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Abstract
Time- and frequency-gated two-photon counting is given by a four-time correlation function of
the electric field. This reduces to two times with purely time gating. We calculate this function
for entangled photon pulses generated by parametric down-conversion. At low intensity, the
pulses consist of well-separated photon pairs, and crossover to squeezed light as the intensity
is increased. This is illustrated by the two-photon absorption signal of a three-level model,
which scales linearly for a weak pump intensity where both photons come from the same pair,
and gradually becomes nonlinear as the intensity is increased. We find that the strong
frequency correlations of entangled photon pairs persist even for higher photon numbers. This
could help facilitate the application of these pulses to nonlinear spectroscopy, where these
correlations can be used to manipulate congested signals.

(Some figures may appear in colour only in the online journal)

1. Introduction

Entangled photons have become an invaluable resource in
quantum optics with possible applications to cryptography
[1], lithography [2], metrology [3] and quantum computing
[4, 5]. Applications to spectroscopy received considerable
attention in experiments [6–9] as well as in theoretical works
[10–16]. These prospects necessitate the adaption of quantum
information concepts to spectroscopic applications. Four wave
mixing signals with quantum fields depend on integrals
containing a product of a four-point dipole correlation function
of matter and a four-point correlation function of the field [12].
In spectroscopic applications, the latter provide an observation
window for the former. This window is more complex than
what is possible with classical light. Understanding the field
correlation functions and their manipulation should help in the
design of novel spectroscopic techniques involving quantum
light.

Photon statistics are most commonly measured by purely
time gating, and characterized by the G2-function, a four-
point field correlation function evaluated at two times [17, 18].
Four-wave mixing spectroscopy signals with entangled light
depend on the same correlation function, but at four different
times [12]. This can be measured by time- and frequency-gated
photon statistics.

Here, we investigate the normally ordered four-time
correlation function

〈
E†(τ1)E†(τ2)E(τ3)E(τ4)

〉
of type-II

down-converted photons using the formalism derived in
[19, 20], which generalizes the work of Mandel and
co-workers in the 1980s [21, 22]. Quantum noise is not
considered [23–25]. Our approach allows us to describe the
intensity dependence of the four-point correlation function in
the continuous-mode limit. We assess the time- and frequency-
resolution offered by this function, by application to the Hong–
Ou–Mandel (HOM) interferometer [26, 27]. The two-photon
absorption (TPA) signal in a three-level system represents
a nonlinear measurement that can exploit the properties of
the nonclassical correlation function. We further describe the
transition between the linear and nonlinear scaling regimes
of TPA with pump intensity, and calculate the crossover
intensity. The linear (rather than quadratic) scaling of the four-
point correlation function of the field with the pump intensity
[7, 28, 29] enables nonlinear spectroscopy at very low input
fluxes, thus minimizing damage to photosensitive samples.

2. Parametric down-conversion

We consider type-II parametric down-conversion (PDC) in a
birefringent crystal. A pump photon of frequency ωp is split
into two photons with frequencies ω1 and ω2 and orthogonal
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polarizations, such that ωp = ω1 + ω2 [30, 31]. Due to
their different polarization, the photon wavepackets travel at
different group velocities inside the crystal, and acquire a
relative time delay during their propagation, which is bound
by the entanglement time T . If T is very short, the bandwidth
of the individual beams can exceed that of the pump, in
which case the two photons are time-frequency entangled. In
this paper, we will restrict our attention to degenerate down-
conversion, where the central frequencies of the two down-
converted beams coincide.

2.1. The model

PDC involves three broadband fields: a pump field Ep, and the
two generated fields E1 and E2. Each of these fields contains a
continuum of frequencies, and is described by the operator

Êi(t) =
∫

dωi

2π
A(ωi)âi(ωi) e−iωit i ∈ {p, 1, 2}, (1)

where â(ω) is the photon annihilation operator, and A(ω) =√
�ω/(4πε0cA), where c is the speed of light, and A denotes

the transverse quantization area [32]. We adopt the slowly
varying envelope approximation, where we assume that the
bandwidth of the fields is much smaller than their central
frequencies. This allows us to approximate the factor A(ω)

as constant, A(ω) ≈ A(ω0). The down-conversion process
within the birefringent crystal is described by the unitary
evolution operator [19]

UPDC(t) = T exp

[
− i

�

∫ t

dτHint,I(τ )

]
, (2)

with

Hint(t) = ε0

∫ L/2

−L/2
dz χ(2)(z)Ep(z, t)E†

1 (z, t)E†
2 (z, t). (3)

Here, we assume collinear geometry of the three fields, such
that the interaction is restricted to the crystal length L in
the propagation direction of the fields. The second-order
susceptibility χ(2) 1 is assumed to be constant in space,
and independent of frequency. We further assume that the
pump field is very strong, i.e. it does not get depleted by the
interaction in the crystal. We can therefore replace its field
operator Ep(t) by the field envelope A0Ap(ω) e−iωpt , where Ap

is normalized as
∫

dωAp(ω) = 1, and A0 denotes the pump
strength. The remaining Hamiltonian acts only on the fields E1

and E2. If we neglect time-ordering and take the limit t → ∞,
we can carry out the time integration, and obtain an effective
Hamiltonian for the down conversion process [19]

|ψ f 〉 = UPDC|ψi〉,
UPDC � exp

[
− i

�
Heff

]
, (4)

Heff =
∫

dωa

∫
dωb �(ωa, ωb)a

†(ωa)b
†(ωb) + h.c. (5)

with

�(ωa, ωb) = αAp(ω + ωb)sinc

(

k(ωa, ωb)L

2

)
. (6)

1 Strictly speaking, the coefficient is similar to χ(2), but is not the same [33].

Here, |ψi〉 and |ψ f 〉 represent the state of the field before
and after passing through the PDC crystal, respectively. We
shall assume that the fields are initially in the vacuum state,
|ψi〉 = |0〉1 ⊗|0〉2. Ap is the (normalized) pump envelope, and
the phase mismatch 
k(ωa, ωb) is given by [34]


k(ωa, ωb)L = (ωa − ωp/2)T1

2
+ (ωb − ωp/2)T2

2
, (7)

where T1 = (1/νp = 1/ν1)L, and T2 = (1/νp = 1/ν2)L.
νi denotes the group velocity of the ith beam at its central
frequency. The entanglement time is then given by T = T2−T1.

The conversion efficiency is given by

α = A0ε0χ
(2)L

2
A(ω1)A(ω2)

(
1

2π

)3

, (8)

where ωi are the central frequencies of fields 1 and 2.
To calculate the propagator UPDC in a closed form, we

perform the singular value decomposition (SVD) of the two-
photon envelope [35],

− i

�
�(ωa, ωb) ≡

∑
k

rkψ
∗
k (ωa)φ

∗
k (ωb). (9)

Here, rk � 0 are the singular values, and the functions {ψk}
and {φk} form orthonormal bases. We further define the time
domain envelopes

uk(t) =
∫

dω

2π
ψ∗

k (ω) e−iωt, (10)

vk(t) =
∫

dω

2π
φ∗

k (ω) e−iωt . (11)

In appendix A, we use the SVD to calculate UPDC

(equation (4)), which is then used to calculate the four-point
field correlation function in the frequency domain.

3. Time- and frequency-gated two-photon counting

We will consider with the Hong, Ou and Mandel setup as
depicted in figure 1, where the entangled beams are mixed in
a balanced beamsplitter, and beam 2 is delayed by δt. This is
described by the transformation of the down-converted fields

Ea(t) = E1(t) + E2(t + δt), (12)

and

Eb(t) = E1(t) − E2(t + δt). (13)

The time- and frequency-gated two-photon counting signal of
beams a and b is given by a convolution of the ‘bare signal’ SB

with the spectrograms WD of the two detectors [36, 37],

S(t̄i, ω̄i, t̄s, ω̄s; δt) =
∫

dti

∫
dts

∫
dωi

2π

∫
dωs

2π

W i
D(ti, ωi; t̄i, ω̄i)W

s
D(ts, ωs; t̄s, ω̄s)

SB(ti, ωi; ts, ωs; δt), (14)

where the bare signal is given by

SB(ti, ωi; ts, ωs; δt) =
∫

dτi e−iωiτi

∫
dτs e−iωsτs

×〈
E†

a (ti + τi)E
†
b (ts + τs)Eb(ts)Ea(ti)

〉
(15)

2
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Figure 1. The HOM interferometer, equation (18). The two beams are mixed at a balanced beam splitter, and correlation events of the two
detectors are recorded.

= −
∫

dωa

2π

∫
dωa

2π
ei((ωi−ωa)ti+(ωs−ωb)ts)

×〈E†
a (ωi)E

†
b (ωs)Eb(ωb)Ea(ωa)〉. (16)

Here, the dependence on the time delay δt is implicit in
the definition of the fields Ea and Eb (equations (12) and
(13)). We shall use the following model for the detector
spectrogram:

WD(t, ω; t̄, ω̄) = W

σD
e− (t−t̄)2

T 2 e
− (ω−ω̄)2

σ2
D . (17)

Here, σ 2
D = 1/T̄ 2 + �2, with T̄ the time resolution and �

the frequency resolution. Using equations (12) and (13), the
correlation function appearing in the bare signal reads

〈E†
a (ti + τi)E

†
b (ts + τs)Eb(ts)Ea(ti)〉

= 〈E†
1 (ti + τi)E

†
1 (ts + τs)E1(ts)E1(ti)〉

+ 〈E†
2 (ti + τi + δt)E†

2 (ts + τs + δt)E2(ts + δt)E2(ti + δt)〉
+ 〈E†

1 (ti + τi)E
†
2 (ts + τs + δt)E2(ts + δt)E1(ti)〉

− 〈E†
1 (ti + τi)E

†
2 (ts + τs + δt)E1(ts)E2(ti + δt)〉

− 〈E†
2 (ti + τi + δt)E†

1 (ts + τs)E2(ts + δt)E1(ti)〉
+ 〈E†

2 (ti + τi + δt)E†
1 (ts + τs)E1(ts)E2(ti + δt)〉. (18)

These correlation functions are evaluated in appendix A.

3.1. Pure time gating

Conventional photon statistics with high temporal and no
spectral resolution are described by the limit T̄ → 0, which
yields the detector spectrogram

e− (t−t̄)2

T̄ 2 −→ δ(t − t̄), (19)

and

e
− (ω−ω̄)2

σ2
D −→ 1. (20)

This enables us to evaluate equation (14) as

S(t̄i, t̄s; δt)

=
∣∣∣∣∣
∑

k

sinh(rk) cosh(rk)(uk(t̄i)vk(t̄s + δt)−uk(t̄s)vk(t̄i + δt))

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

k

sinh2(rk)
(
uk(t̄i)u

∗
k (t̄s) − vk(t̄i + δt)v∗

k (t̄s + δt)
)∣∣∣∣∣

2

+
(∑

k

sinh2(rk)
(
uk(t̄s)u

∗
k (t̄s) + vk(t̄s + δt)v∗

k (t̄s + δt)
))

×
(∑

k

sinh2(rk)
(
uk(t̄i)u

∗
k (t̄i) + vk(t̄i + δt)v∗

k (t̄i + δt)
))

.

(21)

Since we have eliminated the ω̄s and ω̄i indices, the signal
now only depends on two times t̄i and t̄s. Only the first line
in equation (21), which is ∝ (sinh(rk) cosh(rk))

2 and is linear
in the intensity, contributes for a weak pump. It constitutes
the coherent interaction of entangled photon pairs; ψ f in this
limit is known as a twin-photon state. The signal can be
understood as the interference between pathways, where both
photons are reflected or transmitted, respectively [38] (see also
figure 2(a)). When the two beams create indistinguishable
photons, this term is responsible for the celebrated HOM-dip.

To leading order, the second term in equation (21) scales
quadratically in the pump intensity, and therefore shows up
only for stronger pump fields. It is created by the beam splitter,
but in contrast to the first term, it corresponds to an interference
between terms, where both photons stem from either beam 1
or beam 2.

Finally, the third term in equation (21) can be factorized
into

〈E†(t̄s)E(t̄s)〉〈E†(t̄i)E(t̄i)〉

=
(∑

k

sinh2(rk)
(
uk(t̄s)u

∗
k (t̄s) + vk(t̄s + δt)v∗

k (t̄s + δt)
))

(22)

×
(∑

k

sinh2(rk)
(
uk(t̄i)u

∗
k (t̄i) + vk(t̄i + δt)v∗

k (t̄i + δt)
))

.

(23)

It is the product of the mean photon number squared, and shows
no dependence on the coherence properties of the quantum
light.

For any given entangled photon pulse, equation (14)
depends on five parameters, and is a 5D signal. Equation (21)
still is a 3D signal. A simpler 1D signal is generated by
integrating out the two detector times t̄i and t̄s,

R(δt) =
∫

dt̄i

∫
dt̄s S(t̄i, t̄s; δt). (24)

3
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Figure 2. The interfering pathways that create the gated signal (21): (a) pathways responsible for the first term in equation (21). When the
twin photons in beams 1 and 2 are indistinguishable, the two diagrams interfere destructively for δt = 0, creating the HOM-dip in the
photon correlation signal. (b) The pathways corresponding to the second term in equation (21). This interference also depends on the
indistinguishability of the two beams, but in this case both photons can come from either of the two beams. The third term in equation (21) is
not an interference term, and is not depicted.

Substituting equation (21), this yields

R(δt) = c
∫

dω

2π

∫
dω′

2π

×{2(| f12(ω, ω′)|2 − f12(ω, ω′) f ∗
12(ω

′, ω) ei(ω′−ω)δt )

+ |g1(ω, ω′) e−iωδt − g2(ω, ω′) e−iω′δt |2
+ [g1(ω, ω) + g2(ω, ω)] × [g1(ω

′, ω′) + g2(ω
′, ω′)]},

(25)

where

f12(ω, ω′) =
∑

k

ψk(ω) sinh(rk) cosh(rk)φk(ω
′), (26)

g1(ω, ω′) =
∑

k

ψk(ω) sinh2(rk)ψ
∗
k (ω′), (27)

g2(ω, ω′) =
∑

k

φk(ω) sinh2(rk)φ
∗
k (ω′). (28)

To study the variation of the photon counting signals with
the pump intensity, we choose the normalization factor
c in equation (25) such that (25) approaches unity for
δt → ∞. This signal is depicted in figure 3. We first discuss
the contribution of the two-photon state. For pump pulses
with very narrow pump bandwidth (i.e. strong entanglement)
as depicted in figures 3(a) and (b), one can obtain an
almost perfect HOM-dip at zero time delay, provided the
two beams are indistinguishable (i.e. ω1 = ω2). For a
pump bandwidth of 10 cm−1, the two plots for entanglement
times 10 fs (figure 3(a)) and 100 fs (figure 3(b)) look
identical, which can be explained by the strong frequency
anti-correlations induced by the entanglement. As shown in
[34], a larger pump bandwidth leads to an asymmetry between

the spectral distribution of the two beams, which renders
them distinguishable. This is why for σp = 50 cm−1 the
entanglement time has a strong influence on the HOM-dip. For
T = 10 fs, the dip is very narrow, and shows fast oscillations
(note the different time axis compared to figures 3(a) and (b)).
This is due to the large bandwidth of the two beams, which
allows for greater differences in the two beam bandwidths.
Consequently, for T = 100 fs shown in figure 3(d) the dip
is far broader, and no longer shows these fast oscillations.
As we increase the pump intensity α, the dip is diminished.
This stems from the incoherent autocorrelation contribution in
the second line of equation (A.11), where the two detection
events originate from two uncorrelated photons. In this case,
the broad bandwidth of the individual beams renders it very
unlikely to obtain indistinguishable photons.

To further clarify these findings, we depict in figure 4(a)
the minimum of the HOM-dip versus the pump intensity
represented by |α|2 for entanglement times of 10 and 100 fs.
Clearly, in the former case the HOM-dip decreases much
faster with an increasing pump intensity. Again, this can be
explained by the large bandwidth of the individual beams:
the HOM-dip depends on the symmetry between the two
detected photon wavepackets, and the broader the bandwidth
of the two, the harder it is to achieve perfect overlap of
both wavefunctions. Figure 4(b) shows the same quantity for
two broadband beams with different pump bandwidths. For
larger pump bandwidth, i.e. weaker frequency entanglement,
the dip decreases faster. This can be again attributed to the
indistinguishability of photons. The sum of the two photon
frequencies is distributed over the pump bandwidth. Thus, if
one photon is detected at ωp/2+� for small pump bandwidths,
the other photon will be narrowly distributed around ωp/2−�.
The two photons only interfere for small �, so the smaller

4
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(a) (b)

(c) (d)

Figure 3. (a) and (b) The photon coincidence signal equation (25) for ω1 = ω2 = 11 000 cm−1 and σp = 10 cm−1 plotted versus the pump
field intensity parameter α and the delay δt. (c) and (d) The same signal for a broader pump bandwidth σp = 50 cm−1.
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(a) (b)

Figure 4. (a) The minimum of the HOM-dip (i.e. R(δt = 0)) for ideal time gating, equation (25), plotted versus the pump intensity for two
beams with pump bandwidth σp = 50 cm−1, and entanglement times T = 10 fs (red) and 100 fs (blue, dashed). (b) Same as (a), but for
entanglement time T = 10 fs and pump bandwidths σp = 50 cm−1 (red) and 10 cm−1 (blue, dashed).

the bandwidth of the individual beams and the smaller the

pump bandwidth the more robust the HOM-dip appears. Thus,

strong time–frequency entanglement (i.e. short entanglement

time and narrow pump bandwidth) is not always beneficial for

sustaining the interference.

4. Ideal frequency gating

Ideal frequency gating is obtained by taking the infinity in the
detector spectrogram, and thus

e− (t−t̄)2

T̄ 2 −→ 1, (29)

5
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and

e
− (ω−ω̄)2

σ2
D −→ δ(ω − ω̄). (30)

Carrying out the integrations of equation (14), we obtain the
frequency-gated signal

SFG(ω̄i, ω̄s; δt) =
∣∣∣∣∣
∑

k

sinh(rk) cosh(rk)(ψk(ω̄i)φk(ω̄s)

− ψk(ω̄s)φk(ω̄i) ei(ω̄i−ω̄s)δt )

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

k

sinh2(rk)(ψk(ω̄s)ψ
∗
k (ω̄i)

− φk(ω̄s)φ
∗
k (ω̄i) ei(ω̄i−ω̄s)δt )

∣∣∣∣∣
2

+
∑

k

sinh2(rk)(|ψk(ω̄i)|2 + |ψk(ω̄s)|2)

×
∑

k′
sinh2(rk′ )(|φk′ (ω̄i)|2 + |φk′ (ω̄s)|2). (31)

By integrating out the two detector frequencies ω̄s and ω̄i, we
recover equation (25), illustrating that the ideal time-gated and
the ideal frequency-gated signals contain the same amount of
information. The time- and frequency-gated signals discussed
next can reveal further information.

4.1. General time- and frequency-gates

Simultaneous time and frequency gating is used in well-
established measurement techniques such as FROG or
SPIDER [39, 40] in ultrafast spectroscopy. To our knowledge,
so far it has not been applied to two-photon counting. Using
equation (17) for finite gating parameters T and � (and
assuming two identical gates), we obtain

S(ti, ω̄i; ts, ω̄s; T̄ ,�) = 2π T̄ 2

(
W

σD

)2 ∫
dωs

2π

∫
dωi

2π

∫
dω

2π

×
∫

dω′

2π
e−(ωs−ω̄s)

2/σ 2
D e−(ωi−ω̄i)

2/σ 2
D e−(ω−ωi )

2T̄ 2/2−i(ω−ωi )t̄i

× e−(ω′−ωs)
2T̄ 2/2−i(ω′−ωs)t̄s

×
[ ∑

k

sinh(rk) cosh(rk)(ψk(ωi)φk(ωs) eiωsδt

−φk(ωi)ψk(ωs) eiωiδt )

×
∑

k′
sinh(rk′ ) cosh(rk′ )(ψ∗

k′ (ω)φ∗
k′ (ω

′) e−iω′δt

−φ∗
k′ (ω)ψ∗

k′ (ω
′) e−iωδt )

+
∑

k

sinh2(rk)(ψk(ωi)ψ
∗
k (ω′) − φk(ωi)φ

∗
k (ω′) e−i(ω′−ωi)δt )

×
∑

k′
sinh2(rk′ )(ψk′ (ωs)ψ

∗
k′ (ω) − φk′ (ωs)φ

∗
k′ (ω) e−i(ω−ωs )δt )

+
∑

k

sinh2(rk)(ψk(ωi)ψ
∗
k (ω) + φk(ωi)φ

∗
k (ω) e−i(ω−ωi )δt )

×
∑

k′
sinh2(rk′ )(ψk′ (ωs)ψ

∗
k′ (ω

′)+φk′ (ωs)φ
∗
k′ (ω

′) e−i(ω′−ωs)δt )

]
.

(32)
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Figure 5. The minimum of the HOM-dip (i.e. R(δt = 0)) for ideal
time gating, equation (25), is plotted versus the pump intensity for
beams with pump bandwidth σp = 50 cm−1, and entanglement time
T = 10 fs (red). The grey plots show gated signals (equation (33))
with (from bottom to top) � = 100, . . ., 800 cm−1 and T̄ =
0.005 cm.

This has the same three-term structure as the ideal time gating,
equation (21), and the corresponding individual contributions
can be similarly identified. The detected frequencies are now
distributed around ω̄s and ω̄i with a width σD. Consequently,
the detection times are not defined precisely, but acquire a 1/T̄
width.

Using equation (32), the 1D signal (24) becomes

R(δt) =
∫

dω

2π

∫
dω′

2π
e−(ω−ω̄)2/σ 2

D e−(ω′−ω̄)2/σ 2
D

{2(| f (ω, ω′)|2 − f (ω, ω′) f ∗(ω′, ω) ei(ω′−ω)δt )

+ |g1(ω, ω′) e−iωδt − g2(ω, ω′) e−iω′δt |2
+ [g1(ω, ω) + g2(ω, ω)][g1(ω

′, ω′) + g2(ω
′, ω′)]}. (33)

Comparison with equation (25) shows that perfect time gating
is a reasonable approximation as long as the width of the
detector resolution σD is much larger than the spectral width
of the functions f and g. This does not apply for broadband
pulses, when a large number of modes contribute to the signal.
As shown in appendix B, these modes k can be described by
Hermite functions, and their variance grows with the square
root of the index k. This is illustrated in figure 5, where we
plot the maximum HOM-dip for a broadband-entangled beam
versus the pump intensity for different gates.

In the previous section, we had shown that the broad
bandwidth leads to a rapid degradation of the dip, since the two
beams become distinguishable. Here, we see that frequency
gating can restore the dip to some extent: for a broad gate
(� = 800 cm−1) the plot coincides with the ideal gating
case in red. As the frequency gate is narrowed, the dip is
degraded more slowly. Thus, by narrow frequency gating, the
indistinguishability can be restored to some extent (of course,
the total number of coincident counts will be affected by this
procedure [34]).

While equation (33) constitutes a generalization of
equation (25), it only involves two frequency integrations,
and therefore does not carry more information on the four-
point correlation function. Instead, we have to go back to
equation (32).
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(a) (b) (c) (d)

Figure 6. The four-point field correlation function in the frequency domain, 〈E†(ω′
a)E

†(ω′
b)E(ωb = 11 000 cm−1)E(ωa)〉, equation (A.13).

The pulse parameters are ω1 = ω2 = ωp/2 = 11 000 cm−1, σp = 50 cm−1 and T = 100 fs. The pump intensity is increased from left to right:
(a) |α|2 = 0.000 05, (b) 0.0001, (c) 0.0005 and (d) 0.001.

5. Two-photon absorption

As noted in the introduction, entangled photons hold promise
as novel spectroscopic tools. Traditional quantum optics
techniques such as the HOM measurement are designed to
probe properties of the entangled two-photon wavepackets.
Spectroscopic applications, on the other hand, aim at using
the nonclassical properties of entangled photons to probe
properties of molecular systems. However, in either case the
signal depends on the same four-point correlation function of
the electric field. In this section, we discuss the influence of
the pump intensity on nonlinear spectroscopic signals.

The most common spectroscopic signal, in which this has
been investigated, is two-photon-induced fluorescence (TPIF)
[7, 8, 29, 41]. In this measurement, a bright state f is excited
through the absorption of two photons, where the intermediate
state is typically far off-resonant, and the fluorescence from
state f is collected. The TPA of entangled photons scales
linearly with the pump intensity (rather than quadratically for
classical light), and the crossover to the scaling with higher
orders shows the break-down of the validity of the two-photon
state approximation. Here, we will investigate this crossover
and its dependence on the intermediate state.

We calculate the TPA signal with an intermediate state
e with variable energy, and a final state f with 21 000 cm−1.
The states are broadened by γe = γ f = 200 cm−1. The dipole
moments connecting the states were chosen to be μge = μe f

= 1. The signal is proportional to the f -state population after
excitation by the entangled beams, which is given by [15]

p f (t;�) ∝
∫ t

dτ4

∫ τ4

dτ3

∫ t

dτ2

∫ τ2

dτ1

×〈V (τ3)V (τ4)B f (t)V
†(τ2)V

†(τ1)〉
× 〈E†(τ3)E

†(τ4)E(τ2)E(τ1)〉, (34)

where

B f (t) = | f (t)〉〈 f (t)|, (35)

and � denotes the set of control parameters such as
central frequencies, bandwidths, etc. V (t) denotes the exciton
annihilation operator in the interaction picture. Carrying out

the time integrations in complete analogy to the previous
section, we arrive at

p f (t;�) ∝
∫

dω′
a

2π

∫
dω′

b

2π

∫
dωa

2π

∫
dωb

2π
ei(ω′

a+ω′
b−ωa−ωb)t

×〈E†(ω′
a)E

†(ω′
b)E(ωb)E(ωa)〉

× T ∗
f g(ω

′
a, ω

′
b)Tf g(ωa, ωb), (36)

where we had defined the transition amplitude

Tf g(ωa, ωb) = μge

ωa − ωeg + iγe

μe f

ωa + ωb − ω f g + iγ f
. (37)

In the following, we will study how the four-point correlation
function in equation (36) scales with the pump intensity, how
its properties change, and how this is reflected in the TPA
signal.

5.1. The frequency-domain four-point correlation function

The four-point field correlation function in equation
(36) is derived in appendix A. To illustrate the strong
frequency correlations present in the entangled twin-photon
state, we plot cuts of the four-point correlation function〈
E†(ω′

a)E
†(ω′

b)E(ωb)E(ωa)
〉
. It is given by equation (A.13),

which is symmetric with respect to ωa and ωb. We therefore fix
ωb on resonance with the central frequency of the degenerate
beams ωp/2, and plot the absolute value of (A.13) versus
the remaining three variables in figure 6. The red three-
dimensional contour depicts the equipotential surface at half
the maximum value, and the contour plots on the sides depict
projections on the corresponding plane spanned by the two
variables. These two-dimensional plots are scaled nonlinearly
(the colour scale grows as sinh) to better highlight small
features. At low intensities in figure 6(a), we can see that ω′

a and
ω′

b are strongly anti-correlated. This yields a broad resonance
along each of the two frequencies on the planes spanned
with ωa, where we do not see any correlation between the
frequencies. This indicates that at this intensity the entangled
twin-photon state describes the state of the light very well. It is
signified by strong anti-correlations between ω′

a and ω′
b, as well

as between ωa and ωb (which cannot be seen in figure 6). As
the pump intensity is increased in figures 6(b)–(d), we observe
that the equipotential surface, which looks cigar-shaped for

7
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Figure 7. Equation (36) on resonance is plotted versus the pump
intensity |α|2 with an off-resonant intermediate state at e =
12 500 cm−1. The coherent (red) and the incoherent (blue)
contributions are plotted separately. The dashed, grey line is the
linear approximation of the coherent term. Inset: equation (36)
versus the pump frequency ωp for T = 100 fs, σp = 10 cm−1 and
|α|2 = 0.001.

the two-photon state, develops a broad spherical resonance
around the central frequency of the beams. This new feature
stems from pairs of uncorrelated photons, and it is responsible
for the crossover in the intensity dependence. Note that the
crossover in the four-point correlation function happens at a
lower intensity than the crossover in the next subsection. This
is because we use a pump bandwidth of 50 cm−1 (i.e. weaker
entanglement) to make the plots look nicer.

5.2. The intensity crossover

The crossover between the linear and nonlinear regimes shows
up in the dependence of the TPIF signal on the pump intensity.
Equation (A.13) shows that the four-point correlation function
contains two contributions: one that stems from the coherent
interaction of pairs of entangled photons, and that scales
linearly in the pump intensity for low conversion efficiency α.
The other ‘incoherent’ contribution arises from the interaction
with one of the two beams and scales quadratically in the
pump intensity. Figure 7 depicts equation (36), where ωp is
set on resonance with state f , versus the pump intensity |α|2.
The two contributions are plotted separately, and the two-
photon state approximation is shown as a dashed line. For low
intensities, the coherent contribution dominates the signal, and
is well-approximated by the linear approximation. At |α|2 ∼
0.003, the incoherent term becomes stronger than the linear
one, and the total signal depends quadratically on the pump
intensity. However, even though the signal may no longer be
described by the two-photon state, the coherent contribution
still dominates, until at |α0|2 ∼ 0.0051, the incoherent term
crosses the coherent term, and starts to dominate the signal.
Hence, even though the linear scaling breaks down at |α|2 =
0.003, the nonclassical time-bandwidth properties of entangled
photon pairs still dominate the signal until the intensity is
almost twice as high.

We further investigate how this crossover depends on the
intermediate state e [42]. To do this, we plot the crossover
intensity |α0|2 versus the energy of the intermediate state e in

Figure 8. Variation of the intensity |α0|2, where the coherent and the
incoherent contributions cross (see figure 7) with the energy of the
intermediate state e.

figure 8. Clearly, there is a pronounced dip in the crossover
intensity, when the state is on resonance with the central
frequency of the two beams. This can be rationalized by the
strong time correlation between entangled photons. If one of
the photons is absorbed, the other one has to arrive within the
entanglement time, and thereby foster off-resonant transitions.
The incoherent contribution shows no such correlations,
and consequently its contribution is enhanced, when the
intermediate state is on resonance and the arrival time of the
second photon is less important for the signal. The crossover
then occurs at lower pump intensities.

6. Conclusions

We have investigated the dependence of the time- and
frequency-gated HOM-dip and the TPA signal on the intensity
of a pump pulse generating entangled photon pairs. The
crossover from the linear intensity scaling of the four-
point correlation function signifying an entangled two-photon
state to higher powers degrades the HOM-dip, but strongly
depending on the beam bandwidths. We further discussed
the TPA signal. We find that the crossover of the intensity
scaling does not coincide with the crossover in the properties
of the beams. Only for an intensity almost twice as high as the
intensity crossover, the autocorrelation contribution of each
beam becomes more dominant than the coherent interaction
of entangled photon pairs. Furthermore, the crossover depends
on whether or not the intermediate state is on resonance with
the single-photon transitions.
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Appendix A. The four-point field correlation
function

We shall calculate the four-point correlation function in the
frequency domain〈

E†(ω′
a)E

†(ω′
b)E(ωb)E(ωa)

〉
, (A.1)

where E(ω) = E1(ω) + E2(ω). We propagate the field
operators in the Heisenberg picture,

EH = U†
PDCESUPDC, (A.2)

where in this appendix the subscripts H ans S denote
the Heisenberg and Schrödinger pictures, respectively. The
functions {ψk} and {φk} in equation (9) form orthonormal
bases, known as Schmidt modes, and their mode operators
are given by

Ak =
∫

dωaψk(ωa)a(ωa) and Bk =
∫

dωbφk(ωb)b(ωb).

(A.3)

In this basis, the unitary evolution operator (2) reads

UPDC = exp

[∑
k

rkA†
kB†

k − h.c.

]

=
⊗

k exp
[
rkA†

kB†
k − h.c.

]
. (A.4)

This means that ‘the down-conversion generates a tensor
product of distinct broadband twin beam squeezers’ [19]. For
weak down-conversion, i.e. rk � 1, the exponential in (A.4)
can be expanded, and we recover the entangled two-photon
state.

For an arbitrary conversion strength, the action of the
transformation (A.4) on the photon annihilation operators is
described by input–output relations,

Ak,out = U†
PDCAk,inUPDC = cosh(rk)Ak,in + sinh(rk)B

†
k,in,

(A.5)

Bk,out = U†
PDCBk,inUPDC = cosh(rk)Bk,in + sinh(rk)A

†
k,in.

(A.6)

In the Schrödinger picture, the electric field is given by

E1(t) =
∑

k

Ak,out uk(t), (A.7)

and similarly for E2(t) = ∑
k Bk,out vk(t), where the functions

uk and vk are given by equations (10) and (11).
We assume that fields 1 and 2 are initially in the vacuum

state. Only six terms then survive in the field correlation
function of equation (36):

〈E†(ω′
a)E

†(ω′
b)E(ωb)E(ωa)〉

= 〈E†
1 (ω′

a)E
†
1 (ω′

b)E1(ωb)E1(ωa)〉
+ 〈E†

2 (ω′
a)E

†
2 (ω′

b)E2(ωb)E2(ωa)〉
+ 〈E†

1 (ω′
a)E

†
2 (ω′

b)E2(ωb)E1(ωa)〉
+ 〈E†

1 (ω′
a)E

†
2 (ω′

b)E1(ωb)E2(ωa)〉
+ 〈E†

2 (ω′
a)E

†
1 (ω′

b)E2(ωb)E1(ωa)〉
+ 〈E†

2 (ω′
a)E

†
1 (ω′

b)E1(ωb)E2(ωa)〉. (A.8)

We next evaluate the third term in equation (A.8). The other
terms can be calculated similarly. Using equations (A.5) and
(A.6), we obtain in the Heisenberg picture

〈ψi|E†
1,H (ω′

a)E
†
2,H (ω′

b)E2,H (ωb)E1,H (ωa)|ψi〉
=

∑
k,k′,k′′,k′′′

ψk(ω
′
a)φk′ (ω′

b)φ
∗
k′′ (ωb)ψ

∗
k′′′ (ωa)

〈0|(cosh(rk)A
†
k+ sinh(rk)Bk)(cosh(rk′ )B†

k′+ sinh(rk′ )Ak′ )

× (cosh(rk′′ )Bk′′ + sinh(rk′′ )A†
k′′ )

× (cosh(rk′′′ )Ak′′′ + sinh(rk′′′ )B†
k′′′ )|0〉. (A.9)

This correlation function does not vanish, since in (A.5)
and (A.6) photon creation and annihilation operators are
mixed. Only 2 of the 16 terms above are finite, ∝
〈BkB†

k′Bk′′B†
k′′′ 〉 = δk,k′δk′′,k′′′ and ∝ 〈BkAk′A†

k′′B
†
k′′′ 〉 = δk,k′′′δk′,k′′ ,

which immediately yields the final result,

〈E†
1 (ω′

a)E
†
2 (ω′

b)E2(ωb)E1(ωa)〉
=

∑
k

sinh(rk) cosh(rk)ψk(ω
′
a)φk(ω

′
b)

×
∑

k′
sinh(rk′ ) cosh(rk′ )φ∗

k′ (ωb)ψ
∗
k′ (ωa) (A.10)

+
∑
k,k′

sinh2(rk)ψk(ω
′
a)ψ

∗
k (ωa) sinh2(rk′ )φk′ (ω′

b)φ
∗
k′ (ωb).

(A.11)

The pump intensity is given by I = |A0|2. The singular values
rk in equation (9) are proportional to the conversion efficiency
α, and therefore rk ∝ √

I. For low conversion efficiency,
rk � 1, we can approximate sinh(rk) � rk and cosh(rk) � 1.
This allows us to write∑
k,k′

sinh(rk) cosh(rk) sinh(rk′ )

× cosh(rk′ )ψk(ω
′
a)φk(ω

′
b)φ

∗
k′ (ωb)ψ

∗
k′ (ωa)

≈
∑

k

ψk(ω
′
a)rkφk(ω

′
b)φ

∗
k′ (ωb)rk′ψ∗

k′ (ωa)

=
(

− i

�

)2

�∗(ω′
a, ω

′
b)�(ωa, ωb), (A.12)

which coincides with the result we obtain for the twin-photon
state [15]. The second term in equation (A.11) has the leading
order contribution ∝ r2

k , and can therefore be neglected for low
conversion efficiency α. The first term in equation (A.11) is
to leading order linear in the pump intensity, it corresponds to
the coherent interaction of entangled photon pairs and we will
refer to it as the ‘coherent’ term. The second term in equation
(A.11) depends quadratically on I. Therefore, it stems from
the incoherent contributions from either of the two beams, and
will be denoted the ‘incoherent term’.

Repeating the same steps for correlation functions in
equation (A.8), we can combine the six terms in equation (A.8),
and write

〈E†(ω′
a)E

†(ω′
b)E(ωb)E(ωa)〉 = f ∗(ω′

a, ω
′
b) f (ωa, ωb)

+ g(ωa, ω
′
a)g(ωb, ω

′
b) + g(ωa, ω

′
b)g(ωb, ω

′
a), (A.13)

where

f ∗(ω, ω′) =
∑

k

sinh(rk) cosh(rk)

× (ψk(ω)φk(ω
′) + φk(ω)ψk(ω

′)), (A.14)
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g(ω, ω′) =
∑

k

sinh2(rk)(ψk(ω)ψ∗
k (ω′) + φk(ω)φ∗

k (ω′)).

(A.15)

Note that the coherent term f (ω, ω′) correlates two absorption
or emission events, and always involves an interaction with a
photon from both beams. g(ω, ω′) correlates absorption with
emission, and both interactions stem from either of the two
beams.

Appendix B. Analytic SVD

When we neglect the minor maxima of the sinc-function in
equation (6), we can approximate it by a Gaussian function,

sinc

(

k(ωa, ωb)L

2

)
� exp

(−γ (
k(ωa, ωb)L)2
)
, (B.1)

with the constant γ = 0.048 22. If we further use a Gaussian
envelope for the pump pulse,

Ap(ωa + ωb) = 1√
2πσ 2

p

exp

(
− (ωa + ωb − ωp)

2

2σ 2
p

)
, (B.2)

where ωp is the central pump frequency, the entire two-photon
amplitude equation (6) is given by two Gaussian functions.
Now we can employ the following identity to carry out the
SVD (equation (9)) analytically [43–45]:

− iα

�

√
2πσ 2

p

exp[−ax2 − 2bxy − cy2]

=
∞∑

n=0

rnHn(k1x)H∗
n (k2y), (B.3)

with

rn = α

�

√
1 + μ2

4acσ 2
p

μn, (B.4)

and

Hn(kx) =
√

k

2n(n!)
√

π
ei 3π

8 −(kx)2
hn(kx), (B.5)

where hn denotes the nth Hermite polynomial, μ =
(−√

ac + √
ac − b2)/b, k1 =

√
2a(1 − μ2)/(1 + μ2) and

k2 =
√

2c(1 − μ2)/(1 + μ2). The Hermite functions are
normalized, such that∫

dx|Hn(kx)|2 = 1. (B.6)

With the two exponentials (B.1) and (B.2), we have a =
1/(2σ 2

p )+γ T 2
1 , b = 1/(2σ 2

p )+γ T1T2 and c = 1/(2σ 2
p )+γ T 2

2 .
This decomposition was used to evaluate the field

correlation functions throughout this paper.
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