L̂S]cccc = 0. The re-
maining blocks of LS reads

[L̂S]ac,ac = −i

(
ωac + δ 0

0 ωac − δ

)
, (F3)

where δ describes the magnitude of the jump whereas ωac is
the vibrational frequency unperturbed by the bath. The two
Liouville space Green functions G(t) = −(i/¯)θ (t)eL̂t rele-
vant to the Raman signal – the solution of Eq. (19) are given
by34

Gaa,aa(t) = (−i/¯)θ (t)

[
1̂ + 1 − e−(ku+kd )t

kd + ku

(
−kd ku

kd −ku

)]
,

(F4)

Gac,ac(t) = (−i/¯)θ (t)

×
[(

η2

η2 − η1
1̂ − 1

η2 − η1
L̂ac,ac

)
eη1t

+
(

η1

η1 − η2
1̂ − 1

η1 − η2
L̂ac,ac

)
eη2t

]
, (F5)

where 1̂ is unit 2×2 matrix and η1,2 = − kd+ku

2 − iωac

±
√

(kd+ku)2

4 − δ2 + iδ(kd − ku).
In the low temperature limit, kBT 	 εu − εd and thus

ku = 0, Eqs. (F4) and (F5) are given by the following 2 × 2
matrices:

Gaa,aa(t) = (−i/¯)θ (t)

(
e−kt 0

1 − e−kt 1

)
, (F6)

Gac,ac(t) = (−i/¯)θ (t)

×
(

e−(k+iω+)t 0
k

k+2iδ
[e−iω−t − e−(k+iω+)t ] e−iω−t

)
, (F7)

where k = ku and ω± = ωac ± δ.
We now turn to a discussion of the linear absorption be-

tween the initial vibrational state a and the final state c cou-
pled to the spin

Sl(ω) = I 2

¯
|E(ω)|2|μac|2〈〈Ia|Gac,ac(ω)|ρa〉〉S, (F8)

where G(ω) = ∫ ∞
−∞ eiωtG(t)dt . The initial state in the spin

space is equilibrium state: |ρa〉〉S = |aa〉〉
(

1
1

)
, and we trace

over the final state 〈〈I | = (1, 1)Tr where Tr = 〈〈aa| + 〈〈cc|.

After matrix multiplication, the time-domain matter correla-
tion function reads

〈〈Ia|Gac,ac(t)|ρa〉〉S = (−i/¯)θ (t)
2

k + 2iδ

× [(k + iδ)e−iω−t + iδe−(k+iω+)t ].
(F9)

In the SML, the linear absorption (F8) yields Eq. (20) whereas
in FML it gives Eq. (21).

APPENDIX G: RAMAN SIGNALS WITH TSJ MODEL AT
LOW TEMPERATURE

1. FR-SPRS with TSJ (low T)

We first recast a time-domain signal Eqs. (A6), (B1), and
(B2) in the Liouville space breaking the loop in diagrams (i)
and (ii) in Fig. 1 for the impulsive actinic pulse Ep(t) = Epδ(t)

S
(i)
FR−SPRS(ω, T ) = − i¯|Ep|2D2(ω)

∫ ∞

−∞
dt ′

∫ ∞

0
dτeiωτ

× E∗
2 (t ′ − τ − T )E2(t ′ − T )F(τ, t ′ − τ ),

(G1)

S
(ii)
FR−SPRS(ω, T ) = i¯|Ep|2D2(ω)

∫ ∞

−∞
dt ′

∫ ∞

0
dτe−iωτ

× E∗
2 (t ′ + τ − T )E2(t ′ − T )F∗(τ, t ′),

(G2)

where we have introduced the following matter quantity:

F(t1, t2) = i

¯

∑
a,c

α2
ac|μag|2〈〈I |Gac,ac(t1)Gaa,aa(t2)|ρ0〉〉S.

(G3)

Here, we assumed that after excitation by the actinic pulse the

state is u: |ρ0〉〉S = |aa〉〉
(

1
0

)
. Performing a matrix multipli-

cation using Eqs. (F6) and (F7), we obtain a compact form for
Eq. (G3)

F(t1, t2) = i

¯3

∑
a,c

|μag|2α2
acθ (t1)θ (t2)e−γa (t1+2t2)

×
[
e−iω−t1 − 2iδ

k + 2iδ
e−kt2 (e−iω−t1 − e−(k+iω+)t1 )

]
.

(G4)

A vibrational dephasing has been added in Eq. (G4) e−γat to
Gac,ac and e−2γa t added to Gaa,aa which is coming from both
bra- and ket-propagators. By changing the variables t′ − τ t′

+ τ to t in Eqs. (G1) and (G2), respectively, and exchanging
t′ and t integration in one of them, signals (G1) and (G2) be-
come complex conjugate of each other. Expanding the pump
pulse E2(t) into a frequency domain, one can evaluate time
integrals. Remaining integrals over ω2 and � can be evalu-
ated using residue calculus assuming pulse E2 shorter than the
delay T.
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The result for FR-SPRS signal then reads

SFR−SPRS(ω, T ) = RD2(ω)

¯2
|Ep|2

∑
a,c

α2
ac|μag|2e−2γaT

(
E∗

2 (ω − ω− − iγa)E2(ω − ω− + iγa)

−2iδe−kT

k + 2iδ

[
E∗

2 (ω − ω− − iγa)E2(ω − ω− + i(γa + k)) − E∗
2 (ω − ω+ − i(γa + k))E2(ω − ω+ + iγa)

] )
.

(G5)

After applying the SML to Eq. (G5), in the limit of short pulse compare to splitting δ, we obtain Eq. (22). In the FML,
Eq. (G5) yields

S
(FML)
FR−SPRS(ω, T ) = D2(ω)

¯2
|Ep|2

∑
a,c

α2
ac|μag|2|E2(ω − ω−)|2e−2γaT . (G6)

2. FSRS with TSJ (low T)

The time domain signals (D2) and (D3) for the impulsive actinic pulse can be recast in Liouville space as follows:

S̃
(i)
FSRS(ω, T ; �) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ3|Ep|2|E2|2e−i�(τ3−T )

× ei(ω−ω2)(t−τ3)F(t − τ3, τ3), (G7)

S̃
(ii)
FSRS(ω, T ; �) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ3|Ep|2|E2|2e−i�(τ3−T )

× ei(ω−ω2)(t−τ3)F∗(t − τ3, τ3). (G8)

Taking into account Eq. (G3), evaluating the time integrals and use residue calculus for evaluating � integral in
Eq. (D1), we obtain for the total FSRS signal

SFSRS(
, T ) = −I 2

¯4
|Ep|2|E2|2E∗

3 (
 + ω2)
∑
a,c

α2
ac|μag|2

×
[E3(
 + ω2 + 2iγa)


 − ω− + iγa

− 2iδE3(
 + ω2 + i(2γa + k))e−kT

k + 2iδ

(
1


 − ω− + iγa

− 1


 − ω+ + i(γa + k)

)]
e−2γaT

− [ω± ↔ −ω∓], (G9)

where 
 = ω − ω2. In the SML and short pulse limit, Eq. (G9) yields Eq. (23). In the FML, Eq. (G9) reads

S
(FML)
FSRS (
, T ) = 1

¯4
|Ep|2|E2|2|E3(
 + ω2)|2

∑
a,c

α2
ac|μag|2

×
(

2δ

k
e−kT

[

 − ω−

(
 − ω−)2 + γ 2
a

− 
 − ω+
(
 − ω+)2 + (γa + k)2

]
γa

(
 − ω−)2 + γ 2
a

)
e−2γaT − [ω± ↔ −ω∓].

(G10)

3. TG-ISRS and TR-ISRS with TSJ (low T)

We recast TG-ISRS in Eqs. (E1) and (E2) in Liouville space using the impulsive actinic limit

S̃
(i)
T G−ISRS(
, T ) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ3|Ep|2ei
(t−T )

× E∗
2 (τ3 − T )E1(τ3 − T )F(t − τ3, τ3), (G11)

S̃
(i)
T G−ISRS(
, T ) = 2

¯

∫ ∞

−∞
dt

∫ t

−∞
dτ3|Ep|2ei
(t−T )

× E∗
2 (τ3 − T )E2(τ3 − T )F∗(t − τ3, τ3). (G12)
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We next expand the fields E1(t) and E2(t) in frequency domain to evaluate the time integrals and � frequency integral.
Using Eq. (G3), we evaluate the TG-ISRS signal (13)

ST G−ISRS(
, T ) = − I 2

¯4
|Ep|2

∑
a,c

α2
ac|μag|2e−2γaT

∫ ∞

−∞

dω′

2π
E∗

s (ω′)E3(ω′ − 
)
∫ ∞

−∞

dω2

2π
E∗

2 (ω2)

×
[E2(ω2 + 
 + 2iγa)


 − ω− + iγa

− 2iδE2(ω2 + 
 + i(2γa + k))e−kT

k + 2iδ

(
1


 − ω− + iγa

− 1


 − ω+ + i(γa + k)

)]

− [ω± ↔ −ω∓]. (G13)

In the SML and short pulse limit, Eq. (G13) yields Eq. (24). Similarly, we obtain the TSJ expression for the TR-ISRS signal by
replacing Es → E3 and E1 → E2 in Eq. (G13). In the FML, Eq. (G13) yields

S
(FML)
T G−ISRS(
, T ) = 1

¯4
|Ep|2

∑
a,c

α2
ac|μag|2

∫ ∞

−∞

dω′

2π
Es(ω

′)E3(ω′ − 
)
∫ ∞

−∞

dω2

2π
E2(ω2)E1(ω2 + 
)

×
(

2δ

k
e−kT

[

 − ω−

(
 − ω−)2 + γ 2
a

− 
 − ω+
(
 − ω+)2 + (γa + k)2

]
+ γa

(
 − ω−)2 + γ 2
a

)
e−2γaT − [ω± ↔ −ω∓].

(G14)

APPENDIX H: HIGH TEMPERATURE LIMIT

1. TSJ model in high temperature limit

In the high temperature limit kBT 
 εu − εd, Eqs. (F4) and (F5) yield

Gaa,aa(t) = (−i/¯)θ (t)e−kt

(
cosh(kt) sinh(kt)

sinh(kt) cosh(kt)

)
, (H1)

Gac,ac(t) = (−i/¯)θ (t)e−(k+iωac)t

(
cosh(ηt) − i δ

η
sinh(ηt) k

η
sinh(ηt)

k
η

sinh(ηt) cosh(ηt) + i δ
η

sinh(ηt)

)
, (H2)

where k = ku = kd and η = √
k2 − δ2. The linear absorption (F8) is then given by

Sl(ω) = 2

¯2η
(k2 − η2)|E(ω)|2|μac|2

[
1

(ω − ωac)2 + (k − η)2
− 1

(ω − ωac)2 + (k + η)2

]
. (H3)

In the SML, the signal (H3) gives two distinct narrow peaks with central frequencies ω = ωac ± δ with width δ

S
(SML)
l (ω) = 2

¯2
k|E(ω)|2|μac|2

[
1

(ω − ωac − δ)2 + k2
+ 1

(ω − ωac + δ)2 + k2

]
. (H4)

In the opposite FML, Eq. (H3) gives a single peak at ω = ωac with width δ2/2k

S
(FML)
l (ω) = 2

¯2

δ2

k

|E(ω)|2|μac|2
(ω − ωac)2 + (δ2/2k)2

. (H5)

Therefore, unlike the low temperature behavior described by (20) the absorption spectrum (H4) consists of two, rather than one
peak that governs the equilibrium population of both u and d states.

We now turn to the Raman signals. For the general relation between jump rate k and splitting δ, Eq. (G3) can be recast as

F(t1, t2) = i

¯3

∑
a,c

α2
ac|μag|2θ (t1)θ (t2)

∑
μ,ν=±

Aμνe
−[ωac+γμ+γa ]t1−(�ν+2γa )t2 , (H6)

where A±+ = 1
2

(
1 ± k

η

)
, A±− = ∓i δ

2η
, and γ ± = k∓η, �− = 0, and �+ = 2k.
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2. FR-SPRS with TSJ (high T)

In the high temperature limit, the matter F(t1, t2) is given by Eq. (H6). The result for FR-SPRS signal then reads

SFR−SPRS(ω, T ) = RD2(ω)

¯2
|Ep|2

∑
a,c

α2
ac|μag|2e−2γaT

×
([

1 + k − iδe−2kT

η

]
|E2(ω − ωac − iη)|2 +

[
1 − k − iδe−2kT

η

]
|E2(ω − ωac + iη)|2

)
, (H7)

where we assumed that the pulse is short compared to γ −1
a and k−1. In the SML, Eq. (H7) yields

S
(SML)
FR−SPRS(ω, T ) = D2(ω)

¯2
|Ep|2

∑
a,c

α2
ac|μag|2e−2γaT (|E2(ω − ω−)|2[1 − e−2kT ] + |E2(ω − ω+)|2[1 + e−2kT ]). (H8)

In the FML, Eq. (H7) reads

S
(FML)
FR−SPRS(ω, T ) = D2(ω)

¯2
|Ep|2

∑
a,c

α2
ac|μag|2|E2(ω − ωac)|2e−2γaT . (H9)

3. FSRS with TSJ (high T)

Using Eq. (H6) for a short pulse compared to k−1 and γ −1
a , we obtain for the total FSRS signal

SFSRS(
, T ) = − I 1

¯4
|Ep|2|E2|2|E3(
 + ω2)|2

∑
a,c

α2
ac|μag|2

×
[(

1 + k − iδe−2kT

η

)
1


 − ωac + i(γ − η)

(
1 − k − iδe−2kT

η

)
1


 − ωac + i(γ + η)

]
e−2γaT

− [ωac ↔ −ωac]. (H10)

In the SML and short pulse limit, Eq. (H10) yields

S
(SML)
FSRS (
, T ) = 1

¯4
|Ep|2|E2|2|E3(
 + ω2)|2

∑
a,c

α2
ac|μag|2

×
(

γ (1 − e−2kT )

[
1

(
 − ω−)2 + γ 2
+ 1

(
 − ω+)2 + γ 2

]
+k

δ

[

 − ω−

(
 − ω−)2 + γ 2
− 
 − ω+

(
 − ω+)2 + γ 2

])
e−2γaT

− [ω± ↔ −ω∓], (H11)

where γ = γ a + k. In the FML, Eq. (H10) reads

S
(FML)
FSRS (
, T ) = 1

¯4
|Ep|2|E2|2|E3(
 + ω2)|2

∑
a,c

α2
ac|μag|2

2
(

δ2

2k
+ γa

)
+ δ

k
e−2kT (
 − ωac)

(
 − ωac)2 +
(

δ2

2k
+ γa

)2 − [ωac ↔ −ωac]. (H12)

4. TG-ISRS and TR-ISRS with TSJ (high T)

Using Eq. (H6), we evaluate the TG-ISRS signal (13)

ST G−ISRS(
, T ) = − I 2

¯4
|Ep|2

∑
a,c

α2
ac|μag|2e−2γaT

∫ ∞

−∞

dω′

2π
E∗

s (ω′)E3(ω′ − 
)
∫ ∞

−∞

dω2

2π
E∗

2 (ω2)E2(ω2 + 
)

×
[(

1 + k − iδe−2kT

η

)
1


 − ωac + i(γ − η)

(
1 − k − iδe−2kT

η

)
1


 − ωac + i(γ + η)

]
e−2γaT

− [ωac ↔ −ωac]. (H13)
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In the SML and short pulse limit, Eq. (H13) yields

S
(SML)
T G−ISRS(
, T ) = 1

¯4
|Ep|2

∑
a,c

α2
ac|μag|2

∫ ∞

−∞

dω′

2π
Es(ω

′)E3(ω′ − 
)
∫ ∞

−∞

dω2

2π
E2(ω2)E1(ω2 + 
)

×
(

γ (1−e−2kT )

[
1

(
−ω−)2+γ 2
+ 1

(
−ω+)2+γ 2

]
+k

δ

[

−ω−

(
−ω−)2+γ 2
− 
−ω+

(
−ω+)2+γ 2

])
e−2γaT

− [ω± ↔ −ω∓]. (H14)

In the FML, Eq. (H13) yields

S
(FML)
T G−ISRS(
, T ) = 1

¯4
|Ep|2

∑
a,c

α2
ac|μag|2

∫ ∞

−∞

dω′

2π
Es(ω

′)E3(ω′ − 
)
∫ ∞

−∞

dω2

2π
E2(ω2)E1(ω2 + 
)

×
2
(

δ2

2k
+ γa

)
+ δ

k
e−2kT (
 − ωac)

(
 − ωac)2 +
(

δ2

2k
+ γa

)2 − [ωac ↔ −ωac]. (H15)

The corresponding TR-ISRS are given by Eqs. (H13)–(H15) by simply replacing Es → E3 and E1 → E2.
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