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Photon-based quantum information processing is based on manipulating multi photon interference. We
focus on the Hong-Ou-Mandel (HOM) dip in the photon coincidence rate which provides a direct measure
of interference of indistinguishable photons linked to their Bose statistics. The effect has been first observed
with entangled photons generated by parametric down conversion and then extended to independent
emitters. Fluctuations caused by coupling between emitters and a bath can erode the interference which
causes the dip. Here we show how the magnitude and shape of the HOM dip is affected by spectral diffusion
induced by coupling to a brownian oscillator bath. Conditions for maintaining and controlling the
interference are specified.

T
he ultrafast optical control of quantum interference of single photons is of fundamental interest with broad
applications to entanglement generation1, quantum computing2–4, communication5, and information pro-
cessing6–8. The HOM dip in the photon coincidence counting (PCC) rate1 is an ultimate measure of photon

indistinguishability9,10. It has been observed in a broad variety of systems including remote frequency-detuned
organic molecules11,12, quantum wells13, quantum dots14–16, nano crystals17, nitrogen vacancies in diamond18–20

and carbon nanotubes21. We examine photon interference in the setup shown in Fig. 1a. A pair of photons is
generated by two remote two-level molecules a and b with ground ga and excited state ea, a 5 a, b. These photons
then enter a beam splitter and are subsequently registered by time-and-frequency gated detectors s and r. There
are two types of possible outcomes: two photons registered in one detector (s or r) or coincidence where one
photon is detected in each. The ratio between these outcomes reflects the Bose statistics and degree of distinguish-
ability of photons. If the two photons incident on the beam splitter are indistinguishable the PCC vanishes. This is
known as the HOM dip. The dip is displayed by varying the position of the beam splitter which causes delay T
between the two photons. The normalized PCC rate varies between 1 for completely distinguishable photons and
0 when they are totally indistinguishable. For classical fields and 50550 beam splitter the PCC rate may not be less
than 1/2. We denote the photons to be indistinguishable (distinguishable) if the PCC rate is smaller (larger) than
1/2.

PCC is typically measured using pure time-domain detection22,23. Originally performed with entangled
photons generated by parametric down conversion (PDC)1 the shape of the dip vs delay is usually related to
the two-photon state envelope which is governed by an effective PDC Hamiltonian24. Bath induced fluctuations
can become important for remote emitters and have been introduced phenomenologically12. Here we present a
microscopic theory for PCC with bath fluctuations by formulating the signal in the joint field-matter space.

Results
Generation and detection of PCC by two remote emitters. The time-and-frequency gated PCC signal is
described by the two pairs of loop diagrams shown in Fig. 1c. Each loop represents molecule (a or b) which
undergoes four field-matter interactions and each detector interacts twice with the field. Fig. 1c shows that after
interacting with pump (with its ket) at time t2 molecule a evolves in the coherence reaga

during time interval t’2.
The second interaction of the pump with the bra then brings the molecule into a population state reaea

which
evolves during interval t1 until the first interaction with spontaneous emission mode occurs with ket. The
molecule then evolves into the coherence rgaea

during t’1 until the second bra- interaction of spontaneous
mode. During population and coherence periods, the characteristic timescale of the dynamics is governed by
population relaxation and dephasing, respectively.
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All relevant single-molecule information is given by the four point dipole
correlation function Fa t1,t2,t3,t4,ð Þ~hVge t1ð ÞV{

eg t2ð ÞVge t3ð ÞV{
eg t4ð Þia,

where V and V{ are the lowering and raising dipole transition opera-
tors, respectively. Diagrams i in Fig. 1c represent non-interfering
term given by a product of two independent fluorescence contribu-
tions of the individual molecules. Diagrams ii represent interference
described in the joint space of the two molecules and involve the
interference of eight quantum pathways (four with the bra and four
with the ket) with different time orderings. Each molecule creates a
coherence in the field between states with zero and one photon j0æÆ1j
and j1æÆ0j. By combining the contributions from a pair of molecules
we obtain a photon population j1æÆ1j that can be detected24,25. For a
pair of identical molecules, the beam splitter destroys the pathway
information making the molecules indistinguishable and giving rise
to quantum interference.

Bath induced fluctuations via e.g. spectral diffusion (SD) can des-
troy the quantum interference. Generally SD can manifest itself as
either discrete random jumps of the emission frequency21,31,32 or as a

broadening of a hole burnt in the spectrum by a narrowband
pulse33,34. We focus on the SD in the ‘‘hole burning’’ limit (HBL)
(see Methods for the precise conditions and Section S3 of SI). This
is relevant to the crystals which store information in the form of
reversible notches that are created in their optical absorption spectra
at specific frequencies. Long storage times35, high efficiencies36, and
many photon qubits in each crystal37 can be achieved in this limit.

We have calculated the PCC signal (see Methods) for the output
fields E3 and E4 of the beam splitter (see Fig. 1a) that contains all
relevant field matter interactions (see Section S3 of SI) using the SD in
HBL. It first assumes that the dephasing is much faster than the
fluctuation timescale, i.e. t’k=L{1

a , k 5 1, 2, 3, 4. Second, if excitation

pulse duration s{1
p and the inverse spectral sj

v

� �{1
, and temporal

s
j
T

� �{1
, j 5 r, s gate bandwidths of the detectors and much shorter

than the fluctuation time scales, one may neglect the dynamics during
the delay between population evolution and its detection. Under these
conditions the PCC signal is given by

Figure 1 | Time-and-frequency resolved measurement of PCC with spectral diffusion. Schematic of the PCC experiment with two source molecules -

(a), the two-level model of the molecule with SD used in our simulations - (b). (c) - Loop diagrams for the PCC rate of emitted photons from two

molecules (for diagram rules see26). The left and right branches of each diagram represent interactions with ket- and bra- of the density matrix,

respectively. Field-matter interactions with the pump pulses pa and pb (blue), spontaneously emitted s, s9, r, r9 photons (red) and detectors (brown).
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R34
c Cr,Cs; Tð Þ~R0Cr

a Crð ÞCs
b Csð Þ|

1{
Ir

a Cr,�ts,{Tð ÞIs
b

�tr,Cs,Tð Þ
Cr

a Crð ÞCs
b Csð Þ

cos U Cr,Cs; Tð Þe{~C �ts{�trð Þ
� �

z a<b,T<{Tð Þ,

ð1Þ

where expressions in the last line represent permutation of the mole-
cules a and b, Cj~ �tj,�vj

� 	
represents a set of gating parameters for

the detector j 5 r, s. Ca(C 5 {t, v}) is the time-and-frequency
resolved fluorescence of molecule a 5 a, b corresponding to diagram
i in Fig. 1c:

Cj
a t,vð Þ~Cj

a0 tð Þe
{

vp{v0
a{lað Þ2

2~s2
pa

{
v{~va tð Þð Þ2

2~s
j2
a tð Þ , ð2Þ

v0
a~va{la is the mean absorption and fluorescence frequen-

cy. Ij
a C1,t2,tð Þ and Ij

a t1,C2,tð Þ with t1 , t2 are the interference
contribution a 5 a, b, j 5 r, s corresponding to diagram ii in
Fig. 1c

Ij
a C1,t2,tð Þ~Ij

a0 t1,t2ð Þe
{

v2
ab

4s
j2
T

{1
4s

j
ta t1,t2ð Þ2t2

|e
{

v
P

{v
j
pa t1 ,t2ð Þð Þ2

2s
j2
pa t1 ,t2ð Þ e

{
v1{v

j
a t1 ,t2ð Þð Þ2

2s
j2
a t1 ,t2ð Þ ,

ð3Þ

U Cr,Cs; tð Þ~va �ts{�trð Þzvr
ta

�tr,�ts,�vrð Þtz la=Lað Þ 2 Fa �trð Þ{Fa �tsð Þ½ �ð

zFa �ts{�trð ÞÞ{ a<b,r<sð Þ, ~C tð Þ~
X

a~a,b

D2
a

L2
a

Fa tð Þ with

Fa tð Þ~e{LatzLat{1, a 5 a, b and all the remaining parameters
are listed in Eqs. (S24)–(S31) of the SI. The contribution of Eq. (2)
enters signal in Eq. (1) as the amplitude square coming from each
molecule in the presence of fluctuations. The interference term (3)
generally cannot be recast as a product of two amplitudes26. In the
following we simulate the results of Eqs. (1)–(3) using the typical
parameters of the TPI experiments9–20.

Variation of the HOM dip with gating. We first examine the effect
of time and frequency gating on photon indistinguishability and
PCC. In the absence of the SD and using identical detectors
sr

v~ss
v, sr

T~ss
T the signal (1) for td~�ts{�tr is reduced to

R34
c t; Tð Þ*1{g cos vabtdzVtTð Þe{1

2s
2
t T2{1

2 D2
azD2

bð Þt2
d , ð4Þ

where the parameters g, Vt and st are given in Eqs. (S32)–(S35) of
the SI. Eq. (4) is commonly derived in the field space alone by adding
a phenomenological Gaussian function of the time delay1. In the
present analysis the Gaussian shape is characteristic to the
harmonic bath.

Fig. 2a depicts Eq. (4) vs the delay between detectors �ts{�tr for
different values of the time gate bandwidth sT and fixed spectral gate
bandwidth sv. If the time gate bandwidth is smaller than the splitting
v0

b{v0
a~10 MHz the HOM dip is shallow and does not go below 1/

2 which implies that photons generated by the two molecules are
distinguishable. If the time gate bandwidth is larger than the splitting,
the HOM dip drops below 1/2 indicating that the photons are indis-
tinguishable. Similarly in Fig. 2b we fix the time gate bandwidth sT

and vary the frequency gate sv. As sv is increased the photons
gradually become more indistinguishable and the dip becomes lar-
ger. In the original HOM experiment1 the PCC was plotted vs the
delay T. Here we fix T and vary the delay between the detectors
td~�ts{�tr . In the absence of fluctuations both T and td enter the
signal (4) in a similar way. However once fluctuations are included
Eq. (1), td is directly connected to fluctuations whereas the delay T is
not. Below we study the PCC variation with td holding T fixed.

Narrowband spectral filters are typically used in the experiments
with broadband laser pulses. The broadband excitations degrade the
quantum interference27–29. This can be easily explained since the in
addition to selecting a well defined frequency, the narrow frequency
gate makes the ultrashort pulse longer and therefore two such
photons are more likely to overlap in time and harder to distinguish,
enhancing the HOM dip. In the present application we use narrow-
band excitation pulse and the degree of distinguishability is con-
trolled by the interplay of spectral and temporal gating widths
through the Wigner function. Therefore if the time gate is narrow,
the broad frequency gate makes photons less distinguishable increas-
ing the visibility of HOM dip.

Time-and-frequency resolved fluorescence with spectral dif-
fusion. The simplest way to observe SD is by time-and-frequency
resolved fluorescence. The molecular transition frequency is coupled
linearly to an overdamped Brownian oscillator that represents the
bath (see Fig. 1b). The absorption and emission lineshape functions
for a pair of molecules are given by30

Figure 2 | Effect of gating spectrograms on photon indistinguishability in the absence of spectral diffusion. PCC signal for La 5 Lb 5 0 given by

Eq. (4) vs the delay between the detection �ts~�tr for different values of the time - (a) and frequency - (b) gating bandwidths for the fixed frequency

sj
v~1 MHz - (a) and time s

j
T~1 MHz - (b) bandwidths, j 5 r, s. The parameters are chosen as v0

a~3:2 GHz, v0
b{v0

a~10 MHz, T 5 10 ns, sp 5

3 MHz, Da 5 Db 5 25 MHz, vp~v0
bzlb.
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sA vð Þ~
X

a~a,b

2pDað Þ{1=2e
{

v{v0
a{lað Þ2

2D2
a , ð5Þ

sF vð Þ~
X

a~a,b

2pDað Þ{1=2e
{

vzv0
azlað Þ2

2D2
a , ð6Þ

where 2la is the Stokes shift and Da~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lakBT=�h

p
is a linewidth

parameter. Together with the relaxation rate La (see Eq. (11)) these
parameters completely describe the SD model and govern the
evolution of the emission linewidth between the initial time given
by Eq. (5) (see Fig. 3a) and long time given by Eq. (6) (see Fig. 3b).
Eqs. (5)–(6) are obtained in the slow nuclear dynamics limit:
La=Da.

The time-and-frequency resolved fluorescence (Eq. (2)) is
depicted as a series of the snapshot spectra at different times for
molecule a in Fig. 3c. It shows a time dependent frequency redshift
~va tð Þ and time dependent spectral broadening given by ~sa0 tð Þ (see
Section S4 of SI). Initially ~va 0ð Þ~v0

azla whereas at long times
~va ?ð Þ~v0

a{la, where 2la is the Stokes shift. 2D representation

of Eq. (2) is given in Fig. 3e. Fig. 3d and 3f show the same signals for
molecule b. Because of the different reorganization energies la, lb

and relaxation rates La, Lb the Stokes shift dynamics and dispersion
are different. Even when the absorption frequencies are the same va

5 vb, the fluorescence can show a different profile due to SD. This
affects the distinguishability of the emitted photons as will be demon-
strated below.

Combined effect of gating and SD on the HOM dip. We depict the
2D fluorescence (2) in Fig. 4a. The vertical line marks the pump
frequency vp~v0

b - tuned midway between absorption and
fluorescence at long time (see Eqs. (5-6)), the Stokes shift is
,1 kHz. Fig. 4b shows the same for vp~v0

bzlb where we have a
larger Stokes shift ,2 kHz. At vp~v0

bz2lb the Stokes shift
,3 kHz as shown in Fig. 4c. Fig. 4d–f show the PCC signal (1) for
the parameters corresponding to Fig. 4a–c, respectively. The HOM
dip is less pronounced as the degree of indistinguishability drops
from 0.275 - Fig. 4d, to 0.3 - Fig. 4e further to 0.375 in Fig. 4f.

The distinguishability is also affected by the molecular transition
frequencies. Fig. 4g shows that for fixed time and frequency gate
bandwidths sj

v~s
j
T~100 MHz, j 5 r, s the photons are distingui-

shabe as long as v0
b{v0

aw110 MHz and are indistinguishable other-
wise. The effect of the time delay T caused by the position of the beam
splitter is depicted in Fig. 4h. For T , 10 ns (.100 MHz bandwidth)
the photons are indistinguishable, after that they become distin-
guishable. The SD timescale is one the key parameters affecting the
degree of indistinguishability. Using Eq. (12) we fixed the absorption
linewidth Ca and varied La and Da. The PCC signal (1) depicted in
Fig. 4i shows that if the molecules have nearly degenerate transition
frequencies v0

b{v0
a~1 MHz for slower fluctuationsLa 5 0.5 MHz,

Lb 5 1 MHz the photons are indistinguishable. Increasing the SD
rate of one of the molecules increases the degree of distinguishability,
e.g. for La 5 10 MHz the HOM dip becomes 0.225, which is still less
than classical 1/2 limit. However for fast SDLa 5 18 MHz, the HOM
dip becomes 0.625 and photons are clearly distinguishable even
though both time and frequency gates are broader than the difference
in transition frequencies.

We further illustrate the effect of frequency and time gating in the
presence of spectral diffusion. Fig. 4j shows that if two molecules have
different SD timescales (La 5 15 MHz and Lb 5 1 MHz) and the
frequency gate bandwidth is narrow (sv 5 50 MHz) the photons are
rendered distinguishable and HOM dip is 0.6. By increasing the sv the
photons become indistinguishable and HOM dip is 0.48 for sv 5
120 MHz and 0.35 for sv 5 200 MHz. In all three cases we kept the
time gate fixed at sT 5 100 MHz. Alternatively we change the time gate
bandwidth while keeping the frequency gate fixed at sv 5 100 MHz.
Fig. 4k shows that initially indistinguishable photons at sT 5 80 MHz
with HOM dip 0.675 become indistinguishable at sT 5 110 MHz with
HOM dip 0.45 and at sT 5 150 MHz with HOM dip 0.275. Thus, if the
presence of the bath erodes the HOM dip the manipulation of the
detection gating allows to preserve the quantum interference.

Discussion
To put our ideas into more practical perspective and connect with
quantum processing technologies, we note that recent progress in
long-term quantum memories using HBL where entanglement is
achieved with telecom photons, proved the possibility of quantum
internet38,39. Simultaneous time and frequency detection can be
achieved using high-speed photodiode which converts fast optical
signal into a fast electrical signal, fast oscilloscopes to observe the
waveform, wide bandwidth spectrum analyzers and other elements.
Short pulse characterization using time-frequency map such as fre-
quency-resolved optical gating (FROG)40, spectral phase interfero-
metry for direct-field reconstruction (SPIDER)41 are well established
tools for ultrafast metrology42,43. Extending these techniques to a
single photon time and frequency resolved detection is challenging

Figure 3 | Effect of SD on individual molecule emission lineshapes.
Absorption (5) - (a) and fluorescence (6) - (b) line shapes vs displaced

frequency D�v~v{
1
2

vazvbð Þ. Time-and-frequency resolved

fluorescence (2) displayed as a snapshot spectra for molecule a - (c) and

b - (d) and depicted as a two-dimensional contour plot - (e) and (f),

respectively. Parameters of the system are: v0
a~3:2 GHz, v0

b{v0
a~

600 MHz, Da 5 220 MHz, Db 5 205 MHz, La 5 5 MHz, Lb 5 3 MHz,

vp~v0
bzlb, sp 5 102 MHz, s

j
T~sj

v~100 MHz, j 5 r, s, and the

temperature is set to 10 K.
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and can be achieved if combined with on-chip tunable detectors44 or
upconversion processes45,46.

In summary we have employed a time-ordered superoperator
Green’s function formalism to calculate the PCC from two remote
emitters coupled to a bath. In the absence of a bath, time gating is
sufficient to reveal quantum interference. Even if the emitters have
well resolved transition frequencies with splittingDv quantum inter-
ference manifests if the temporal resolution Dt is higher than 2p/Dv.
Once the bath is included, time-and-frequency gating is necessary to
resolve the dip. We showed how various model parameters affect the
indistinguishability.

Methods
Coincidence measurements. The PCC signal is defined via the four point correlation
function of the time-and-frequency gated electromagnetic fields E3 and E4 incident on
the detector22

R34
c Cr ,Csð Þ~ð?
{?

dts

ð?
{?

dtr E t fð Þ{
3 trð ÞE t fð Þ{

4 tsð ÞE t fð Þ
4 tsð ÞE t fð Þ

3 trð Þ
D E

,
ð7Þ

where . . .h i:tr . . . rð Þ is tracing with respect to r - the total field plus matter density
operator. The fields in the output 3, 4 and input 1, 2 ports of the 50550 beamsplitter
are related by

E3 tð Þ~ E1 tð Þ{iE2 tzTð Þffiffiffi
2
p , E4 tð Þ~ E2 tð Þ{iE1 t{Tð Þffiffiffi

2
p , ð8Þ

where 6cT is small difference of path length in the two arms. In Section S1 and S3 of
the SI we show that Eq. (7) may be recast as

R34
c Cr ,Cs; Tð Þ~ 1

2pð Þ2
ð?

{?
d2C’rd2C’s

W rð Þ
D Cr ,C’r ; 0ð ÞW sð Þ

D Cs,C’s,0ð ÞR ið Þ
B C’r ,C’sð Þz

h

W rð Þ
D Cr ,C’r ; {Tð ÞW sð Þ

D Cs,C’s,Tð ÞR iið Þ
B C’r ,C’sð Þ

i

z s<r,T<{Tð Þ:

ð9Þ

Here C’j~ t’j,v’j
� 	

represents the set of parameters of the matter plus field incident on
the detector j 5 r, s. Eq. (9) is given by the spectral and temporal overlap of the Wigner

spectrograms of detectors W sð Þ
D , W rð Þ

D Eqs. (S3) (Section S1) and bare signal pathways

R ið Þ
B and R iið Þ

B (S12)–(S13) (Section S3) of SI. The detector provides a window of
observation centered at time �tj and frequency �vj , j 5 s, r. �tj and �vj can be varied

independently. However the temporal ~s
j
T and spectral ~sj

v resolutions are not

independent and must satisfy ~sj
v

.
~s

j
T§122. We assume a point-size detector and

omit all effects of spatial resolution only retaining temporal and spectral
gating25,47.

Figure 4 | The combined effect of SD and gating on photon indistinguishability. Time-and-frequency resolved fluorescence from two molecules

(vertical black line represents excitation frequency) - top row for different excitation frequencies: vp~v0
b - (a), v0

bzlb - (b), v0
bz2lb - (c). The

corresponding PCC signal vs delay between detector clicks: �ts{�tr - (d) - (f) (middle row) for the values of the excitation frequencies in (a) - (c),

respectively. Here v0
b{v0

a~100 MHz, T 5 1 ns, La 5 5 MHz, Lb 5 3 MHz. PCC for different transition energies of molecules excited at vp~v0
bzlb -

(g); PCC for different values of the delay T with v0
b{v0

a~100 MHz - (h); PCC for different values of the SD time scale La and Lb and fixed linewidth Ca,

Cb according to Eq. (12) - (i). Excitation pulse bandwidth sp 5 102 MHz, gating bandwidths s
j
T~sj

v~100 MHz, j 5 r, s, transition energies v0
b{v0

a~1.

PCC for different frequency gate bandwidths - (j) at fixed time gate bandwidth sT 5 100 MHz and for different time gate bandwidths - (k) at fixed

frequency gate bandwidth sv 5 100 MHz. Molecules have distinct SD timescales La 5 15 MHz, Lb 5 1 MHz and v0
b{v0

a~1 MHz.
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Spectral diffusion. For an electronic system coupled to a harmonic bath the matter
correlation function obtained by the second order cumulant expansion30 (see Section
S2 of SI)

Fa t1,t2,t3,t4ð Þ~ maj j4e{iva t1{t2zt3{t4ð ÞeWa t1 ,t2 ,t3 ,t4ð Þ, ð10Þ

where va:vea
{vga

is the absorption frequency, Wa(t1, t2, t3, t4) is the four-point
lineshape functionWa(t1, t2, t3, t4) 5 2ga(t1 2 t2) 2 ga(t3 2 t4) 1 ga(t1 2 t3) 2 ga(t2 2

t3) 1 ga(t2 2 t4) 2 ga(t1 2 t4). We shall use the overdamped Brownian oscillator
model for the spectral density. The lineshape function then depends on two
parameters: the reorganization energy la and the fluctuation relaxation rate La (see
Section S2 of the SI) in the high temperature limit kBT?�hLa we have

ga tð Þ~ D2
a

L2
a

{i
la

La

� �
e{La tzLat{1
� �

: ð11Þ

For a given magnitude of fluctuations Da, a 5 a, b the FWHM of the absorption
linewidth30

Ca~
2:355z1:76 La=Dað Þ

1z0:85 La=Dað Þz0:88 La=Dað Þ2
Da: ð12Þ
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S1. THE DETECTOR SPECTROGRAM

The photon coincidence signal Eq. (7) is defined in terms of the time-and-frequency resolved electric field E(tf). A
frequency (spectral) gate is combined with time gate. The detector with input located at rD is represented by a time
gate Ft centered at t̄ followed by a frequency gate Ff centered at ω̄ [1]. First, the time gate transforms the electric

field at a point in the sample rS : E(rS , t) =
∑
q Êq(rS , t) with Êq(rS , t) = E(rS , ωq)e

−iωqt as follows:

E(t)(t̄; rS , t) = Ft(t, t̄)E(rS , t). (S1)

Then, the frequency gate is applied E(tf)(t̄, ω̄; rS , ω) = Ff (ω, ω̄)E(t)(t̄; rS , ω) to obtain the time-and-frequency-gated
field. The combined detected field at rD can be written as

E(tf)(t̄, ω̄; rD, t) =

∫ ∞
−∞

dt′Ff (t− t′, ω̄)Ft(t
′, t̄)E(rS , t

′), (S2)

where E(t) ≡
∑
s

√
2π~ωs/Ωâse−ωst and Ω is a mode quantization volume. For clarity we hereafter omit the position

dependence in the fields and include the propagation between rS and rD in the spectral gate function. Using Eq. (7)
- (9) we next define the detector spectrogram for the j-th detector, j = r, s

W
(j)
D (t̄j , ω̄j ; t

′, ω′;T ) =

∫ ∞
−∞

dω

2π
|F (j)
f (ω, ω̄j)|2W (j)

t (t′, ω′ − ω, t̄j)e−iωT , (S3)

where

W
(j)
t (t′, ω) =

∫ ∞
−∞

dτF
(j)∗
t (t′ + τ, t̄)F

(j)
t (t′, t̄)eiωτ . (S4)

We can freely vary the parameters of F
(j)
f and F

(j)
t . However the temporal σ̃jT and spectral σ̃jω resolutions of the

spectrogram (S3) will always satisfy the Fourier uncertainty σ̃jω/σ̃
j
T > 1. Assuming that time and frequency gates are

Gaussian

F
(j)
t (t, t̄j) = e−

1
2σ

j2
T (t−t̄j)2

, F
(j)
f (ω, ω̄j) = e

−
(ω−ω̄j)2

4σ
j2
ω , (S5)

we obtain the Wigner spectrogram of the detector

W
(j)
D (t̄j , ω̄j ; t

′, ω′;T ) =
1

σjT [(σjω)−2 + (σjT )−2]1/2
e
− 1

2 σ̃
j2
T (t′−t̄j)2−

(ω′−ω̄j)2

2σ̃
j2
ω

−iAj(ω′−ω̄j)(t′−t̄j+CjT )− 1
2 q

2
jT

2−iω̄jT
, (S6)

where σ̃j2T = σj2T + [(σjT )−2 + (σjω)−2]−1, σ̃j2ω = σj2T + σj2ω , Aj = σj2T [σj2T + σj2ω ]−1, Cj = σj2ω /σ
j2
T , and q−2

j =

(σjT )−2 + (σjω)−2. Using Eq. (S3) one can recast the signal (7) in the form of Eq. (9), where the bare spectrogram is
given by Eqs. (S12) - (S13).

S2. SPECTRAL DIFFUSION

We assume that the electronic states of molecule α = a, b are coupled to a harmonic bath described by the

Hamiltonian Ĥα
B =

∑
k ~ωk(â†αk â

α
k + 1/2). The bath perturbates the energy of state ν. This is represented by the

Hamiltonian

Ĥα
ν = ~−1〈να|Ĥ|να〉 = ενα + q̂να + Ĥα

B , (S7)

where q̂ν is a collective bath coordinate

q̂να = ~−1〈να|ĤSB |να〉 =
∑
k

dνανα,k(â†k + âk), (S8)

dmn,k represents bath-induced fluctuations of the transition energies (m = n) and the intermolecular coupling (m 6= n).
We define the line-shape function

gα(t) ≡ gναν′α(t) =

∫
dω

2π

C ′′ναν′α(ω)

ω2

[
coth

(
β~ω

2

)
(1− cosωt) + i sinωt− iωt

]
, (S9)
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where the bath spectral density is given by

C ′′ναν′α(ω) =
1

2

∫ ∞
0

dteiωt〈[q̂να(t), q̂ν′α(0)]〉, (S10)

β = kBT with kB being the Boltzmann constant and T is the ambient temperature. The matter correlation function
can be evaluated using the second order cumulant expansion using Eq. (10). We shall use the overdamped Brownian
oscillator model for the spectral density, assuming a single nuclear coordinate (να = ν′α)

C ′′νανα(ω) = 2λα
ωΛα

ω2 + Λ2
α

, (S11)

where Λα is the fluctuation relaxation rate and λα is the system-bath coupling strength. The corresponding lineshape
function gα(t) in the high temperature limit kBT � ~Λα is then given by Eq. (11).

S3. THE COINCIDENCE SIGNAL

The signal Eq. (7) is guaranteed to be positive since it can be recast as a modulus square of an amplitude. By
treating explicitly the detector spectrogram (S3) we we now define a “bare signal” - a quantity that contains the
information about the field-matter interactions only and is independent of the detection. The bare signal is not an
observable. The loop diagrams which represent the process of excitation by incoming pulse and spontaneous emission of
the photon are depicted in Fig. 1c. In order to maintain the bookkeeping for all interactions and develop a perturbative
expansion for signals we describe the signal in terms of Liouville space “left” and “right” superoperators. With each
ordinary operator A we can asociate a pair of superoperators [2] ÂLX = AX, ÂRX = XA, and Â− = ÂL − ÂR. To
avoid confusion and distinguish the ordinary operators (e.g. A) from the superoperator quantities we hereafter denote

all superoperators by “hat” (e.g. Â). By taking into account the input-output transformation of a beam splitter in

Eq. (8) and relation (9), the Wigner spectrograms of the bare signal R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) and R

(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) may be

recast in terms of superoperators using the diagram shown in Fig. 1c:

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) =

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊvL(t′r, ra)ÊuL(t′s, rb)e

− i
~
∫∞
−∞ Ĥ′−(T )dT 〉, (S12)

R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) = −

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊuL(t′s, ra)ÊvL(t′r, rb)e

− i
~
∫∞
−∞ Ĥ′−(T )dT 〉, (S13)

where the angular brackets denote 〈...〉 ≡ Tr[ρ0...] with ρ0 is initial density operator defined in the joint field-matter
space of the entire system. The Hamiltonian superoperator is given by

Ĥ ′ν(t) = Ê†ν(t)V̂ν(t) +H.c, ν = L,R. (S14)

Our key bookkeeping device is the time ordering superoperator T
T Êν(t1)Êν′(t2) = Êν(t1)Êν′(t2)θ(t1 − t2) + Êν′(t2)Êν(t1)θ(t2 − t1), (S15)

where θ(t) is the Heaviside step function. Note that the electric field in the correlation function in Eq. (S12) is a
product of contributions from molecules a and b whereas Eq. (S13) shows that the photon is generated by a pair of
molecules according to the diagrams in Fig. 1c. We further note, that when working in the field space alone, the
number of independent field modes become restricted to 2: u = u′ and v = v′. However, this is not the case in the
field plus matter joint space. By expanding the exponential operator in Eqs. - (S12) - (S13) to fourth order for each
molecule we obtain

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r)

=
1

~8

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

∫ t′r

−∞
dτ1

∫ τ1

−∞
dτ2

∫ t′r+τr

−∞
dτ ′1

∫ τ ′1

−∞
dτ ′2

∫ t′s

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t′s+τs

−∞
dτ ′3

∫ τ ′3

−∞
dτ ′4

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊvL(t′r, ra)ÊuL(t′s, rb)Êu′R(τ ′3, rb)Êv′R(τ ′1, ra)Ê†vL(τ1, ra)Ê†uL(τ3, rb)〉

× E∗p (τ ′2, ra)Ep(τ2, ra)E∗p (τ ′4, rb)Ep(τ4, rb)〈〈gg|T V̂
†
R(τ ′1)V̂L(τ1)V̂R(τ ′2)V̂ †L(τ2)|gg〉〉a〈〈gg|T V̂ †R(τ ′3)V̂L(τ3)V̂R(τ ′4)V̂ †L(τ4)|gg〉〉b,

(S16)
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R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r)

= − 1

~8

∑
u,u′

∑
v,v′

∫ ∞
−∞

dτsdτre
−iω′sτs−iω

′
rτr

∫ t′s

−∞
dτ1

∫ τ1

−∞
dτ2

∫ t′r+τr

−∞
dτ ′1

∫ τ ′1

−∞
dτ ′2

∫ t′r

−∞
dτ3

∫ τ3

−∞
dτ4

∫ t′s+τs

−∞
dτ ′3

∫ τ ′3

−∞
dτ ′4

× 〈T Ê†u′R(t′s + τs, rb)Ê
†
v′R(t′r + τr, ra)ÊuL(t′s, ra)ÊvL(t′r, rb)Êu′R(τ ′3, rb)Êv′R(τ ′1, ra)Ê†uL(τ1, ra)Ê†vL(τ3, rb)〉

× E∗p (τ ′2, ra)Ep(τ2, ra)E∗p (τ ′4, rb)Ep(τ4, rb)〈〈gg|T V̂
†
R(τ ′1)V̂L(τ1)V̂R(τ ′2)V̂ †L(τ2)|gg〉〉a〈〈gg|T V̂ †R(τ ′3)V̂L(τ3)V̂R(τ ′4)V̂ †L(τ4)|gg〉〉b,

(S17)

where 〈〈gg|A|gg〉〉 ≡ Tr[|g〉〈A|g〉〈g|] and we have replaced a classical excitation field by its expectation value. Since
the spontaneous emission modes u, u′, v, v′ are initially in the vacuum state, we must expand to second order in each
mode. It is clear that the process of coincidence counting involves four radiation modes, in contrast to the field space
analysis [3]. We further evaluate the time integrals using the explicit time dependence of the spontaneous modes:

Ek(t, r) =
√

2π~ωk/Ωâke−iωkt+ikr and using the continuum limit:
∑
k →

∫∞
−∞ D̃(ωk)dωk2π . In this case the density of

radiation modes is a slowly varying function of frequency: D̃(ω) = Ωω2/π2c3 which allows to take it outside of the
integration with the appropriate replacement of the frequency by a resonant matter frequency. The signal (S16) -
(S17) then reads

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) = D2(ωa)D2(ωb)

∫ ∞
−∞

dτpdτ
′
pdτsdτre

−iω′sτs−iω
′
rτr

∫ ∞
−∞

dtpdt
′
p

× E∗p (tp − τp − t̄p, ra)Ep(tp − t̄p, ra)E∗p (t′p − τ ′p, rb)Ep(t′p, rb)

× 〈g|V̂ (tp − τp)V̂ †(t′r + τr)V̂ (t′r)V̂
†(tp)|g〉a

× 〈g|V̂ (t′p − τ ′p)V̂ †(t′s + τs)V̂ (t′s)V̂
†(t′p)|g〉b, (S18)

R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) = −D2(ωa)D2(ωb)

∫ ∞
−∞

dτpdτ
′
pdτsdτre

−iω′sτs−iω
′
rτr

∫ ∞
−∞

dtpdt
′
p

× E∗p (tp − τp − t̄p, ra)Ep(tp − t̄p, ra)E∗p (t′p − τ ′p, rb)Ep(t′p, rb)

× 〈g|V̂ (tp − τp)V̂ †(t′r + τr)V̂ (t′s)V̂
†(tp)|g〉a

× 〈g|V̂ (t′p − τ ′p)V̂ †(t′s + τs)V̂ (t′r)V̂
†(t′p)|g〉b, (S19)

where D(ω) = 2πD̃(ω)/~Ω and we changed the time variables of the pump pulse. We further assumed that the pulse
is much longer than the dephasing time and extended the time integrations over τp, τ

′
p, tp and t′p to infinity.

We next turn to the matter correlation functions in Eqs. (S18) - (S19). In the hole burning limit dephasing
is short compare to fluctuation time scale and pump delay and detector central times τj � t̄j , Λ−1

α , j = p, s, r,
α = a, b. We further assume a Gaussian excitation pulse with bandwidth σp and central frequency ωp: Ep(t) =

Epe−
1
2σ

2
pt2−iωpt. Assuming that the time and frequency gate bandwidths are broader than the inverse fluctuation time

scale σp, σ
j
T , σ

j
ω � Λα, j = r, s, α = a, b one may neglect the fluctuations during the detection window and pulse

duration such that gα(t′j) ' gα(t̄j), j = r, s, gα(tp) ' gα(0) = 0. Expanding the linewidth functions to second order
in τs, τr and τp and assuming that detector r clicks first: t̄r < t̄s we evaluate the time integrals in Eqs. (S18) - (S19)
using Eq. (S5) and obtain

R
(i)
B (t′s, ω

′
s; t
′
r, ω
′
r) = F (i)

a (t̄r, ω
′
r)F

(i)
b (t̄s, ω

′
s), (S20)

R
(ii)
B (t′s, ω

′
s; t
′
r, ω
′
r) = F (i)

a (t̄r, t̄s, ω
′
r)F

(ii)
b (t̄r, t̄s, ω

′
s)e
−iωab(t′s−t

′
r)−g̃a(t̄r,t̄s)−g̃∗b (t̄r,t̄s), (S21)

where

F (i)
α (t, ω) =

D2(ωα)|µα|4|Ep|2

σpσ̃pασ̃α0(t)
exp

[
− (ωp − ωα)2

2σ̃2
pα

− (ω − ω̃α(t))2

2σ̃α0(t)2

]
, (S22)

F (ii)
α (t1, t2, ω) =

D2(ωα)|µα|4|Ep|2

σpσpα(t1, t2)σα0(t1, t2)
exp

[
− (ωp − ωpα(t1, t2))2

2σ2
pα

− (ω − ωα(t1, t2))2

2σα0(t1, t2)2

]
, α = a, b. (S23)

Here g̃α(t1, t2) = 2iλα
Λα

[Fα(t1)−Fα(t2)] +
[

∆2
α

Λ2
α

+ i λαΛα

]
Fα(t2− t1) with t1 < t2 and the remaining parameters are listed

in Section S4. Combining the bare spectrograms (S20) - (S21) with the detector spectrogram (S6) and using Eq. (9)
we finally obtain Eq. (1).
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S4. GATING AND SPECTRAL DIFFUSION PARAMETERS

In Eq. (1) - (3) the normalization functions for α = a, b and j = r, s:

Cjα0(t) =
D2(ωα)|µα|4|Ep|2

σ̃pασ̃α0(t)[σ̃−2
α0 (t) + σ−2

Dj ]
1/2

, Ijα0(t1, t2) =
D2(ωα)|µα|4|Ep|2

σjpα(t1, t2)σjα0(t1, t2)[(σjα0)−2(t1, t2) + σ−2
Dj ]

1/2
, (S24)

where µα ≡ µαg and ωα ≡ ωα − ωg = ω0
α + λα. Time dependent frequency shifts:

ω̃α(t) = ω0
α − λα +Mα(t)

[
2λα +

∆2
α(ωp − ω0

a − λa)

σ̃2
pα

]
, (S25)

ωrpα(t1, t2) = ω0
α + λα[1−Mα(t2) +Mα(t1)], ωspα(t1, t2) = ω0

α + λα[1 +Mα(t2)−Mα(t1)], (S26)

ωrα(t1, t2) =
1

2
(ωa + ωb)− λαMα(t2 − t1) +Mα(t1)

[
2λα +

∆2
α[ωp − ωrpα(t1, t2)]

σr2pα(t1, t2)

]
,

ωsα(t1, t2) =
1

2
(ωa + ωb) + λαMα(t2 − t1) +Mα(t2)

[
2λα +

∆2
α[ωp − ωspα(t1, t2)]

σs2pα(t1, t2)

]
, (S27)

ωjτα(t1, t2, ω) = ω +
σj2ω

σj2α (t1, t2)
[ωjα(t1, t2)− ω], (S28)

where Mα(t) = e−Λαt. Time dependent dispersions:

σ̃2
pα =

1

2
σ2
p + ∆2

α, σ̃j2α (t) = σ̃2
α0(t) + σ2

Dj , σ̃2
α0(t) = ∆2

α

[
1− ∆2

αM
2
α(t)

σ̃2
pα

]
, σ2

Dj =
1

2
σj2T + σj2ω , (S29)

σr2pα(t1, t2) =
1

2
σ2
p + ∆2

α[1 +Mα(t1)−Mα(t2)], σs2pα(t1, t2) =
1

2
σ2
p + ∆2

α[1 +Mα(t2)−Mα(t1)],

σj2α (t1, t2) = σ2
Dj + σj2a0(t1, t2),

σr2α0(t1, t2) = ∆2
α

[
Mα(t2 − t1)− ∆2

αMα(t1)

σr2pa(t1, t2)

]
, σs2α0(t1, t2) = ∆2

α

[
Mα(t2 − t1)− ∆2

αMα(t2)

σs2pα(t1, t2)

]
, (S30)

σj2τα(t1, t2) = σj2ω

[
1− σj2ω

σj2α (t1, t2)

]
. (S31)

In the absence of fluctuations Λα = 0 α = a, b for the identical detector σrω = σsω = σω and σrT = σsT = σT such that
σ2
D = 1

2σ
2
T + σ2

ω the coincidence counting signal (1) becomes (4) where

Ωτ = ω̄r − ω̄s +
σ2
ω

σ2
a

[ω̄a − ω̄r]−
σ2
ω

σ2
b

[ω̄b − ω̄s], σ2
τ = σ2

ω

[
2− σ2

ω

σ2
a

− σ2
ω

σ2
b

]
, (S32)

η =
Ĩra Ĩ

s
b + Ĩsa Ĩ

r
b

C̃raC̃
s
b + C̃saC̃

r
b

, C̃jα = e
−

(ω̄j−ω̃α)2

2σ2
α , Ĩjα = e

−
(ω̄j−ω̄α)2

2σ2
α

− ω2
ab

4σ2
T , j = r, s. (S33)

Here

ω̄α = ω̃α +
1

2
(ωᾱ − ωα), ω̃α = ωα +

∆2
α(ωp − ωα)

σ̃2
pα

, (S34)



S6

where ᾱ = a if α = b and ᾱ = b if α = a,

σ2
α = σ2

D + ∆2
α

[
1− ∆2

α

σ̃2
pα

]
. (S35)
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