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Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions
where a single molecule is coupled to two metal leads which are held at different chemical poten-
tials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges elec-
trons with the leads with a constant electron flux. Expressions for frequency domain optical signals
measured in response to continuous laser fields are derived by expanding the molecular correlation
functions in terms of its many-body states. The nonunitary evolution of molecular states is described
by the quantum master equation. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892108]

I. INTRODUCTION

Nonlinear spectroscopy has been a useful probe for
studying the structure of molecules and dynamics in complex
environments. This can provide valuable information at the
nano scale by detecting various types of optical signals, for
example, spontaneous and stimulated. Fluorescence has been
used to detect and study single molecule dynamics1–3 which
is governed by quantum effects and strongly influenced by the
configuration of environment.

In this paper, we present a diagrammatic formulation
of spontaneous4 and stimulated5, 6 signals from a single
molecule which is coupled to two current-carrying metal
contacts. The interaction with the leads is treated nonper-
turbatively within the quantum master equation approach.
This allows us to account for the nonunitary evolution of
the molecule states in a nontrivial way. Electron transport in
molecular junctions has been a very active area of research7–11

due to its fundamental importance in understanding nonequi-
librium dynamics and many-body interaction effects on elec-
tron transfer and applications to molecular electronics. How-
ever the corresponding optical response is less understood.
Tip enhanced spontaneous Raman scattering from a sin-
gle molecule in a scanning tunneling microscopy has been
demonstrated experimentally.12–15 On the theoretical front,
current-induced fluorescence at molecular junctions has been
studied using the nonequilibrium Green’s function (NEGF)16

and many-body formulations.17 Spontaneous Raman scat-
tering from a molecular junction has also been recently
calculated using NEGF.18, 19 Here we use a superoperator
formalism which readily distinguishes between the Raman
and fluorescence contributions to spontaneous light emission
(SLE).

The optical signals from a molecular junction are fun-
damentally different from those in isolated molecule. In a
current-carrying state18, 19 the molecule is stochastically ex-
changing electrons with the leads. It therefore explores its var-
ious accessible charged (both cation and anion) states. Both
neutral and charged states can emit light. This enables the
spectroscopic study of the dynamics of molecular charged

states and their correlations. Moreover, initially (just before
the interaction with the radiation field) the molecule is in a
nonequilibrium state and contains (nonequilibrium) popula-
tions of the neutral as well as the excited (charged) states
and their coherences. These depend on the external bias
in a nontrivial way. The time evolution is nonunitary and
involves scattering between different charged states of the
molecule. These pose a challenge to compute optical response
of molecules at junctions.

Our approach here is based on Liouville space superop-
erator formulation.20–22 We present diagrams for various pro-
cesses that contribute to these signals. The diagrams are in-
tuitive and the algebraic expressions for signals can be read
directly from these diagrams, following the rules given in
Sec. III of Ref. 20.

The superoperator formalism has several advantages over
the Hilbert space formulation. The time evolution of the state
vector (wavefunction) is the prime quantity of interest in the
Hilbert space, while in the Liouville space formulation we fol-
low the time evolution of the density matrix. This seemingly
not-so-important difference between two approaches leads to
significant simplification in the Liouville space description
which provides a better intuitive physical picture. The time
evolution of the density matrix requires evolving both the ket
and the bra simultaneously, i.e., both the populations and co-
herences evolve together. This simultaneous evolution of the
bra and the ket is readily described in real time in terms of
the superoperator formulation. Both the equilibrium as well as
nonequilibrium formulations can be treated on the same foot-
ing. In Hilbert space, the nonequilibrium systems are treated
by defining the time evolution on Keldysh contour23 in terms
of an artificial time (the contour time), instead of the real
(physical) time. Both the bra and the ket evolve forward on
the contour sequentially. In real time, the bra evolves forward
while the ket evolves backward. This renders it difficult to in-
terpret various approximations made during the formulation,
until the quantities are mapped onto real time, which is done
at the end of the formulation.24 Furthermore, in Liouville
space, causal and non-causal (response and correlation)
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functions appear naturally and have straightforward interpre-
tations in terms of different combinations of Liouville space
pathways. This allows us to develop the nonequilibrium for-
mulation directly in terms of the response and correlation
functions, starting from the microscopic picture. This is fa-
cilitated by the use of symmetric and antisymmetric (or “+”
and “−”) superoperators that also offers a convenient book-
keeping for time-ordering of various interactions.21 In Hilbert
space, on the other hand, one first needs to compute the time-
ordered and anti-time ordered functions, and the causal func-
tions are then obtained in terms of linear combinations of
these functions only after the real-time mapping has been per-
formed. The detail superoperator algebra, for both the fermion
and the bosons, has been reviewed in Ref. 21. Here we adopt
this formulation to compute optical signals from current car-
rying molecular junctions.

The signal in a junction depends on the nonequilibrium
density matrix of the molecule and its time evolution which
can be computed either using the NEGF25 or quantum mas-
ter equation (QME).26 In NEGF, the density matrix of the
molecule is renormalized with respect to the interactions with
the leads and the signal must be computed self-consistently,
making it difficult to distinguish between contributions com-
ing from the negatively and positively charged molecular
states. This information is however readily accessible by ex-
pansion in many-body space.27 The present scheme combines
the many-body expansion with the QME. The QME includes
the molecule-lead interactions non-perturbatively and prop-
erly accounts for the dependence on the applied bias. It is
more intuitive than the NEGF method since it does not re-
quire self-consistent calculation. In this approach, the compu-
tational burden is shifted to obtaining the many body states.

The paper is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian and discuss the diagrammatic
method to compute the spontaneous signal. We present a
scheme to combine the QME with the many-body expansion
to compute the signal. In Sec. III we present results for the
stimulated signal. We discuss corresponding diagrams and
present the algebraic expressions for the signal. As a special
case we look at pump-probe signal. Finally, we conclude in
Sec. IV.

II. MODEL HAMILTONIAN

We consider a single molecule connected with two metal-
lic leads held at different chemical potentials. After the
molecule has reached a nonequilibrium steady state (NESS)
with constant flux, it is optically excited by laser beams and
subsequent frequency resolved stimulated and spontaneous
signals are detected.

The entire system Hamiltonian is given as

H (t) = H0 + HMF (t) + Htun, (1)

where H0 = HM + HF + HA + HB represents the Hamiltonian
for isolated molecule HM, which describes electronic and vi-
brational degrees of freedom and need not be specified further
at this stage, the relevant laser field modes HF,

HF =
∑

s

¯ωsa
†
s as, (2)

where ωs is the frequency corresponding to the radiation field
mode, and the leads A and B:

HA,B =
∑

ν∈A,B

ενc
†
νcν, (3)

where εν represents the νth electron energy state of the leads.
c†(c) and a†(a) denote single particle fermionic and bosonic
creation (annihilation) operators, respectively. The last two
terms in (1) represent molecule-field and molecule-lead cou-
pling, respectively,

HMF (t) =
∑

s

(
Ês(t)V̂

† + Ê †
s (t)V̂

)
, (4)

Htun =
∑
ν i

(
Tiνc

†
νci + T ∗

iνc
†
i cν

)
, (5)

where Ês(t) = Es(r, t)âs(t) exp(iφs) represents annihilation
operator of a photon mode of frequency ωs with phase φs.
Es(r, t) is the laser pulse envelope. V̂ is the dipole lower-
ing operator which brings the molecule down from an ex-
cited state to a lower energy state. Tiν is the tunneling ma-
trix element between the orbitals of the metallic lead and the
molecule.

A. The Spontaneous light emission signal

In order to obtain a finite SLE signal, the state of the de-
tected field mode must change from its vacuum state to some
occupied state. Since field states are coupled to molecular
states, energy conservation dictates that this can be done by
de-exciting the molecule from higher to lower energy states.
This requires action on the molecular density matrix by one
molecule-field interaction from the left (ket) and one from the
right (bra). Both interactions must bring the molecule from a
higher to a lower energy state. These interactions are repre-
sented by arrows at time t and τ in the diagrams in Fig. 1.
The molecular electronic excited states can be populated ei-
ther by the laser excitation or transferring an electron between
the leads and the molecule. Note that in the absence of laser
field, the current induced signal is generated solely due to in-
teraction with the leads. Current induced fluorescence was
studied in Ref. 17 by treating the nonequilibrium evolution

FIG. 1. Loop diagrams representing the spontaneous emission signal
(Eq. (7)) from a molecular junction. ω1 is the incoming and ω2 is the emit-
ted photon frequency. Time increases from bottom up. Interaction at time
t is chronologically the last while time ordering for all other interactions
(τ , τ 1, τ 2) can be interchanged. The propagation along the contour is de-
termined by the Hamiltonian, HM + HA + HB + Htun.
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perturbatively in the lead-molecule coupling. Here we con-
sider signals induced by both the leads and the laser interac-
tions. The interactions with the incoming fields are denoted
by arrows at times τ 1 and τ 2. Since the molecule is coupled
to the leads it continuously makes transitions between vari-
ous charged states and therefore the interactions at τ 1 and τ 2
may correspond to absorption or emission of a photon in the
incoming mode. By considering all possible combinations of
interactions at τ 1 and τ 2, we obtain four diagrams shown in
the figure. Note that the interaction at time t is the last inter-
action as it corresponds to the detection time. This interac-
tion is with the ket of the density matrix. This is an arbitrary
choice made in order to remove any ambiguity from the dia-
gram rules. The signal is given by the real part of diagrams.
Thus all diagrams complex conjugate to the ones shown in
Fig. 1 will have the last interaction from the right (bra). Other
interaction times τ , τ 1, and τ 2 are not time-ordered. These
interactions for various time orderings represent different Li-
ouville space pathways to prepare the molecule in its excited
state. For an isolated molecule with fixed charge and initially
in the ground state, the signal is given by a single loop dia-
gram (Fig. 1(d)).20

Expressions for the SLE signal can be read directly from
the diagrams in Fig. 1. This will be done using Liouville space
superoperator notation21, 28 which is briefly summarized be-
low. A Hilbert space operator X which acts on a state vec-
tor |S〉 corresponds to two superoperators, the “left,” XL, and
the “right,” XR, which act on Liouville vector state |S, S′〉〉
≡ |S〉〈S′|. The two representations are related as

XL|S, S ′〉〉 ≡ X|S〉〈S ′|
(6)

XR|S, S ′〉〉 ≡ |S〉〈S ′|X.

Thus the left and the right operators independently evolve
the ket and the bra of the density matrix, respectively. We
further introduce the symmetric and anti-symmetric combi-
nations of superoperators X+ = XL + XR and X− = XL
− XR, respectively. Thus a +( − ) operation in Liouville space
corresponds to an anticommutation (commutation) operation
in Hilbert space, X+|S, S ′〉〉 ≡ {X, |S〉〈S ′|} and X−|S, S ′〉〉
≡ [X, |S〉〈S ′|].

To lowest order in the incoming field modes the SLE
signal can be expressed in terms of four correlation func-
tions which correspond to the four diagrams in Fig. 1. The
other factors are obtained using the diagram rules defined in
Ref. 20,

Ssp(ω2; ω1)

= 2

¯4
�

{ ∫ t

t0

dτeiω2(t−τ )
∫ t

t0

dτ1

∫ t

t0

dτ2

[〈T̂ VL(t)V †
R(τ )V †

L(τ1)VL(τ2)〉〈T̂ E1L(τ1)E†
1L(τ2)〉

+〈T̂ VL(t)V †
R(τ )V †

R(τ1)VR(τ2)〉〈T̂ E1R(τ1)E†
1R(τ2)〉

−〈T̂ VL(t)V †
R(τ )V †

R(τ1)VL(τ2)〉〈T̂ E1R(τ1)E†
1L(τ2)〉

−〈T̂ VL(t)V †
R(τ )V †

L(τ1)VR(τ2)〉〈T̂ E1L(τ1)E†
1R(τ2)〉]},

(7)

where ω2 is the detected signal frequency and ω1 is the
incoming field frequency. Note that the evolution between
two dipole operators in Eq. (7) is dressed by the molecule-
leads interaction. Diagrams (1(a))–(1(c)) are possible since
the molecule is being continuously excited between different
charge states due to the interaction with the leads. The signal
in Eq. (7) can be obtained from microscopic considerations as
shown in Appendix A.

The loop diagrams in Fig. 1 represent the total SLE signal
which contains both fluorescence and Raman contributions.29

These diagrams are analogous to the Hilbert space formula-
tion in terms of Keldysh contour. The diagrams in Fig. 1 are
identical to the Keldysh loop if, instead of the physical time,
one defines an artificial time on the loop. In that case, one
first evolves the bra forward in time and then the ket in the
backward time. The spontaneous Raman signal from a molec-
ular junction has been recently calculated in Ref. 18 using
the Keldysh formalism. That calculation is based on different
diagrams. Here we obtain the full set of diagrams for SLE
starting from the rate of change in the number of photons
in the detected mode. Diagram (b) in Fig. 8 of Ref. 18 does
not contribute to the optical signal, while diagrams (a) and
(c) are incomplete contributions to our diagram (1 d). More-
over, the authors have only considered diagrams where the
two incoming field modes are on two different branches of
Keldysh contour. However we show that additional diagrams,
where field modes are on the same branch (diagrams (a) and
(b)), are equally important and should be taken into account.
Note that in such processes (diagrams (a) and (b)), the two
interactions with the incoming radiation fields do not create
any population change. For example, the first interaction in
Fig. 1(a) corresponds to de-excitation of the ket. This interac-
tion alone does not create any population change but induces
a coherence between the excited and the de-excited state. To
change the population, we need another de-excitation from
the bra side also, which is the case in diagrams (c) and (d). The
strength of such contributions then depends on the probability
of excited states being occupied and the ground (or de-excited
state) being empty. The leads can populate (by transferring an
electron) excited states and de-populate (by removing an elec-
tron) lower states, both the excited and the de-excited states
have finite probabilities (these are non-equilibrium probabili-
ties) and the signal depends on both probabilities.

B. Algebraic expressions for SLE signal based on
ladder diagrams

Depending on the relative time-ordering of bra and ket in-
teractions, each diagram in Fig. 1 may be further decomposed
into six fully time-ordered ladder diagrams. In Appendix A,
we present the ladder diagrams and outlined a scheme to com-
pute the diagrams. The net SLE signal is

Ssp = 2�(S(a) + S(b) − S(c) − S(d)), (8)

where S(a) denotes the contribution from the first diagram in
Fig. 1 and so on. The final result is

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.11.129 On: Tue, 28 Oct 2014 16:04:03



074107-4 Harbola, Agarwalla, and Mukamel J. Chem. Phys. 141, 074107 (2014)

S(a)(ω2; ω1)= 1

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)

{
V ∗

fgGeg;hp(0)
(
VhqV

∗
arGqp;rb(ω1) + VraV

∗
qfGqp;rb(−ω1)

)
+ V ∗

geGgf ;hp(ω2 − ω1)
(
V ∗

pqVraGhq;rb(−ω1) + V ∗
rbVhqGqp;ar (ω2)

)
+ VegGgf ;hp(ω1 + ω2)

(
V ∗

pqV
∗
arGhq;rb(ω1) + V ∗

rbV
∗
qhGqp;ar (ω2)

)}
, (9)

where ρab = 〈a|ρ̂|b〉 is the matrix element of the nonequilibrium density matrix between the many-body states |a〉 and |b〉,
Vab = 〈a|V̂ |b〉 is the transition dipole matrix element, and Gab;cd (ω) = i〈〈ab|(ωI − iL)−1|cd〉〉 is the Liouville time-evolution,
where L is the Liouville operator. |E1|2 is the incoming field intensity.

The SLE expression in (9) is different from that for an isolated molecule. The dependence on the molecule-lead interaction
and the external applied bias, which drives the molecule out of equilibrium, are implicit through the steady-state matrix element
ρab, the evolution Gab;cd (ω), and the sum over many-body states that includes neutral as well as the charged molecular states.

The contribution from the other three diagrams can be obtained similarly. We get,

S(b)(ω2; ω1)= 1

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)

{
V ∗

fgGeg;hp(0)
(
V ∗

pqVbrGhq;ar (−ω1) + VqpV ∗
rbGhq;ar (ω1)

)
+ V ∗

fgGeg;hp(ω2 − ω1)
(
VqpV ∗

rbGhq;ar (ω2) + V ∗
qpVbrGhq;ar (−ω1)

)
+ Vgf V ∗

pqV
∗
rbGeg;hp(ω1 + ω2)

(
Ghq;ar (ω1) + Ghq;ar (ω2)

)}
, (10)

S(c)(ω2; ω1) = 1

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)

{
V ∗

fgGeg;hp(0)
(
V ∗

pqVraGhq;rb(−ω1) + VhqV
∗
rbGqp;ar (ω1)

)
]

+ V ∗
fgGeg;hp(ω2 − ω1)

(
V ∗

pqVraGhq;rb(−ω1) + VhqV
∗
rbGqp;ar (ω2)

)
+ VegV

∗
pqV

∗
rbGgf ;hp(ω1 + ω2)

(
Ghq;ar (ω1) + Ghq;ar (ω2)

)}
, (11)

S(d)(ω2; ω1) = 1

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)

{
V ∗

fgGeg;hp(0)
(
V ∗

qhVbrGqp;ar (−ω1) + V ∗
arVqpGhq;rb(ω1)

)
+ V ∗

geGgf ;hp(ω2 − ω1)
(
V ∗

pqVbrGhq;ar (−ω1) + VqpV ∗
rbGhq;ar (ω2)

)
+ VgfGeg;hp(ω1 + ω2)

(
V ∗

qpV ∗
rbGqp;ar (ω2) + V ∗

pqV
∗
arGhq;rb(ω1)

)}
. (12)

In the following we describe how the steady state density ma-
trix element ρab and the evolution operator G(ω) may be com-
puted.

C. Calculation of nonequilibrium density matrix
and reduced evolution

We assume that the lead-molecule coupling is weak and
the time-evolution may be described in terms of quantum
master equation. The molecular density-matrix evolves ac-

cording to the following equation in Liouville space:

∂

∂t
|ρ〉〉 = L|ρ〉〉, (13)

where the Liouville operator is

L = HM− +
∑

i

[
2αic

†
iRciL + 2βic

†
iLciR − βic

†
iRciR

−βciLc
†
iL − αic

†
iLciL − αiciRc

†
iR

]
, (14)

with αi = �l(1 − fl(εi)) + �r(1 − fr(εi)) and β i = �lfl(εi) +
�rfr(εi) with fl (fr) representing the Fermi functions for the left
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(right) lead. The Liouville operator connects the density ma-
trix block for n number of electrons to the blocks with n ± 1
number of electrons, it thus connects the many-body states
of neutral molecule to excited states of the singly charged
molecule. Equation (13) gives

∂

∂t
ρab(t)

= −iωabρab +
∑
MN

∑
i{(

2αi〈a|ci |M〉〈N |c†i |b〉 + 2βi〈a|c†i |M〉〈N |ci |b〉)ρMN

−(
αi〈M|c†i |N〉〈N |ci |b〉 + βi〈M|ci |N〉〈N |c†i |b〉)ρaM

−(
αi〈a|c†i |N〉〈N |ci |M〉 + βi〈a|ci |N〉〈N |c†i |M〉)ρMb

}
.

(15)

This equation can be written in terms of a vector equation,
Eq. (13), in the basis of molecular many-body states. The
steady-state is obtained from the solution of the above set of
linear equations for ρ̇ = 0.

Matrix element of the evolution operator is given by,

Gab;cd (ω) = i
∑

ν

〈〈ab|Rν〉〉〈〈Lν |cd〉〉
ω − iζν

, (16)

where we have used the resolution of identity operator in
terms of the left and right eigenvectors of the nonunitary op-
erator L. The index ν runs over all right eigenvalues ζ ν of L,

L|Rν〉〉 = ζν |Rν〉〉
(17)

〈〈Lν |L = ζ ∗
ν 〈〈Lν |.

Equations (9)–(12) together with Eqs. (15) and (16) are main
equations to compute SLE signal from junctions.

We can further simplify the SLE expressions if we as-
sume that interaction with the leads only contributes to the
life-time of the many-body states and does not destroy/create
new states, that is, it does not create electronic excitations
(this can be the case if the energy gaps between different
electronic many-body states are much larger than the applied
bias). In that case G is diagonal, Gab;cd = Gabδacδbd , where
Gab = 〈〈ab|G|ab〉〉, and the signal is given by S(d) alone which
further simplifies to the following expression:

S(d)(ω2; ω1) = 1

¯4
|E1|2

∑
abcde

ρabVdc

ω2 − ωcd + i�

[
VbeV

∗
deV

∗
ac

ωce − i�

×
(

1

ω1 − ωcb + i�
− 1

ω1 − ωae − i�

)

+ V ∗
ac

ω2 − ω1 − ωad + i�

×
(

V ∗
deVbe

ω1 + ωae − i�
− V ∗

edVeb

ω2 + ωae + i�

)

− V ∗
eb

ω1 + ω2 − ωce + i�

(
V ∗

aeVed

ω2 − ωae + i�

+ V ∗
acVed

ω1 − ωcb + i�

)]
, (18)

where ωab = ωa − ωb is the energy difference between
the many-body states, � represents the lifetime of excitation
due to coupling with the leads. Here we have treated leads
within the wide-band approximation and � contains contribu-
tions from both the left (A) and the right (B) leads, � = �A
+ �B which is the same as the retarded (advanced) self-
energy that appears in the NEGF formulation. Here this self-
energy contribution appears due to the retarded evolution
between successive interactions in presence of the interac-
tion with the leads. Note that the signal implicitly depends
on the applied bias through dependence on the nonequilib-
rium (steady-state) density matrix. The first term inside the
square brackets in Eq. (18) represents fluorescence contribu-
tion while others contain Raman-like resonances of the type
ω1 ± ω2 = ωab.

III. STIMULATED SIGNALS

We now turn to frequency-domain heterodyne-detected
stimulated signal5, 6, 27 where, in addition to the leads, the
molecule is coupled to four optical modes with complex
field amplitudes that are defined as E(t) = ∑4

j=1 Ej (eiφ
j
−iω

j
t )

+ c.c. We assume as before that the fields are in coherent
state. These four fields can be easily distinguished by the ex-
ternally controlled phases φj and/or by their frequencies ωj.
Note that the signal in general depends on all possible com-
binations of the phases ±φ1 ± φ2 ± φ3 ± φ4 but the desired
phase component can be separated out using phase cycling
scheme which is also possible for single molecules, thanks
to the current laser technology, and is demonstrated in recent
experiment.30 To derive the stimulated signal we consider ω4
as the frequency of the detected signal and ω1, ω2, ω3 as the
incoming field frequency and select a particular phase com-
ponent corresponding to the combination φ = φ1 − φ2 + φ3
− φ4. Since the molecule is in nonequilibrium steady state we
must consider all possible interactions, i.e., either emission or
absorption from the left (ket) and from the right (bra). To third
order in the incoming field this leads to 23 = 8 possible loop
diagrams depicted in Fig. 2. Algebraic expression for each di-
agram can be written down in terms of the “left”and “right”
superoperators, as was done in Sec. II. However these expres-
sions can be combined together and expressed in a compact
form in terms of the “+” and “−” superoperators.

Sstim(−ω4; ω3,−ω2, ω1)

= 2

¯4
�

∫ t

t0

dτ3

∫ t

t0

dτ2

∫ t

t0

dτ1 × eiφE∗
4 (t)E3(τ3)E∗

2 (τ2)E1(τ1)

× 〈
T VL(t)V †

−(τ3)V−(τ2)V †
−(τ1)

〉
, (19)
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where V− = VL − VR and V
†
− = V

†
L − V

†
R . Note that inter-

actions at τ 1, τ 2, and τ 3 are not time-ordered. Moreover,
because of the time translational invariance the energy conser-
vation dictates that ω1 − ω2 + ω3 − ω4 = 0. The stimulated
signal can be formally written as

Sstim = 2
∑

x

�(
S

(x)
stim

)
, x = a, b, c, d, e, f, g, h, (20)

where S
(a)
stim is the contribution from the diagram in Fig. 2(a)

and so on.
Following the procedure discussed in Sec. II, we can cal-

culate this loop diagrams and express the signal in terms of
sum over states. Here we give the expression for diagram (a)
in Fig. 2. In Appendix B we present time-ordered ladder dia-

grams and corresponding expressions for diagrams (b)-(h) in
Fig. 2,

S
(a)
stim(−ω4; ω3,−ω2, ω1) = 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1 − ω2 + ω3)

{
V ∗

geGgf ;hp(ω1 − ω2)
(
VhqV

∗
arGqp;rb(ω1) + V ∗

qhVraGqp;rb(−ω2)
)

+ VegV
∗
qhV

∗
arGgf ;hp(ω1 + ω3)

(
Gqp;rb(ω1) + Gqp;rb(ω3)

)
+ V ∗

geGgf ;hp(ω3 − ω2)
(
V ∗

qhVraGqp;rb(−ω2) + VhqV
∗
arGqp;rb(ω3)

)}
. (21)

For an isolated molecule (in the absence of the leads) with
fixed charge and initially in the ground state, the signal is
given by the diagrams (a), (c), and (g).

A. Application to the pump-probe signal

We now present one particular type of stimulated emis-
sion signal known as the pump probe signal. It is one of the
simplest kind of nonlinear optical techniques which involves
two fields: the pump field with frequency ω1, phase φ1 and
the probe field with frequency ω2 and phase φ2.

Similar to the SLE signal, we denote the interactions at
time t and τ due to the detected mode (probe) and τ 1 and τ 2
due to incoming field modes (pump). The interaction at τ , τ 1,

and τ 2 represents both absorption and emission of a photon
as in current carrying state the molecule has finite probability
to stay at ground as well as in excited states. We note that the
first four diagrams in Fig. 3 coincide with the SLE signal. The
only difference being that these contributions to the signal are
now also proportional to the probe radiation intensity |E2|2.
The net signal is therefore written as

SPP = 2|E2|2�(S(e) − S(f ) + S(g) − S(h)) − 2|E2|2Ssp.

(22)

For the loop diagram (e) we have the following expression for
the signal:

S(e)(ω2; ω1) = 2

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)
{
V ∗

geGgf ;hp(0)
(
V ∗

qhVraGqp;rb(−ω1)

+ V ∗
arVhqGqp;rb(ω1)

) + VegV
∗
qhV

∗
arGgf ;hp(ω1 + ω2)

(
Gqp;rb(ω1) + Gqp;rb(ω2)

)
+ V ∗

geGgf ;hp(ω2 − ω1)
(
VhqV

∗
arGqp;rb(ω2) + V ∗

qhVraGqp;rb(−ω1)
)}

. (23)

Similarly for the other three diagrams (f)-(h) we have the following expressions:

S(f )(ω2; ω1) = 2

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)
{
V ∗

geGgf ;hp(0)
(
VhqV

∗
rbGqp;ar (ω1)

+ V ∗
pqVraGpq;rb(−ω1)

) + VegGgf ;hp(ω1 + ω2)
(
V ∗

qhV
∗
rbGqp;ar (ω1) + V ∗

pqV
∗
arGhq;rb(ω2)

)
+ V ∗

fgGeg;hp(ω2 − ω1)
(
V ∗

qhVraGqp;rb(−ω1) + VhqV
∗
arGqp;rb(ω2)

)}
, (24)

S(g)(ω2; ω1) = 2

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)
{
V ∗

geGgf ;hp(0)
(
VqpV ∗

arGhq;rb(ω1)

+ V ∗
qhVbrGqp;ar (−ω1)

) + Vgf V ∗
qhV

∗
arGeg;hp(ω1 + ω2)

(
Gqp;rb(ω1) + Gqp;rb(ω2)

)
+ V ∗

geGgf ;hp(ω2 − ω1)
(
VqpV ∗

arGhq;rb(ω2) + V ∗
qhVbrGqp;ar (−ω1)

)}
, (25)
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S(h)(ω2; ω1) = 2

¯4
|E1|2

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω2)
{
V ∗

geGgf ;hp(0)
(
VqpV ∗

rbGhq;ar (ω1)

+ V ∗
pqVbrGhq;ar (−ω2)

) + V ∗
fgGeg;hp(ω2 − ω1)

(
V ∗

qhVbrGqp;ar (−ω1) + VqpV ∗
arGhq;rb(ω2)

)
+ VgfGeg;hp(ω1 + ω2)

(
V ∗

qhV
∗
rbGqp;ar (ω1) + V ∗

pqV
∗
arGhq;rb(ω2)

)}
. (26)

Note that the pump-probe signal here is independent of the
phase of the laser fields. Also note that the extra factor of 2 in
Eq. (22) appears because for incoherent signal we have two
possible phase combinations φ1 − φ1 + φ2 − φ2 and −φ1
+ φ1 + φ2 − φ2.

IV. CONCLUSIONS

We have presented a diagrammatic approach in Liou-
ville space to compute spontaneous and stimulated optical
signals from a current carrying molecular junction. Signals
are computed within the leading order perturbation in the
molecule-electromagnetic field interaction. Diagrams are de-
rived from the first principle and can be interpreted intuitively.
The expressions for the signal are read directly from the di-
agrams and are expressed in terms of sum over molecule
many-body states. These many-body states involve both neu-
tral and charged (cation and anion) states of the molecule.
The nonequilibrium evolution of the system can be accounted
for by combining the diagrammatic approach with the Lind-
blad density matrix formulation. This allowed us to distin-
guish fluorescence and Raman-like signals in the sponta-
neous signal from junctions. This distinction is not obvious

FIG. 2. Loop diagrams for stimulated signal calculated to the third order of
HMF −. Interaction at time t is chronologically the last while time ordering
for all other interactions (τ 1, τ 2, τ 3) can be interchanged. The propagation
along the contour is determined by the Hamiltonian HM + HA + HB + Htun.

FIG. 3. Loop diagrams contribute to the pump-probe signal. Note that dia-
grams (a)-(d) are same as SLE in Fig. 1.

in NEGF approach. We have included the lead interaction
non-perturbatively which introduces finite probability for the
molecular charged state to change during the evolution be-
tween two field interactions. This makes it difficult to unam-
biguously distinguish signals from cation, anion, or neutral
states of the molecule. Other measurements may be required
for this identification.

Here we have focused only on the frequency resolved
signals. The formulation can however be extended readily
to study other types of optical signals, for example, time-
resolved, which will be discussed elsewhere.
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APPENDIX A: DERIVATION OF EQS. (7)–(12)

In the main text we presented intuitive arguments to
draw loop diagrams for the SLE signal that is used to obtain
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Eq. (7). Here we first present a short derivation of Eq. (7)
without using loop diagrams and then show how these dia-
grams can be computed.

We start from a general expression of SLE. A detail mi-
croscopic derivation can be found in Refs. 20 and 27. In gen-
eral, SLE signal in mode ω2 can be written as

S(ω2) = 2

¯2
�

∫ t

t0

dτeiω2(t−τ )〈T̂ VL(t)V †
R(τ )〉

= 2

¯2
�

∫ t

t0

dτeiω2(t−τ )〈T̂ VL(t)V †
R(τ )e

− i
¯

∫ t

t0
dτ1HMF−(τ1)〉.

(A1)

Here the trace is with respect to the interacting density ma-
trix for the molecule+leads+incoming radiation field. Since
the evolution is with respect to the interacting system, the
charged state of the molecule is changed by the interactions
between the leads and the optical transitions are induced by
field interactions.

Equation (A1) is a general expression for SLE signal
which has been used extensively in the literature.28 The sig-
nal can be computed perturbatively in the incoming molecule-
field coupling by expanding the time-ordered exponential in
HMF −. The leading order contribution comes from the sec-
ond order in HMF. This perturbative expansion can be mapped
order-by-order onto a series of loop diagrams. At leading or-
der, we can make the following substitution:〈

T̂ VL(t)V †
R(τ )e

− i
¯

∫ t

t0
dτ1HMF−(τ1)〉

= − 1

2¯2

∫ t

t0

dτ1

×
∫ t

t0

dτ2〈T̂ VL(t)V †
R(τ )HMF−(τ1)HMF−(τ2)〉, (A2)

where the trace on the right-hand side is now with respect
to the product density matrix of the molecule+lead and free
radiation (incoming) field. The time evolution is with re-
spect to the free field Hamiltonian and the molecule+lead
Hamiltonian. These two Hamiltonians commute, which al-
lows us to separate the two traces. Substituting HMF − =
(HMF)L − (HMF)R= E2L(t)V †

L(t) + E†
2L(t)VL(t)−V

†
R(t)E2R(t)

− VR(t)E†
2R(t), the correlation function in Eq. (A2) decom-

poses into the following eight terms:〈
T̂ VL(t)V †

R(τ )HMF−(τ1)HMF−(τ2)
〉

= 〈
T̂ VL(t)V †

R(τ )V †
L(τ1)VR(τ2)

〉〈
T̂ E2L(τ1)E†

2R(τ2)
〉

+ 〈
T̂ VL(t)V †

R(τ )V †
R(τ1)VL(τ2)

〉〈
T̂ E2R(τ1)E†

2L(τ2)
〉

− 〈
T̂ VL(t)V †

R(τ )V †
L(τ1)VL(τ2)

〉〈
T̂ E2L(τ1)E†

2L(τ2)
〉

− 〈
T̂ VL(t)V †

R(τ )V †
R(τ1)VR(τ2)

〉〈
T̂ E2R(τ1)E†

2R(τ2)
〉

+ 〈
T̂ VL(t)V †

R(τ )VL(τ1)V †
R(τ2)

〉〈
T̂ E†

2L(τ1)E2R(τ2)
〉

+ 〈
T̂ VL(t)V †

R(τ )VR(τ1)V †
L(τ2)

〉〈
T̂ E†

2R(τ1)E2L(τ2)
〉

− 〈
T̂ VL(t)V †

R(τ )VL(τ1)V †
L(τ2)

〉〈
T̂ E†

2L(τ1)E2L(τ2)
〉

− 〈
T̂ VL(t)V †

R(τ )VR(τ1)V †
R(τ2)

〉〈
T̂ E†

2R(τ1)E2R(τ2)
〉
, (A3)

where the time evolution in the correlation functions for V ’s
is described only in terms of the molecule+lead Hamiltonian.
Note that the last four terms are identical to the first four if
we interchange τ 1 and τ 2 (dummy) indices. Substituting it in
Eq. (A2) and then in Eq. (A1) leads to Eq. (7).

1. Calculation of molecule correlation function
appears in Eq. (7)

We next compute the molecule correlation functions that
appear in Eq. (7). For this we need to consider various time
orderings of interactions at times τ , τ 1, and τ 2 depicted in
Fig. 1. Thus each diagram in Fig. 1 splits into six fully
time-ordered diagrams. Each representing a specific Liouville
space pathways that contributes to the SLE signal. These dia-
grams are shown in Figs. 4 and 5.

Let us consider the first diagram (a1) in Fig. 4 for the
specific time ordering t > τ > τ 1 > τ 2. After the leads are
traced out, we can formally write the corresponding correla-
tion function as,〈
VL(t)V †

R(τ )V †
L(τ1)VL(τ2)

〉
= 〈〈

I |VLG(t − τ )V †
RG(τ − τ1)V †

LG(τ1 − τ2)VL|ρ〉〉
, (A4)

where |ρ〉〉 is the nonequilibrium steady state density matrix
and the time-evolution operator G(t) = eLt , where L is the
Liouvillian operator defined in the molecular space. Then we
can write the expression for the signal from the diagram as

S(a1)(ω2; ω1) =
∫ t

t0

dτ

∫ τ

t0

dτ1

∫ τ1

t0

dτ2

× eiω2(t−τ )
〈〈
I |VLG(t − τ )V †

RG(τ − τ1)

×V
†
LG(τ1 − τ2)VL|ρ〉〉〈

E1L(τ1)E†
1L(τ2)

〉
. (A5)

Now taking the limit t0 → −∞, using the correlation
〈E1L(τ1)E†

1L(τ2)〉 = e−iω1(τ1−τ2) and making changes of time
variables given as t̄ = t − τ , τ − τ 1 = t1 and τ 1 − τ 2 = t2,
we obtain

S(a1)(ω2; ω1) =
∫ ∞

0
dt̄

∫ ∞

0
dt1

∫ ∞

0
dτ2

×eiω2 t̄ e−iω1t2
〈〈
I |VLG(t̄)V †

RG(t1)

×V
†
LG(t2)VL|ρ〉〉

, (A6)

which we can write as

S(a1)(ω2; ω1) = 〈〈
I |VLG(ω2)V †

RG(0)V †
LG(−ω1)VL|ρ〉〉

,

(A7)
where G(t) = ∫ ∞

−∞
dω
2π
G(ω)e−iωt . We next use the resolution

of unity in Liouville space in terms of many-body states of
the molecule,

Î =
∑
MN

|MN〉〉〈〈MN |, (A8)

where vector |MN〉〉 is an operator |M〉〈N| in the Hilbert space.
The steady state density matrix is

|ρ〉〉 =
∑
MN

ρMN |MN〉〉, (A9)
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FIG. 4. Fully time-ordered ladder diagrams for SLE. Each of the four diagrams in Fig. 1 split into six ladder diagrams. Diagrams (a1)-(a6) and (b1)-(b6)
corresponding to the diagram (a) and (b) in Fig. 1, respectively.

where ρMN = 〈M|ρ̂|N〉 is the matrix element of the density
matrix. Inserting Eqs. (A8) and (A9) in (A4), we get

S(a1)(ω2; ω1) =
∑
abcde

∑
fghpqr

ρabVdcV
∗
fgV

∗
qhVraGcd;ef (ω2)

×Geg;hp(0)Gqp;rb(−ω1). (A10)

Here Vab = 〈a|V |b〉 and Gab;cd (t) = 〈〈ab|G(t)|cd〉〉. Similar
expressions can be derived for all time-orderings for all the
terms in Eq. (A3).

When the leads are absent, only the last term on the rhs
of Eq. (7) contributes. The spontaneous signal is then rep-
resented by the single diagram of Fig. 1(d). For different
time-orderings, this diagram splits into three diagrams shown

in Fig. 6. These diagrams have been discussed in detail in
Ref. 20.

APPENDIX B: DERIVATION OF EQ. (19)

The stimulated signal expression for detected mode ω4 is
written as5, 6, 27

Sstim(t) = 2

¯
�
[
E∗

4 (t)

〈
T VL(t) exp

{
− i

¯

∫ t

t0

dτHMF−(τ )

}〉]
.

(B1)

The trace here is with respect to the interacting density
matrix of the molecule+lead and the time evolution for the
operators is with respect to molecule+lead Hamiltonian. The

FIG. 5. Fully time-ordered diagrams for processes contributing to SLE. Diagrams (c1)-(c6) and (d1)-(d6) corresponding to the diagrams (c) and (d) in Fig. 1,
respectively.
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FIG. 6. Ladder diagrams representing spontaneous signal from an isolated
molecule. The left two diagrams correspond to the fluorescence while the
right most diagram is for the Raman scattering. |gN〉 is the ground state with
N electrons, |g′

N 〉 is the vibrationally excited electronic ground state, and |eN〉
is the electronic excited state of N-electrons. The time increases from the
bottom up.

fields are in coherent state. We now expand HMF − to the third
order in the field-matter interaction and for the phase com-
ponent φ = φ1 − φ2 + φ3 − φ4 we obtain the following
expression for the signal:

Sstim(t) = 2

3¯4

∫ t

t0

dτ3

∫ t

t0

dτ2

∫ t

t0

dτ1

×�(
eiφ

[
E∗

4 (t)E3(τ3)E∗
2 (τ2)E1(τ1)

× 〈
T VL(t)V †

−(τ3)V−(τ2)V †
−(τ1)

〉
+ E∗

4 (t)E3(τ1)E∗
2 (τ3)E1(τ2)

× 〈
T VL(t)V−(τ3)V †

−(τ2)V †
−(τ1)

〉

FIG. 7. Fully time-ordered ladder diagrams for processes contributing to stimulated signal from a molecular junction. Diagrams (a1)-(a6), (b1)-(b6), (c1)-(c6),
and (d1)-(d6) correspond to the diagrams (a), (b), (c), and (d) in Fig. 2, respectively.
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+ E∗
4 (t)E3(τ2)E∗

2 (τ1)E1(τ3)

× 〈
T VL(t)V †

−(τ3)V †
−(τ2)V−(τ1)

〉])
,

where Ei(t) = Eie
−iω

i
t , i = 1, 2, 3, 4. Under permutation of

the time variables τ 1, τ 2, τ 3 one can easily show that second
and third terms are the same as the first term which cancels
the prefactor 3 in the denominator and obtain Eq. (19).

1. Ladder diagrams corresponding to Fig. 2 and
algebraic expressions for stimulated signal

Here we present all the time-ordered diagrams of
Figs. 7 and 8 for stimulated emission signal corresponding
to the loop diagrams given in Fig. 2.

In the main text we have given the expression for S
(a)
stim.

Here we write down the expression for other diagrams in
Fig. 2 with the help of time-ordered ladder diagrams in
Figs. 7 and 8,

S
(b)
stim(−ω4; ω3,−ω2, ω1) = − 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1−ω2+ω3)

{
V ∗

geGgf ;hp(ω1−ω2)
(
VhqV

∗
rbGqp;ar (ω1) + V ∗

pqVraGhq;rb(−ω2)
)

+VegGgf ;hp(ω1+ω3)
(
V ∗

qhV
∗
rbGqp;ar (ω1)+V ∗

pqV
∗
arGhq;rb(ω3)

)
+V ∗

fgGeg;hp(ω3−ω2)
(
V ∗

qhVraGqp;rb(−ω2)+VhqV
∗
arGqp;rb(ω3)

)}
, (B2)

S
(c)
stim(−ω4; ω3,−ω2, ω1) = − 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1−ω2+ω3)

{
V ∗

geGgf ;hp(ω1−ω2)
(
V ∗

arVqpGhq;rb(ω1) + V ∗
qhVbrGqp;ar (−ω2)

)
+Vgf V ∗

qhV
∗
arGeg;hp(ω1+ω3)

(
Gqp;rb(ω1) + Gqp;rb(ω3)

)
+V ∗

geGgf ;hp(ω3−ω2)
(
VqpV ∗

arGhq;rb(ω3) + V ∗
qhVbrGqp;ar (−ω2)

)}
, (B3)

S
(d)
stim(−ω4; ω3,−ω2, ω1) = 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1−ω2+ω3)

{
V ∗

geGgf ;hp(ω1−ω2)
(
VqpV ∗

rbGhq;ar (ω1) + V ∗
pqVbrGhq;ar (−ω2)

)
+VgfGeg;hp(ω1+ω3)

(
V ∗

qhV
∗
rbGqp;ar (ω1) + V ∗

pqV
∗
arGhq;rb(ω3)

)
+V ∗

fgGeg;hp(ω3−ω2)
(
V ∗

qhVbrGqp;ar (−ω2) + VqpV ∗
arGhq;rb(ω3)

)}
, (B4)

S
(e)
stim(−ω4; ω3,−ω2, ω1) = − 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1−ω2+ω3)

{
V ∗

fgGeg;hp(ω1−ω2)
(
VhqV

∗
arGqp;rb(ω1) + V ∗

qhVraGqp;rb(−ω2)
)

+VegGgf ;hp(ω1+ω3)
(
V ∗

pqV
∗
arGhq;rb(ω1)+V ∗

qhV
∗
rbGqp;ar (ω3)

)
+V ∗

geGgf ;hp(ω3−ω2)
(
V ∗

pqVraGhq;rb(−ω2) + VhqV
∗
rbGqp;ar (ω3)

)}
, (B5)
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FIG. 8. Fully time-ordered ladder diagrams for processes contributing to stimulated signal from a molecular junction. Diagrams (e1)-(e6), (f1)-(f6), (g1)-(g6),
and (h1)-(h6) corresponding to the diagrams (e), (f), (g), and (h) in Fig. 2, respectively.

S
(f )
stim(−ω4; ω3,−ω2, ω1) = 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1−ω2+ω3)

{
V ∗

fgGeg;hp(ω1−ω2)
(
VhqV

∗
rbGqp;ar (ω1) + V ∗

pqVraGhq;rb(−ω2)
)

+VegV
∗
pqV

∗
rbGgf ;hp(ω1+ω3)

(
Ghq;ar (ω1)+Ghq;ar (ω3)

)
+V ∗

fgGeg;hp(ω3−ω2)
(
V ∗

pqVraGhq;rb(−ω2)+VhqV
∗
rbGqp;ar (ω3)

)}
, (B6)

S
(g)
stim(−ω4; ω3,−ω2, ω1) = 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1−ω2+ω3)

{
V ∗

fgGeg;hp(ω1−ω2)
(
VqpV ∗

arGhq;rb(ω1) + V ∗
qhVbrGqp;ar (−ω2)

)
+VgfGeg;hp(ω1+ω3)

(
V ∗

pqV
∗
arGhq;rb(ω1)+V ∗

qhV
∗
rbGqp;ar (ω3)

)
+V ∗

geGgf ;hp(ω3−ω2)
(
V ∗

pqVbrGhq;ar (−ω2)+VqpV ∗
rbGhq;ar (ω3)

)}
, (B7)

S
(h)
stim(−ω4; ω3,−ω2, ω1) = − 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

∑
fghpqr

ρabVdcGcd;ef (ω1−ω2+ω3)

{
V ∗

fgGeg;hp(ω1−ω2)
(
VqpV ∗

rbGhq;ar (ω1) + V ∗
pqVbrGhq;ar (−ω2)

)
+Vgf V ∗

pqV
∗
rbGeg;hp(ω1+ω3)

(
Ghq;ar (ω1)+Ghq;ar (ω3)

)
+V ∗

fgGeg;hp(ω3−ω2)
(
V ∗

pqVbrGhq;ar (−ω2)+VqpV ∗
rbGhq;ar (ω3)

)}
. (B8)
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2. Stimulated signal for diagonal G(ω)

As discussed while calculating SLE signal that if the
interaction with the leads does not create any electronic

excitations and contribute only to the life-time of the many
body states, then G is diagonal and the stimulated signal is
given by diagrams (a), (c), and (g) in Fig. 2. The expression
for the corresponding diagrams is given in the following:

S
(a)
stim = 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

ρabVbe

ω1 − ω2 + ω3 − ωeb + i�

{
VdcV

∗
deVac

[
1

(ω1 − ω2 − ωdb + i�)(ω1 − ωcb + i�)

+ 1

(ω3 − ω2 − ωdb + i�)(ω3 − ωcb + i�)

]
+ VedV

∗
cdV

∗
ac

ω1 + ω3 − ωdb + i�

[
1

ω1 − ωcb + i�
+ 1

ω3 − ωcb + i�

]

+ V ∗
deV

∗
cdVca

ω2 − ωbc − i�

[
1

ω1 − ω2 − ωdb + i�
+ 1

ω3 − ω2 − ωdb + i�

]}
, (B9)

S
(c)
stim = − 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

ρabVdcVbdV
∗
ecV

∗
ae

ω1 − ω2 + ω3 − ωeb + i�

{
1

ω1 − ω2 − ωed + i�

(
1

ω1 − ωeb + i�
− 1

ω2 − ωda − i�

)

+ 1

ω1 + ω3 − ωeb + i�

(
1

ω1 − ωeb + i�
+ 1

ω3 − ωeb + i�

)
+ 1

ω3 − ω2 − ωed + i�

×
(

1

ω3 − ωeb + i�
− 1

ω2 − ωda − i�

)}
, (B10)

S
(g)
stim = 1

¯4
eiφE∗

4E3E∗
2E1

∑
abcde

ρabVdcV
∗
ac

ω1 − ω2 + ω3 − ωeb + i�

{
V ∗

deVbe

ω1 − ω2 − ωca + i�

(
1

ω1 − ωcb + i�
− 1

ω2 − ωea − i�

)

+ VedV
∗
eb

ω3 + ω1 − ωca + i�

(
1

ω1 − ωcb + i�
+ 1

ω3 − ωae + i�

)

+ 1

ω3 − ω2 − ωad + i�

(
VedV

∗
eb

ω3 − ωac + i�
− V ∗

deVbe

ω2 − ωac − i�

)}
. (B11)
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