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Nonlinear all-X-ray signals that involve large core-atom separation compared to

the X-ray wavelengths may not be described by the dipole approximation since

they contain additional phase factors. Expressions for the rotationally averaged 2D

X-ray photon echo signals from randomly oriented systems that take this position-

dependent phase into account for arbitrary ratio between the core separation and

the resonant wavelength are presented. Application is made to the Se K-edge of a

selenium dipeptide system. VC 2013 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4833560]

I. INTRODUCTION

Nonlinear spectroscopy has been widely applied to excitonic systems spanning the vibra-

tional1,2 and electronic3–5 response of chromophores in biological6,7 and engineered8 systems.

X-ray free electron laser9 sources strong enough to enable nonlinear processes10,11 promise to

extend these studies to core-excitons in molecules. These short, high-frequency pulses can probe

the molecule on the time-scale of the attosecond period of the core-excitation and on the length-

scale of the spatial extent of the resonant core orbital. Coherent excitations, which extend over

long ranges (compared to the resonant wavelength), lead to violations of the dipole approxima-

tion. Quadripole core transitions on a single core are small, because the spatial extent of the core

orbital is small compared to the exciting wavelength. Non-dipole transitions between cores can

be modeled as dipole transitions multiplied by a complex phase factor dependent on the core

location. While rare for IR and UV/Vis active chromophores, this kind of violation is expected

to be the norm for strongly coupled, hard X-ray atomic core excitations in molecules. Time-

resolved two- and three-pulse X-ray Raman experiments12–15 avoid this difficulty by having the

field interact twice with each chromophore, negating any dependence on the phase which is asso-

ciated with the projection of the resonant core along the applied pulse wave vector.

The nonlinear response of quantum molecules to a classical external field can be expressed

as a combination of multipoint correlation functions of the matter-field coupling term in the

molecular Hamiltonian.16 These multipoint functions in time and space, depend on both the

spatial and temporal phase profiles of the applied field,

EðR; tÞ ¼ eðtÞexpðik � R� ixjtÞ þ c:c: (1)

For typical electronic and vibrational molecular transitions, the applied field wavelength is

much longer than any exciton coherence length. In the dipole approximation, the signal is writ-

ten as the sum of contributions from a dilute collection of molecules. The bulk polarization

generated has a spatial dependence on the centers of the molecules, but the spatial phase of the

field assumed to be nearly constant for transitions within the molecule ðk � R ’ 0Þ. In the opti-

cal regime, this phase is important only for chiral signals. For this reason, we will call the part

of the signal which is included in the dipole approximation “nonchiral,” and the remainder of

a)smukamel@uci.edu

2329-7778/2014/1(1)/014101/19 VC Author(s) 20131, 014101-1

STRUCTURAL DYNAMICS 1, 014101 (2014)

http://dx.doi.org/10.1063/1.4833560
http://dx.doi.org/10.1063/1.4833560
http://dx.doi.org/10.1063/1.4833560
mailto:smukamel@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4833560&domain=pdf&date_stamp=2013-12-18


the signal the “chiral” part is generally more relevant for X-rays. The lowest terms in the cor-

rection for this approximation can be included by a Taylor expansion,

eik�R ’ 1þ ik � Rþ ðik � RÞ2 þ � � � : (2)

This expansion should be avoided when system coherences exist on scales comparable to or

larger than the exciting wavelength.

It is also necessary to average the response over the random orientations of the molecules relative

to the laboratory frame defined by the wave vectors and polarizations of the applied pulses.

Tensor techniques17 are commonly used to analytically solve for the rotationally-averaged signals

for k � R ¼ 0 when the matter-field coupling ðĤintðtÞÞ has no spatial phase dependence (i.e.,

ĤintðtÞ � lj � ej).
18 In the dipole approximation, a third order four-wave mixing signal will be propor-

tional to the isotropic tensor product I � hlaalbblcclddi, where laa are the Euler angles between the

molecular (a,b,c,d) and laboratory ða; b; c; dÞ frames of Ref. 17, and h� � �i denotes the ensemble aver-

age over all possible rotation matrices l̂. A core excitonic system including spatial phases with

stationary holes will have a signal proportional to the phase rotationally averaged tensor:

Iph � hlaalbblcclddeikij�RNMi, where kij ¼ ki � kj is the wave vector difference between pulses i and j,
and RNM is the position vector difference between cores N and M. An analytic form of the averaged

tensor was derived in Ref. 19. This Phased Rotational Averaging (PRA) signal was applied to

describe two-photon absorption in excitonic systems. Unlike the signal in the dipole approximation,

this expression contains an explicit dependence on the wave vectors of the applied pulses, and the

vectors connecting the chromophore positions, relative to the transition dipoles on the chromophores.

In this paper, we apply this averaging to a nonlinear hard X-ray technique. We show that dif-

ferent Liouville space pathways of this phase-dependent signal depend on different combinations

of the applied pulse wave-vectors. This extra experimental knob allows groups of pathways to be

isolated and measured separately. We consider experiments that are analogs of optical spectros-

copy in molecular aggregates, with the molecular chromophores replaced by atomic core orbitals

resonant with the X-ray frequencies of the applied fields. They contain terms with transitions res-

onant with separate cores on a molecule, and phases that depend on the distance between these

cores. In nonlinear X-ray spectra, the relevant phases are determined by two length scales: the

spatial extent of the core orbital and the distances between resonant cores. If the spatial extent of

the core-orbital is small compared to the X-ray wavelength, the system obeys the local dipole

approximation. If the spatial phase of the electric field is constant over a volume containing the

molecule, the system obeys the global dipole approximation. X-ray pulses are short enough to

probe valence electronic motions on subfemtosecond timescales with element-specific selectivity.

In many interesting systems, e.g., large conjugated polyenes or transition metal compounds, only

the local dipole approximation holds. In this study, we retain a simple single-electron

Hamiltonian picture to describe the X-ray response for systems which obey the local but not the

global dipole approximation. We introduce the dimensionless parameter j ¼ R=k, where R is the

distance between different cores and k is a characteristic hard X-ray wavelength. In the global

dipole approximation ðj� 1Þ, rotational averaging leads to a contraction over tensor components

of the response, the applied polarizations, and an isotropic tensor.17 This has been widely applied

to calculate the nonlinear response of systems of vibrational18 and electronic4 excitations.

Rotational averaging over a large collection of transition dipoles including a phase factor

representing the position of each core is computationally laborious. Andrews et al. first derived

expressions for the fourth order isotropic tensor17 used for calculating the four-wave mixing

signal. They subsequently considered a “phased” rotational averaging tensor, including an expo-

nential containing a dot product between vectors in the molecular and laboratory frames.19

Expressions for the four-wave mixing nonlinear response in the X-ray regime where j > 1 are

derived using this tensor. The photon-echo ks ¼ �k1 þ k2 þ k3 signal contains pulse wave vec-

tor direction-dependent terms specific to each Liouville space path. In the j > 1 regime, the

nonlinear response is sensitive not only to the linear combination ks of the incident pulse wave-

vectors, but to their individual, component directions as well. The dependence of the photon

echo signal in photosynthetic exciton systems on the applied field wave vectors and the polar-

izations of the applied pulses has been investigated by Mercer et al.20,21 We adopt the same
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typical boxcar geometry. We apply these results to a model system of a selenium dipeptide,

with R¼ 5.803 Å and k¼ 0.979 Å, making j ¼ 5:924. The signal is shown to contain a factor

dependent on both the polarizations and the directions of the wave vectors of the applied

pulses. Numerical results are then presented.

II. THE PHOTON ECHO SIGNAL FOR ARBITRARY j

First, we discuss the general case by including a spatial phase in the photon echo signal for

an aggregate of coupled two-level systems, showing an analytic solution exists for the collinear

experiment, in which the applied pulses have the same wave vector. Then, we present the

X-ray experiment for noncollinear pulses. Expressions for the X-ray photon echo signal were

derived in Ref. 22. We consider an electronic Hamiltonian

Ĥ ¼ Ĥo þ ĤintðtÞ (3)

partitioned between a material part

Ĥo ¼
X

r

�rc
†
r cr þ

X
rstu

Vrs;tuc†
r c†

s ctcu (4)

defined in terms of the orbital creation c†
i and annihilation ci operators, with orbital energies �r,

coupled by the Coulomb interaction

Vrs;tu ¼
ð

/�r ðrÞ/�s ðr0Þ/tðr0Þ/sðrÞ
jr� r0j d rd r0: (5)

The nuclei are considered fixed in this treatment. The explicit time-dependence of the

Hamiltonian in Eq. (3) is through an externally applied classical field

ĤintðtÞ ¼ �
ð

lðr; tÞ � Eðr; tÞd r: (6)

The nonlinear response formalism5 casts the signal as the heterodyne-detected overlap between

the field emitted by the material polarization generated by the first three pulses overlapped with

a fourth pulse. The electric field is written

Eðr; tÞ ¼
X4

j¼1

ejejðt� sjÞexp½þikj � r� ixjðt� sjÞ� þ c:c; (7)

with polarization vectors ej, envelopes ej, arrival times sj, and central frequencies xj. In the fre-

quency domain, this expression becomes

ejðxÞ ¼
ð1
�1

eiðx�xjÞtejðtÞ d x: (8)

The dipole operator coupling the core-orbital to the field

lðrÞ ¼
X

N

l̂ dðr� RNÞ (9)

also contains a spatial dependence on the location of the chromophore RN, which is a two level

subunit in the aggregate, or a resonant core in the X-ray experiment. The dipole operator in the

orbital basis is defined as

l̂ ¼
X
aN

laNc†
acN þ c:c; (10)
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where

laN ¼
ð

/�aðrÞr/NðrÞd r: (11)

The eigenstates of Ĥo are the ground and valence excited states jgi; jg0i;…, are singly core-

excited states with holes on the N or M core, respectively, jeNi; jeMi;…, and the doubly core

excited states jfNMi (see Fig. 1). We make the local dipole approximation described in the intro-

duction by assuming the matrix elements of the dipole operator

lmj
eNg ¼ heNjl̂mj

jgi ¼ eikj�RN heNjðrmj
� RNmj

Þjgi (12)

are taken relative to the position of the chromophore, with the phase of the jth electric pulse at

that chromophore.

The general expression for the PRA signal, after accounting for a spatial phase, and an ar-

bitrary rotation of the molecular system by an Euler rotation matrix l̂, modifies each dipole,

lmj ! lmj lmjfj exp½ikj � Rj�, leading to the following tensor average:

hlm1f1 lm2f2 lm3f3 lm4f4 exp½ið�k1 � RN þ k2 � RN0 þ k3 � RM � ks � RM0 Þ�i: (13)

In the photon echo experiment, ks¼ –k1 þ k2 þ k3. Substituting this into Eq. (13), we get

hlm1f1 lm2f2 lm3f3 lm4f4 exp½ið�k1 � ðRN � RM0 Þ þ k2 � ðRN0 � RM0 Þ þ k3 � ðRM � RM0 Þ�i: (14)

The indices m1…4 ðf1…4Þ refer to tensors defined in the molecular (laboratory) frame of refer-

ence. lmifi are matrix elements of the Euler rotation matrix, and h� � �i �
Ð
� � �d l̂ is the ensemble

average over the relative orientations of these two frames. If Eq. (14) can be placed into a form

with a single dot product in the exponential, the formalism given in Ref. 19 can be applied.

Two different ways are now presented to perform this simplification.

III. PHOTON ECHOES IN A COLLINEAR PULSE CONFIGURATION

The collinear pulse geometry is the simplest; we now apply the non-dipole averaging to a

collinear photon-echo signal on a model aggregate of coupled two-level systems (see Fig. 2).4

Phase-cycling is a technique used to extract an equivalent to the photon echo by varying the

phases between pulses. Originally used in nuclear magnetic resonance (NMR),23 it has been

adapted to multidimensional optical experiments.24–27 If k1;2;3;s � k, then the dot products in

Eq. (14) can be combined.

FIG. 1. Level diagram for the valence, single and double core-excited states of the selenium dipeptide. Double-arrows

mark dipole coupled states. The wavelength ðkSeÞ resonant with the Se K-edge transition (12658.00 eV) is 0.979 Å, and the

Se atoms are separated by 5.803 Å (5.924 kSe).
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We define the excitonic dipole operator

l̂ ¼
X

n

lnB†
n þ l†

nBn (15)

and the single

jei ¼
X

N

CeNB†
Njgoi (16)

and doubly

jf i ¼
X
NM

Cf ;NMB†
NB†

Mjgoi (17)

excited states in terms of local chromophore excitation creation ðB†
NÞ and annihilation (BN)

operators. The eigenstate dipole operators are expanded in the local state basis using this nota-

tion. The response contains spatial phase factors that depend on the chromophore positions (see

Fig. 3), and an additional sum over local sites N;N0;M, and M0. The signal is a sum of three

terms

StotðX1; t2;X3Þ ¼ SGSBðX1; t2;X3Þ þ SESEðX1; t2;X3Þ þ SESAðX1; t2;X3Þ: (18)

The ground state bleaching,

SGSBðX3; t2;X1Þ ¼
X
e;e0

X
NN0MM0

�i

�h

� �3

lm1

N lm2

N0 l
m3

M lm4

M0e
f1
1 ef2

2 ef3
3 ef4

4

	 hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik � ðRNN0 þ RMM0 Þ�i

	 C�eNCeN0Ce0MC�e0M0
jeðxegÞj2jeðxe0gÞj2

ðX1 � xge þ icÞðX3 � xe0g þ icÞ ; (19)

and stimulated emission term,

SESEðX3; t2;X1Þ ¼
X
e;e0

X
nn0mm0

�i

�h

� �3

lm1

N lm2

N0 l
m3

M lm4

M0e
f1
1 ef2

2 ef3
3 ef4

4

	 hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik � ðRNN0 þ RMM0 Þ�i

	 C�eNCe0N0CeMC�e0M0
jeðxegÞj2jeðxe0gÞj2e�ixe0et2�c0t2

ðX1 � xge þ icÞðX3 � xe0g þ icÞ ; (20)

FIG. 2. System of coupled two-level systems.
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contain only singly excited states. The expression for the excited state absorption

SESAðX3; t2;X1Þ ¼
X
e;e0

X
NN0MM0

X
PQ

�i

�h

� �3

lm1

N lm2

N0 l
m3

M lm4

M0e
f1
1 ef2

2 ef3
3 ef4

4

	 hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik � ðRNN0 þ RMM0 Þ�i

	 CeNC�e0N0 ðC�f ;MP þ C�f ;PMÞCe;PC�e0;QðCf ;M0Q þ Cf ;QM0 Þ

	 e�ðxef Þeðxfe0 Þe�ðxegÞeðxe0gÞe�ixe0et2�c0t2

ðX1 � xge þ icÞðX3 � xf e þ icÞ : (21)

The tensor averages hlm1f1 …i in these expressions can be evaluated using the results of

Appendix B. Only homogeneous broadening was considered in the derivation of Eqs. (19)–(21).

The generic excitonic systems described above have delocalized eigenstates, and the four

pulses can interact at four points in space (RN, RN0 , RM, RM0 in Fig. 3). Core holes, in contrast,

are localized and the applied pulses must create and destroy a hole on the same site. The signal

thus only involves two cores (RN,M). One of the two selenium atoms in Fig. 1 is closer to the

peptide nitrogen than the other, resulting in a slightly different chemical environment. We

assume the through-space coupling between the core holes is much smaller than their orbital

energy splitting, leading to a nearly stationary core-hole. A thorough treatment of the core-hole

hopping dynamics between equivalent cores in identical chemical environments has yet to be

performed, and will be the focus of future studies. The core-excitations have the form of excita-

tions from stationary cores to diffuse frontier orbitals, forcing each participating core to absorb

and emit with the X-ray field, and making the k � R factors in Eqs. (19)–(21) vanish and the

dipole approximation holds when the wavevectors of all four pulses are the same. The form of

the X-ray excitations, with stationary core-holes is the reason the four-point diagrams in Fig. 3

FIG. 3. Ladder diagrams and phase factors contributing to the response for the coupled two-level systems, corresponding to

Eqs. (19)–(21).
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simplify to the two-point diagrams given in Fig. 4. For collinear pulses, the photon echo X-ray

signal carries no dependence on the intercore separation, only when the applied pulses have dif-

ferent wavevectors will the signal contain a dependence on the intercore distance.

IV. X-RAY PHOTON ECHO FOR NONCOLLINEAR PULSES

We now describe the X-ray photon echo signal for noncollinear pulses. Ladder diagrams

for the X-ray photon echo signal are given in Fig. 4. Unlike the coupled, two-level system

case, each excitation ðe; e0;…Þ is associated with its own core, which we label with subscripts

ðeN; e
0
M;…Þ. The total signal is the sum of four contributions

SPRAðX3; t2;X1Þ ¼ SGSBðX3; t2;X1Þ þ SESEðX3; t2;X1Þ
þSESA1ðX3; t2;X1Þ þ SESA2ðX3; t2;X1Þ; (22)

the ground state bleaching

SGSBðX3; t2;X1Þ ¼
X

g0;eN ;e0M

lm1
geN

lm2

eNg0l
m3

e0Mgl
m4

g0e0M
hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik21 � RNM�i

	
�16p4e�ixgg0 t2�ct2e�f1ðxgeN

Þef2ðxeNg0 Þef3ðxe0MgÞe�f4ðxg0e0M
Þ

ðX1 � xgeN
þ icÞðX3 � xe0Mg0 þ icÞ ; (23)

FIG. 4. Ladder diagrams for the photon echo signal, including the wave vector dependent phase, corresponding to Eqs.

(23)–(26).
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the excited state emission

SESEðX3; t2;X1Þ ¼
X

g0;eN ;e0M

lm1
geN

lm2

e0Mgl
m3

eNg0l
m4

g0e0M
hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik31 � RNM�i

	
�16p4e

�ixe0
M

eN
t2�ct2e�f1ðxgeN

Þef2ðxe0MgÞef3ðxeN g0 Þe�f4ðxg0e0M
Þ

ðX1 � xgeN þ icÞðX3 � xe0Mg0 þ icÞ ; (24)

and excited state absorption with two orderings of core-excitations

SESA1ðX3; t2;X1Þ ¼ �
X

g0;eN ;e0M

lm1

geN
lm2

e0Mgl
m3

fNMe0M
lm4

eN fNM
hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik31 � RNM�i

	
�16p4e

�ixe0
M

eN
t2�ct2e�f1ðxgeN

Þef2ðxe0MgÞef3ðxfNMe0mÞe�f4ðxeNfNM
Þ

ðX1 � xgeN
þ icÞðX3 � xfNMeN

þ icÞ ; (25)

SESA2ðX3; t2;X1Þ ¼ �
X

g0;eN ;e0N

lm1
geN

lm2

e0Ngl
m3

fNMe0N
lm4

enfNM
hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik21 � RNM�i

	
�16p4e

�ixe0
N

eN
t2�ct2e�f1ðxgeN

Þef2ðxe0NgÞef3ðxfNMe0N
Þe�f4ðxeN fNM

Þ
ðX1 � xgeN

þ icÞðX3 � xfNMeN
þ icÞ : (26)

With heterodyne detection, it is possible to measure the real and imaginary parts of the gener-

ated field by interference with the last field. We assume we are measuring the real part of the

signal. The lineshape functions

ðþ1
�1

hðtÞeiðX�xrsÞt�cþtd t ¼ i

X� xrs þ icþ
; (27)

the frequency domain form of the electric pulses

ejðxÞ ¼ ½e�ðx�xjÞ2=2r2
j þ e�ðxþxjÞ2=2r2

j � 1

2r2
j

; (28)

and the perturbative factor ð�i=�hÞ3 contribute to the �16p4 factor in each expression. A reso-

nant contributions to the fourth-order signal only include terms where the number of core-

excitons created equal the number destroyed. We neglect core-hole migration, so that only two

cores contribute to each term. Equations (22)–(26) will now be applied to calculate the signal

for a model selenium dipeptide.

V. APPLICATION TO SELENIUM DIPEPTIDE

Charge and energy transfer in protein systems is a field of growing technical interest as

these systems are currently more efficient than artificially designed catalysts and solar cells.

Selenium is isoelectronic with oxygen and has been used to tag proteins28 and oligonucleo-

tides29 for determining their structure using the multiwavelength anomalous dispersion (MAD)

technique. Recently, small oligotides were synthesized with selenium substitute directly for the

oxygen on the amide backbone.30 As this backbone is often implicated in charge transfer in

proteins, a selenium dipeptide system (Fig. 1) is an attractive system to investigate these nonlin-

ear X-ray effects. The core-excited states of the selenium dipeptide (see Fig. 1) are treated

using the orbital approximation and neglecting core-relaxation. The X-ray absorption near edge

structure (XANES) in this approximation is shown in Fig. 5, with the applied pulse power spec-

trum in blue. An active orbital space of the four virtual and four occupied orbitals are taken

and used to approximate the core singly ðjeNi ¼ c†
acNjgi; �eN

¼ xaNÞ and doubly ðjfNMi
¼ c†

ac†
bcMcNjgi; �fNM ¼ xaN þ xbMÞ core excited states. The valence states are also treated using

the orbital approximation ðjg0i ¼ c†
acijgi; �g0 ¼ xaiÞ. All orbitals, energies, and dipole matrix

014101-8 Healion et al. Struct. Dyn. 1, 014101 (2014)



elements were calculated using the GAUSSIAN 03 code,31 using the B3LYP functional32 and the

aug-cc-pVTZ basis set.33,34 Each peak is broadened by a Lorentzian with a 2.20 eV FWHM35

representing the core-hole lifetime. The level of theory is crude, as demonstrated by the large

energy shift between the calculated core-edge in Fig. 5, and the experimental 12.65 keV Se

K-edge,35 but is expected to qualitatively reproduce the XANES spectra.

We assume a boxcar pulse geometry (see Fig. 6), with an apex angle a of 308. This is

larger than the small solid angle usually chosen for experimental convenience. The apex angle

in the boxcar geometry (see Fig. 7) fixes the size of the wavevector differences that contribute

to j; by increasing the difference between the wave vectors, the non-dipole approximation con-

tribution to the signal will be larger. We define “out” polarizations, which are included in a

plane containing the center of the pyramid and the wave vector, and “about” polarizations,

which are perpendicular to both the wave vector and the “out” polarization (see Fig. 7).

Following Appendix B, the signal is a linear combination of nineteen components, weighted by

the spherical Bessel function ðjnðjÞÞ. We choose the all “out” polarization with a boxcar geom-

etry with an apex angle of 308. The result is shown in Fig. 8. We find that the nonchiral part of

the signal—the signal calculated using the dipole approximation—is roughly three orders of

magnitude smaller than the chiral signal. This could be predicted from the geometry of the

FIG. 5. Se K-edge XANES spectra of the selenium dipeptide system. Blue line is the power spectrum of the pulse used for

the 2D signals.

FIG. 6. Boxcar pulse geometry with apex angle a, field wave vectors k1�3;s and polarizations k1�4.
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selenium atoms, as shown by the vertical line in Fig. 9, the first order contribution to the

response is expected to be weak.

The PRA signal can be written as a linear combination of components, which is written

conveniently written in block matrix form, with five components ðVL1…L5Þ given in Appendix B.

Each block is weighted by a spherical Bessel function j1…5ðjÞ with an argument j ¼ RNM=k.

When the resonant core wavelength (k) is much larger than the intercore distance (RNM), only

j0ðjÞ is nonzero, and only the first block corresponding to the dipole allowed transitions (VL0)

contributes to the signal. The signals are broken down into their contributions from each matrix

element of the VL vector in Figs. 10–14. Although these may not be measured separately, they

provide a framework for interpreting the overall signal given in Fig. 8. The nonchiral signal in

Fig. 8 is the sum of the three signals in Fig. 10, the nonchiral part is the sum of the remaining

contributions in Figs. 11–14. The nonchiral signal is dominated by the last signal from Fig. 14,

and we include the rest to show there is additional information in these signals. The first block

of VL in Fig. 10 represents the dipole-approximated signals and are fairly low in amplitude

compared to the rest of the signals, as predicted above. The next block in Fig. 11 contains sev-

eral contributions with a comparable intensity to the nonchiral signal, but with opposite and

FIG. 7. Polarizations defined in boxcar geometry. ej?kj8j; ej;out shares the plane containing the axis of the pyramid and

kj; ej;about ¼ ej;out 	 kj.

FIG. 8. (Left) Nonchiral (with 60 contours spanning 63	 10�4) and (right) chiral (60 contours spanning spanning 61)

contributions to the real part of the PRA signal. Notice that the chiral signal is much stronger.
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canceling phases ((iv) and (v); (viii) and (ix)). The unique contributions (vi) and (vii) are much

lower in amplitude, and contribute negligibly to the final signal. The third block contains sev-

eral contributions with strong and noncanceling weights, taken together the signals (x)–(xiii)

should contribute at �1% of the total signal intensity, which can be compared to the signal

FIG. 9. Spherical Bessel functions j0�4ðjÞ, with the inter-atom Selenium distance (in units of k ¼ 1:021Å) given by the

vertical line.

FIG. 10. Contributions from the chiral parts of the VL vector [Eq. (B1)], the first three matrix elements. There are 30 con-

tour lines (i), (ii) from 67	 10�5, and (iii) from 65	 10�4.
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very intense (xvi) contribution. The most intense contribution to the signal is in the last matrix

element, shown in Fig. 14.

We next turn to signals that can be experimentally discriminated, by varying the polariza-

tions of the measurement. There are 24¼ 16 choices of polarizations for each choice of apex

angle in the boxcar geometry. The different signals for h ¼ 30
 are shown in Fig. 15. The sig-

nals form two groups with minor changes in the lineshapes and sign changes. Spectra in which

the polarizations are paired (that have two “out” polarizations and two “about” polarizations, as

described in Fig. 7) form one group, the other group has one polarization of one type, and the

rest of the other. For an apex angle near zero, the chiral XXXY signal would be in the second

group, and the nonchiral XXYY, XYXY, and XYYX signals would be in the first.

FIG. 11. Contributions from the second block, nonchiral parts of the VL vector [Eq. (B1)], the contour ranges are

62	 10�4, 62	 10�4, 63	 10�7, 61	 10�7, 61.5	 10�5, 61.5	 10�5, respectively.

014101-12 Healion et al. Struct. Dyn. 1, 014101 (2014)



VI. CONCLUSIONS

The selection rules for the X-ray photon echo signal make the collinear signal independ-

ent of intercore distances for both homonuclear and heteronuclear experiments. For homonu-

clear experiments with variable wave vectors, the spatial phases corresponding to the core

positions have to be taken into account. We have simulated the photon echo signal, including

a rotationally averaged complex exponential spatial phase corresponding to each core position

without recourse to a Taylor expansion in this phase. This formalism was applied to a sele-

nium dipeptide, where the selenium atoms were separated by a convenient distance, in which

the nondipole contributions to the signal were expected to be large (see Fig. 9). Similar situa-

tions will be encountered frequently in hard X-ray nonlinear spectroscopy of the heavier

elements.

FIG. 12. Contributions from the third block, nonchiral parts of the VL vector, scaled to 69	 10�4, 69	 10�4, 63	 10�3,

63	 10�3, 61	 10�3, 61	 10�3, respectively.
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With our choice of pulse bandwidth, and the assumption of four active virtual and occupied

orbitals, there are 16 states in the jg0i and jfNMi bands, and 8 states in the singly excited

jeN; e
0
Mi band, leading to 4096 combinations contributing to the signal. Individual contributions

from core-excitations to different virtual orbitals are largely obscured by broadening due to the

FIG. 13. Contributions from the fourth block, nonchiral parts of the VL vector, scaled to 62	 10�2, 63	 10�6,

67	 10–4, respectively.

FIG. 14. Contributions from the last and most intense nonchiral matrix element of the VL vector, scaled to 61.
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short core-hole lifetime at hard x-ray excitation energies. It may be possible to fit the intera-

tomic distance between the cores by simulation, although it would be difficult to imagine a

model compound that smoothly interpolates this distance in steps small compared with the

X-ray wavelength.

The present results can be extended in various ways. The general excitonic response with

collinear pulses should be explored, especially comparing the weak, SXXXYðX3; t2;X1Þ chiral sig-

nal calculated using Taylor expansions to the full analytic treatment described here. Also, for

the X-ray experiment, we have noted but not exploited the fact that different diagrams depend

on different wave vector differences. By taking the numerical derivative of the signal with

respect to the wave vector directions, and holding the other two wave vectors fixed, we could

isolate peaks from only one pair of diagrams or the other, as in Ref. 21. This should extend the

chiral discrimination of the X-ray signal described here.
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APPENDIX A: ROTATIONAL AVERAGING IN NONLINEAR SPECTROSCOPY

In this section, we explain how rotational averaging enters into the expressions for nonlinear

spectroscopy. The field of nonlinear spectroscopy is too broad to summarize here, for a more

detailed description, we refer the reader to Refs. 4, 5, and 36. In four-wave-mixing spectroscopies

such as the photon echo technique, the material interacts with three pulses with wave vectors

k1;…;3, resulting in a time-dependent polarization

hlðr; tÞi ¼ hwðtÞjlðrÞjwðtÞi: (A1)

FIG. 15. Polarization dependence of signals with the boxcar geometry. Polarizations are defined in Fig. 7.
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The signal is measured in a particular direction (ks ¼ �k1 þ k2 þ k3 for the photon-echo signal)

and is expressed as a function of the delays between the pulses t1,2,3, or their Fourier transforms,

with the frequencies X1;2;3. We follow the convention in this paper of expressing this signal as a

Fourier transform of the first and last interpulse delays, and retaining t2 as a parameter. The wave

function is expanded perturbatively in the applied fields

jwðtÞi ¼
X3

n¼0

jwðnÞðtÞi; (A2)

jwðnÞðtÞi ¼ �i

�h

� �nð1
0

d tn�1 � � �
ð1

0

d t1ĤintðtÞĤintðt� tn�1Þ � � � Ĥintðt� tn�1 � � � � � t1Þ; (A3)

where the interaction Hamiltonian was defined in Sec. II

ĤintðtÞ ¼ �
ð

lðr; tÞ � Eðr; tÞd r: (A4)

The field is the sum of four pulses (Eq. (7))

Eðr; tÞ ¼
X4

j¼1

ejejðt� sjÞexp½þikj � r� ixjðt� sjÞ� þ c:c;

and the dipole operator defined in Eqs. (10)–(12). Each term in the perturbative expansion of the

bra and the ket can be labelled with a Feynman diagram, the rules for selecting only resonant

terms are described elsewhere.4,5,36 The spatial integration in Eq. (A4) means that each interaction

with the dipole operator results in a complex exponential factor, exp½ik � RN �. In the dipole approx-

imation k � RN � 1, and the final signal is written as a linear combination of terms which are pro-

portional to rotationally averaged products of dot products between the molecular dipole operator

the pulse polarization vectors

S / hðl1 � e1Þðl2 � e2Þðl3 � e3Þðl4 � e4Þi; (A5)

where the angle brackets denote a rotational average h� � �i ¼
Ð

d l̂. Using the integral form, the

term in Eq. (A5) is proportional to

l1;m1
l2;m2

l3;m3
l4;m4
hlm1f1 lm2f2 lm3f3 lm4f4ie1;f1 e2;f2 e3;f3 e4;f4 : (A6)

For the local dipole approximation, each dipole moment includes a phase. For the X-ray, station-

ary core-hole case, the signal is proportional to a product of dot products times a single exponen-

tial phase factor

Snon-dipole / hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik � R�i: (A7)

Analytic expressions for this rotational average were derived in Ref. 19 and are presented below.

APPENDIX B: ROTATIONALLY AVERAGED SIGNALS

Expressions for the rotational averaging tensor were given in (Eqs. (3.12)–(3.17) in Ref. 19).

R and k are the distance and wave vector relevant for each peak in the spectrum, R and k are their

respective lengths, and R̂ ¼ R=R and k̂ ¼ k=k are the unit vectors. j ¼ Rk ¼ R=kk is the weight-

ing factor that controls which blocks contribute to the signal
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Im1m2m3m4;f1f2f3f4ðR; kÞ ¼ hlm1f1 lm2f2 lm3f3 lm4f4 exp½ik21 � Rnm�i
¼ VT

LðR̂ÞM jð ÞVRðk̂Þ (B1)

¼

VL0

VL1

VL2

VL3

VL4

0
BBBBB@

1
CCCCCA

T
M0 0 0 0 0

0 M1 0 0 0

0 0 M2 0 0

0 0 0 M3 0

0 0 0 0 M4

0
BBBBB@

1
CCCCCA

VR0

VR1

VR2

VR3

VR4

0
BBBBB@

1
CCCCCA
: (B2)

The first vector is

V0 ¼
d�1�2

d�3�4

d�1�3
d�2�4

d�1�4
d�2�3

0
B@

1
CA; (B3)

where � ¼ m when V0¼VL0, and � ¼ f when V0¼VR0. The weighting matrix is block diagonal;

the first element,

M0 ¼
j0ðjÞ
30

4 �1 �1

�1 4 �1

�1 �1 4

2
64

3
75; (B4)

is equivalent to the tensor components contributing to the signal in the dipole approximation.

Each block Mn in the matrix M is weighted by the spherical Bessel function37

jnðjÞ ¼ ð�jÞn 1

j
d

dj

� �n
sinðjÞ

j
; (B5)

where its argument j ¼ kR ¼ R=k is the ratio between the intercore distance and the resonant

wavelength. The remaining contributions are written using the same notation

V1ðR̂Þ ¼
X
�s

��1�2�s R̂�sd�3�4

��1�3�s R̂�sd�2�4

��1�4�s R̂�sd�2�3

��2�3�s R̂�sd�1�4

��2�4�s R̂�sd�1�3

��3�4�s R̂�sd�1�2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

; (B6)

M1 ¼
ij1ðjÞ

10

3 �1 �1 1 1 0

�1 3 �1 �1 0 1

�1 �1 3 �0 �1 �1

1 �1 0 3 �1 1

1 0 �1 �1 3 �1

0 1 �1 1 �1 3

2
66666666664

3
77777777775
; (B7)
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V2 ¼

d�1�2
R̂�3

R̂�4
� 1

3
d�3�4

� �

d�1�3
R̂�2

R̂�4
� 1

3
d�2�4

� �

d�1�4
R̂�2

R̂�3
� 1

3
d�2�3

� �

d�2�3
R̂�1

R̂�4
� 1

3
d�1�4

� �

d�2�4
R̂�1

R̂�3
� 1

3
d�1�3

� �

d�3�4
R̂�1

R̂�2
� 1

3
d�1�2

� �

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

; (B8)

M2 ¼
�j2ðjÞ

14

11 �3 �3 �3 �3 4

�3 11 �3 �3 4 �3

�3 �3 11 4 �3 �3

�3 �3 4 11 �3 �3

�3 4 �3 �3 11 �3

4 �3 �3 �3 �3 11

2
6666666664

3
7777777775
; (B9)

V3 ¼
X
�s

e�1�3�s R̂�2
R̂�4

R̂�s �
1

5
ðd�2�s R̂�4

þ d�4�s R̂�2
þ d�2�4

R̂�sÞ
� �

e�2�3�s R̂�1
R̂�4

R̂�s �
1

5
ðd�1�s R̂�4

þ d�4�s R̂�1
þ d�1�4

R̂�sÞ
� �

e�3�4�s R̂�1
R̂�2

R̂�s �
1

5
ðd�1�s R̂�2

þ d�2�s R̂�1
þ d�1�2

R̂�sÞ
� �

0
BBBBBBBB@

1
CCCCCCCCA
; (B10)

M3 ¼
�5ij3ðjÞ

8

3 �1 1

�1 3 1

1 1 3

2
4

3
5; (B11)

V4 ¼ R̂�1
R̂�2

R̂�3
R̂�4
� 1

7
ðd�1�2

R̂�3
R̂�4
þ d�1�3

R̂�2
R̂�4
þ d�1�4

R̂�2
R̂�3
þ d�2�3

R̂�1
R̂�4

�

þd�2�4
R̂�1

R̂�3
þ d�3�4

R̂�1
R̂�2
Þ þ 1

35
ðd�1�2

d�3�4
þ d�1�3

d�2�4
þ d�1�4

d�2�3
Þ
�
;

(B12)

M4 ¼
35j4ðjÞ

8
ð1Þ:

The full phase averaged isotropic tensor is a vector function of the polarizations ê1…4, the transi-

tion dipoles l̂1…4, and the wave vector Dk and core position DR differences for each Liouville

space pathway.
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