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The dependence of various types of linear signals on the phase profile of broadband optical pulses
is examined using fundamental time translation invariance symmetry of multipoint correlation func-
tions. The frequency-domain wave-mixing analysis presented here unifies several arguments made
earlier with respect to the conditions whereby coherent control schemes may be used. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4824857]

Recent experiments of Miller et al.1 had demonstrated
the coherent control of the photoisomerization of Rhodophin
to linear order in the pump intensity. A 20% change in yield
was achieved by varying the amplitude and phase profile
of the pump. These findings were challenged by Joffre2, 3

who argued that linear stationary signals should be indepen-
dent on phase. The issue has been subsequently addressed
by several theoretical and experimental studies.4–8 It has
also been argued that coupling to a bath is essential for
such observations.8 In this paper, we show how this problem
may be generally addressed by treating signals obtained with
broadband pulses as wave mixing in the frequency-domain.
The origin of phase dependence, which is essential for any
coherent-control scheme, is clarified by using a general argu-
ment based on time translation symmetry of observables.

In the frequency-domain description, the various signals
obtained by broadband pulses can be viewed as path integrals
in the joint matter/field space; we must sum over all possi-
ble ways in which the relevant field modes interact with the
various molecular transitions. To describe these signals, we
introduce a general multipoint correlation function:9

〈Vvn
(ωn) · · · Vv1 (ω1)〉0 =

∫∫
· ·

∫
dτ1 · · · dτn

× exp(iω1τ1 + · · +iωnτn)

×〈T Vvn
(τn) · · · Vv1 (τ1)〉, (1)

where we use a compact superoperator notation in the fre-
quency domain.4 Superoperators are labeled by v = L,R

which indicates whether they act from the left or from the
right, ALX = AX, ARX = XA and T is a time-ordering oper-
ator which enforces the time-ordered interactions in a given
diagram.

The time-domain correlation function must be invariant
to shifting of all time arguments by a constant t

〈T Vvn
(t + τn) · · · Vv1 (t + τ1)〉 = 〈T Vvn

(τn) · · · Vv1 (τ1)〉.
When all time arguments in the right-hand side of Eq. (1)
are shifted by t, we find that 〈Vνn

(ωn) · · · Vν1 (ω1)〉0 is mul-
tiplied by the factor exp (i(ω1 + ω2 · · · + ωn) t). Since, on
physical grounds, this quantity must be independent on

a)smukamel@uci.edu

the translation time t, the sum over all frequencies in
〈Vvn

(ωn) · · · Vv1 (ω1)〉 should vanish,

ω1 + ω2 · · · + ωn = 0.

We can then write

〈Vvn
(ωn) · · · Vv1 (ω1)〉0

= 〈Vvn
(ωn) · · · Vv1 (ω1)〉δ(ω1 + ω2 + · · + ωn).

The frequency-domain expressions for signals will thus
involve one less integral thanks to this conservation, which
simplifies the analysis.

This symmetry is well established for nonlinear
susceptibilities10 but can be applied more broadly to other
types of observables. Below we use it to discuss three types
of linear signals in molecules whose coupling to the radiation
field is given by

H ′ = V [ε(t) + ε∗(t)].

Here ε(t) is the complex field amplitude and V is the dipole
operator.

THE ABSORPTION OF A WEAK PROBE BY
A MOLECULE INITIALLY AT EQUILIBRIUM

If the molecule is initially in thermal equilibrium, the ab-
sorption rate of a weak probe pulse which can be read off
Fig. 1(a) is given by the linear response function

S = Im
∫∫

dω1dω2〈VL(ω2)VL(ω1)〉ε(ω2)ε(ω1)δ(ω1 + ω2),

where

〈VL(ω2)VL(ω1)〉0 =
∫∫

dτ1dτ2〈T VL(τ1)VL(τ2)〉ε(τ1)ε(τ2)

× exp(iω1τ1 + iω2τ2).

Time translation invariance gives

〈VL(ω2)VL(ω1)〉0 = 〈VL(ω2)VL(ω1)〉δ(ω1 + ω2).

Since the electric field is real, then ε(−ω) = ε∗(ω) and
we finally get

S = Im
∫

dω1〈VL(−ω1)VL(ω1)〉ε(ω1)ε∗(ω1).

0021-9606/2013/139(16)/164113/3/$30.00 © 2013 AIP Publishing LLC139, 164113-1
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FIG. 1. Double-sided density matrix diagrams for (a) Eq. (2), (b) Eq. (4),
and (c) Eq. (6).

The δ(ω1 + ω2) factor in this case leaves us no freedom
in the frequency domain; the signal depends on a single mode,
ω1 = −ω2 and the phase of ε(ω) and ε∗(ω) is cancelled out.
The signal only depends on the power spectrum of the pulse
|ε(ω)|2 and is independent on the phase of ε(ω).

Here and hereafter we invoke the rotating wave approx-
imation. Expanding the correlation function in molecular
eigenstates a, b . . . and assuming that the system is initially
in state |a〉 gives (see Fig. 1(a))

〈VL(−ω1)VL(ω1)〉 =
∑
a,b

P (a)
|Vab|2

ω1 − ωba + iε
. (2)

THE ABSORPTION OF A WEAK PROBE BY A SYSTEM
PREPARED IN A NON-STATIONARY STATE

We now assume that the system is prepared in an arbi-
trary non-stationary superposition state described by the den-
sity matrix,

ρ(τ0) =
∑
a,c

ρac(τ0)|a〉〈c|.

Starting with this state, the linear absorption rate of an
external probe field is given by (see Fig. 1(b))

S = Im
∑
a,c

dω1dω2〈VL(ω1)VR(ω2)ρac(τ0)〉0ε(ω1)ε(ω2),

where

〈VL(ω1)VR(ω2)ρac(τ0)〉0

=
∫∫

dτ1dτ2〈T VL(τ2)VR(τ1)ρac(τ0)〉

× exp(iω1τ1 + iω2τ2 − iωacτ0).

By shifting all time arguments, we now obtain

〈VL(ω1)VR(ω2)ρac(τ0)〉0

= 〈VL(ω1)VR(ω2)ρac(τ0)〉δ(ω1 + ω2 − ωac).

This gives

S = Im
∑
a,c

∫
dω1〈VL(ω1)VR(ωca − ω1)ρac(τ0)〉

× ε(ω1)ε∗(ω1 − ωac). (3)

Now ω1 is different from ω2 thanks to the coherence
frequency ωca of the initial state, and the signal will gener-
ally depend on pairs of modes ω1, ω2 = −ω1 + ωac and
on their relative phase. If the molecule is initially in a pop-
ulation state ωac = 0 then the signal will be independent on
the delay and the signal is independent on phase. By expand-
ing in eigenstates, we obtain for the correlation function (see
Fig. 1(b))

〈VL(ω1)VR(ωca − ω1)ρac(τ0)〉

=
∑
a,b,c

VcbVbaρac

ω1 − ωab + iε
exp(−iωacτ0). (4)

This observable can represent, e.g., the coherent con-
trol of peptide ionization to discriminate between various
tryptophans.11

EXPECTATION VALUE OF A NON-STATIONARY
OBSERVABLE

Suppose we measure the expectation value of an op-
erator A that does not commute with the Hamiltonian:
A = ∑

b,c

Acb|c〉〈b|. As an example consider the probability of

the system to be in some group of states. This may be rep-
resented by a projection operator A = ∑

n

|n〉〈n| where {|n〉}
is not a complete basis and |n〉 are not eigenstates of the
Hamiltonian but, represent the observed space (such as the cis
isomer in Rhodopsin): Acb = ∑

n

〈c|n〉〈n|b〉.
To linear order in the incoming pulse intensity, this time-

dependent probability (Fig. 1(c)) is given by

〈A(τ0)〉 =
∫∫

dω1dω2〈VL(ω1)Abc
L (τ0)VR(ω2)〉

× ε(ω1)ε(ω2)δ(ω1 + ω2 + ωbc),

where

〈VL(ω1)Abc
L (τ0)VR(ω2)〉 =

∫∫
dτ1dτ2

〈
T VR(τ2)VL(τ1)Abc

L

〉

× exp(iω1τ1 + iω2τ2 + iωbcτ0).

Time translational invariance then yields
〈
VL(ω1)Abc

L (τ0)VR(ω2)
〉 = 〈

VL(ω1)Abc
L (τ0)VR(ω2)

〉
0

× δ(ω1 + ω2 + ωbc). (5)
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We finally obtain

〈A(τ0)〉= Im
∑
b,c

∫
dω1〈VL(ω1)Abc(τ0)VR(−ωbc − ω1)〉

× ε(ω1)ε∗(ωbc + ω1).

This observable again involves pairs of modes ω1,
ω2 which differ by the observation frequency ω, ω1

= −ω2 − ωbc, and thus depends on their relative phase. By
expanding it in eigenstates, we obtain

〈VL(ω1)Abc(τ0)VR(ω2)〉 =
∑
a,b,c

P (a)

× VabAbcVca

(ω1 − ωca + iε)(ω1 + ω2 − ωcb + iε)
exp(iωbcτ0).

(6)

If the observable A commutes with the molecular Hamil-
tonian (say we measure the population of a group of eigen-
states |n〉) it is diagonal in the eigenstates basis Acb = Accδcb.
Then ωbc = 0 and the above signal becomes independent on
the phase of the field.

In summary, the key factor in determining the phase de-
pendence of the signal is not its linearity in the field but the
multimode nature of the process. This becomes most trans-
parent in the frequency domain representation adopted here.
Observables in broadband measurements may generally be re-
cast as path integrals over field modes, with one constraint
stemming from time translational invariance: the sum of all
frequencies in each contribution must be zero. These path in-
tegrals represent a wave mixing of the relevant modes. Linear
absorption depends on paths involving two modes. Because
of the constraint this number reduces to one, thus eliminat-
ing the phase dependence in Eq. (1) altogether. When start-
ing in a non-stationary state, the linear response depends on
three frequencies. The extra frequency is related to the initial
coherence which must be present in a non-stationary state.
We thus have phase dependence in Eq. (3). Similarly, observ-
ing a non-stationary operator after linear excitation again re-
quires three frequencies. With a single constraint this reduces
to two, and phase dependence is maintained in Eq. (5). By ei-
ther starting in a non-stationary state (Eq. (3)) or looking at a
non-stationary variable (Eq. (5)), a new frequency enters com-
pared to Eq. (1) which causes the phase dependence, despite
the constraint. This frequency stems from an extra coherence

that enters the picture either through the initial state (Eq. (3))
or at the final detection stage (Eq. (5)).

Equation (3) can represent a pump-probe signal with an
impulsive pump that creates the superposition state. Equa-
tion (5) can represent, e.g., a photoisomerization signal with
a gated fluorescence measurement that probes the population
of one isomer (which is not an eigenstate of the total Hamil-
tonian). In either case, the extra frequency is responsible for
the phase dependence and enables the application of coherent-
control schemes.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the National
Institute of Health Grant No. GM-59230, National Science
Foundation through Grant No. CHE-1058791, and the Chem-
ical Sciences, Geosciences and Biosciences Division, Office
of Basic Energy Sciences, Office of Science, US Department
of Energy.

1V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge,
and R. J. D. Miller, “Coherent control of retinal isomerization in bacteri-
orhodopsin,” Science 313, 1257–1261 (2006).

2M. Joffre, “Comment on ‘Coherent control of retinal isomerization in bac-
teriorhodopsin,’” Science 317, 453 (2007).

3V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge,
and R. J. D. Miller, “Response to Comment on ‘Coherent control of retinal
isomerization in bacteriorhodopsin,’” Science 317, 453 (2007).

4M. Spanner, C. A. Arango, and P. Brumer, “Communication: Conditions
for one-photon coherent control phase control in isolated and open quantum
systems,” J. Chem. Phys. 133, 151101 (2010).

5C. A. Arango and P. Brumer, “Communication: One-photon phase con-
trol of cis-trans isomerization in retinal,” J. Chem. Phys. 138(7), 071104
(2013).

6C. Florean, D. Cardoza, J. L. White, J. K. Lanyi, R. J. Sension, and P. H.
Bucksbaum, “Control of retinal isomerization in bacteriorhodopsin in the
high-intensity regime,” Proc. Natl. Acad. Sci. U.S.A. 106, 10896 (2009).

7V. I. Prokhorenko, A. Halpin, P. J. M. Johnson, R. Miller, and L. S. Brown,
“Coherent control of the isomerization of retinal in bacteriorhodopsin in
the high intensity regime,” J. Chem. Phys. 134, 085105 (2011).

8G. Katz, M. A. Ratner, and R. Kosloff, “Control of decoherence: Weak field
control of an excited state objective,” New J. Phys. 12, 015003 (2010).

9S. Mukamel and S. Rahav, “Ultrafast nonlinear optical signals viewed from
the molecule’s perspective: Kramers-Heisenberg transition-amplitudes ver-
sus susceptibilities,” Adv. At., Mol., Opt. Phys. 59, 223–263 (2010).

10S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Uni-
versity Press, New York, 1995).

11S. Afonia, O. Nenadl, A. Rondi, L. Bonacina, J. Extermann, D. Kiselev,
I. Dolamic, T. Burgi, and J. P. Wolf, “Discriminability of tryptophan con-
taining dipeptides using quantum control,” Appl. Phys. B 111, 541–549
(2013).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.11.129 On: Thu, 03 Apr 2014 20:57:06

http://dx.doi.org/10.1126/science.1130747
http://dx.doi.org/10.1126/science.1137011
http://dx.doi.org/10.1126/science.1137032
http://dx.doi.org/10.1063/1.3491366
http://dx.doi.org/10.1063/1.4792834
http://dx.doi.org/10.1073/pnas.0904589106
http://dx.doi.org/10.1063/1.3554743
http://dx.doi.org/10.1088/1367-2630/12/1/015003
http://dx.doi.org/10.1016/S1049-250X(10)59006-2
http://dx.doi.org/10.1007/s00340-013-5370-0

