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A theory of nonlinear response of chemical kinetics, in which multiple perturbations are used to
probe the time evolution of nonlinear chemical systems, is developed. Expressions for nonlinear
chemical response functions and susceptibilities, which can serve as multidimensional measures of
the kinetic pathways and rates, are derived. A new class of multidimensional measures that combine
multiple perturbations and measurements is also introduced. Nonlinear fluctuation-dissipation rela-
tions for steady-state chemical systems, which replace operations of concentration measurement and
perturbations, are proposed. Several applications to the analysis of complex reaction mechanisms are
provided. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861588]

I. INTRODUCTION

Great variety of problems in chemistry and biology in-
volve complex reaction mechanisms.1, 2 These include elabo-
rate reaction networks in combustion and atmospheric chem-
istry, complex enzyme catalyzed reactions in biology, protein
networks in living cells and others. Analysis of the topology
of complex reaction networks and their elementary steps re-
quire development of suitable experimental techniques.

In this paper we propose multidimensional time-
dependent techniques, drawing upon the analogy with time-
resolved nonlinear spectroscopy. In such experiments, the dy-
namical system of interest is subjected to a series of controlled
external perturbations and its response is measured at a later
time. The time intervals between the perturbations and the
measurement constitute a multidimensional parameter space,
which caries detailed information about the system. Multidi-
mensional techniques are not normally applied for analysis of
chemical kinetics, and this paper aims at extending the appli-
cability of multidimensional methods of response to perturba-
tions into the field of chemical kinetics.

Linear response experiments have been widely employed
to study complex reaction mechanisms.3–11 Nonlinear re-
sponse of chemical systems have been also addressed,12–16

mostly for one-dimensional, i.e., single-time nonlinear exper-
iments, without resorting to multidimensional response sig-
nals. However, nonlinear signal of nth order implies response
of a chemical system to n external perturbations, which can
be applied and measured in n time intervals, and thus gener-
ally form an n-dimensional characterization of the chemical
system. The nonlinearity comes from the kinetic equations
describing time evolution of a chemical system, e.g., bimolec-
ular reactions, catalyzed reactions, etc.

In the present paper, we show that nonlinear response
functions formally similar to those of classical systems in
phase space can be derived with minor modification for gen-
eral nonlinear dynamical systems such as chemical reactions.

a)Electronic mail: mkryvohuz@anl.gov
b)Electronic mail: smukamel@uci.edu

The canonical phase space structure is not essential. Similar to
classical response theory in phase space, expressions of non-
linear chemical response functions contain stability deriva-
tives, which potentially carry detailed dynamical information.
We further show that fluctuation dissipation theorems can be
derived for chemical systems out of equilibrium, e.g., steady
states, provided they satisfy gaussian statistics.

The paper is organized as follows. In Sec. II, we present
formal perturbative expressions for the nonlinear response of
chemical systems. In Sec. III, we illustrate that the resulting
perturbative series reproduce some exactly solvable problems
in chemical kinetics. In Sec. IV, we consider several special
forms of perturbations of chemical systems and obtain finite
difference expressions for nonlinear response functions and
susceptibilities. In Sec. V, we extend the class of nonlinear
experiments to multiple perturbations and multiple measure-
ments, and show that they carry complementary information
to the nonlinear response functions. In Sec. VI, we derive
approximate steady-state fluctuation-dissipation relations
between the ordinary and generalized nonlinear response
functions. In Sec. VII, we give several examples of the new
information provided by multidimensional signals about the
mechanisms of chemical reactions. The paper is concluded
with discussion in Sec. VIII.

II. NONLINEAR RESPONSE OF A GENERAL
DYNAMICAL SYSTEM

The time evolution of a general dynamical system can be
described via a set of first order differential equations

dxi

dt
= hi(�x, t), (2.1)

where xi stands for the ith component of the N-dimensional
vector �x of dynamical variables. If higher order time deriva-
tives are involved in the equations of motion, they still can
be represented in the form of Eq. (2.1) by replacing higher
order derivatives with new dynamical variables. The ex-
plicit time dependence of hi in Eq. (2.1) implies variation of
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system’s parameters with time. Examples of dynamical sys-
tems that can be described via Eq. (2.1) include:

(1) Chemical reactions,

dCi

dt
= −

∑
j

kj (t)Cn1
1 . . . C

nN

N . (2.2)

(2) Classical Hamiltonian systems in phase space,

dx(t)

dt
= p,

dp(t)

dt
= − ∂V (x(t))

∂x
.

(2.3)

(3) Currents in electric circuits,

dI

dt
= −R(t)

L
I, (2.4)

where R depends nonlinearly on I, and many others. While
in this paper we will be mostly concerned with chemical sys-
tems, the results can be applied to a broader range of systems,
whose time evolution is of the form in Eq. (2.1).

One of the most commonly used experimental ap-
proaches to study complex dynamical systems is to measure
their response to a controlled external perturbation. For phys-
ical systems such perturbation could correspond to an ex-
ternally applied force (such as laser pulse in optical spec-
troscopy), while for chemical systems it can correspond to
a controlled change in concentration of a particular chemi-
cal species. Denoting a generalized external perturbation by
δhi(�x, t), the equations of motion (2.1) become

dxi

dt
= hi(�x, t) + δhi(�x, t), (2.5)

where hi(�x, t) determines the unperturbed system’s dynam-
ics, usually at equilibrium or in a stationary state.

The measured quantities, f (�x), i.e., the observables, are
some functions of the quantities being perturbed, xi. Math-
ematically, we are interested in expressing the response of
the observable f (�x) in terms of the imposed perturbation
δhi(�x, t). This can be efficiently done using time dependent
perturbation theory.17–19 Since most derivations of time de-
pendent perturbation theory are done for Hamiltonian sys-
tems, it will be instructive to provide a derivation for the
general (non-Hamiltonian) dynamical system of the form
in Eq. (2.5).

Let us consider an observable f (�x) which is an arbi-
trary differentiable function of coordinates �x. Since df (�x)/dt

= ∑
j (∂f (�x)/∂xj )(dxj (t)/dt), the evolution of f (�x(t)) is

given by

df (�x)

dt
= (D0(t) + δD(t)) f (�x), (2.6)

where the differential operators D0(t) and δD(t) are

D0(t) =
N∑

i=1

hi(�x, t)
∂

∂xi

,

δD(t) =
N∑

i=1

δhi(�x, t)
∂

∂xi

.

(2.7)

Here δD(t) represents the combined effect of all perturbations
at time t on the observable f. δD(t) vanishes as the strength
of perturbations δhi goes to zero. We assume that initially the
system is unperturbed, δhi|t = 0 = 0, and thus δD(0) = 0.

Equation (2.6) can be solved iteratively and its solution
can be expressed in the known form19

f (�x(t)) = D(t)f (�x)|�x=�x(0) , (2.8)

where we have introduced evolution (time translation) opera-
tor D(t),

D(t) = T exp
∫ t

0
D(τ )dτ

= 1 +
∫ t

0
D(τ )dτ +

∫ t

0
dτ2

∫ τ2

0
dτ1D(τ1)D(τ2) + . . . ,

(2.9)

with

D(t) ≡ D0(t) + δD(t), (2.10)

and T represents the operation of time ordering. The evo-
lution operator D(t) propagates the perturbed system in
Eq. (2.6) forward in time, �x(t) = D(t)�x|�x=�x(0). It is also useful
to define evolution operator D0(t) ≡ T exp

∫ t

0 D0(τ )dτ of the
unperturbed system (δD = 0), which propagates the system
along the unperturbed trajectories �x0(t), i.e.,

f (�x0(t)) = D0(t)f (�x0)|�x0=�x(0) . (2.11)

Since the initial conditions of the perturbed and unperturbed
systems are the same, from Eqs. (2.8) and (2.11) one obtains
the following relation between the observables along the per-
turbed and unperturbed trajectories,

f (�x(t)) = D(t)D−1
0 (t)f (�x0(t)), (2.12)

where the differential operators D(t) and D−1
0 (t) act on the

initial conditions �x(0) which are common to both trajectories
�x(t) and �x0(t).

The differential operators D(t) and D0(t) satisfy the fol-
lowing properties:19

dD(t)

dt
= D(t)D(t),

dD0(t)

dt
= D0(t)D0(t), (2.13)

dD−1
0 (t)

dt
= −D0(t)D−1

0 (t),

where the last equation is obtained from d
dt

[D0(t)D−1
0 (t)]

= d
dt

1 = 0, and all the differential operators in Eqs. (2.13)
act at �x = �x(0). Defining the product of differential operators
in Eq. (2.12) with S(t) ≡ D(t)D−1

0 (t) and using Eqs. (2.13)
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one obtains the following differential equation for the opera-
tor S(t),17

dS(t)

dt
= S(t)δDI (t), (2.14)

where

δDI (t) ≡ D0(t)δD(t)D−1
0 (t) (2.15)

can be considered as a perturbation operator in the classical
interaction picture. From the definition of the operator S(t) it
follows that S(0) = 1, therefore integration of Eq. (2.14) gives

S(t) = 1 +
∫ t

0
dτS(τ )δDI (τ ). (2.16)

Iterative substitution of Eq. (2.16) into itself results in the fol-
lowing expansion for the operator S(t):

S(t) = 1 +
∫ t

0
dτδDI (τ ) +

∫ t

0
dτ2

∫ τ2

0
dτ1δDI (τ1)δDI (τ2)

+
∫ t

0
dτ3

∫ τ3

0
dτ2

∫ τ2

0
dτ1δDI (τ1)δDI (τ2)δDI (τ3) . . . .

(2.17)

Substituting Eq. (2.17) back into Eq. (2.12), one obtains the
final expression for the response f (�x(t)) as a function of per-
turbation δDI(t) for a general (dynamical) system (2.5),

f (x(t)) = f (x0(t)) +
∫ t

0
dτδDI (τ )f (x0(t))

+
∫ t

0
dτ2

∫ τ2

0
dτ1δDI (τ1)δDI (τ2)f (x0(t)) + . . . .

(2.18)

It is necessary to make a comment on the explicit form
of the differential operators δDI(τ ) in Eq. (2.18) and the way
they act to the right. Their action is explicitly given by

δDI (τ )f (x0(t))

= D0(τ )δD(τ )D−1
0 (τ )f (x0(t))

= D0(τ )

[∑
δhi(�x(0), τ )

∂

∂ �x(0)

]
f (x0(t − τ )). (2.19)

Using the property of translation operators Z = Dz from
Ref. 20,

D
(

ψ(z)
∂

∂z

)
F (z) =

(
ψ(Z)

∂

∂Z

)
F (Z), (2.20)

Eq. (2.19) results in

δDI (τ )f (x0(t)) =
[∑

δhi(�x0(τ ), τ )
∂

∂ �x0(τ )

]
f (x0(t)).

(2.21)

The latter implies that δDI(τ ) has the same form as δD(τ ), in
which, however, all the coordinates are taken at time τ along
the unperturbed trajectory �x0(τ ), i.e., �x = �x0(τ ),

δDI (τ ) =
∑

δhi(�x0(τ ), τ )
∂

∂ �x0(τ )
. (2.22)

This form leads to the appearance of various stability deriva-
tives ∂x0(t)/∂x0(τ ) in the expression (2.18). Such stabil-
ity derivatives can be unbounded in time and may lead
to the problems of divergence of nonlinear dynamical re-
sponses in systems with periodic21, 22 and chaotic Hamilto-
nian dynamics.23 In some cases the latter divergence prob-
lem can be eliminated by canonical averaging24 or in strongly
chaotic25, 26 systems. It is expected that stability derivatives of
chemical kinetics do not diverge in time due to the generally
stable dynamic behavior of mass-action systems,27, 28 and thus
should not lead to unphysical time growth of their dynamical
response.

Expression (2.18) serves as a unified nonlinear response
theory of any dynamical system, e.g., chemical kinetics. It is
instructive to show that Eq. (2.18) reduces to the well-known
expression of classical response for Hamiltonian systems. In-
deed, for a system with a Hamiltonian H0(p, x) perturbed by
external field E(t) and interaction energy δH = μ(p, x)E(t), its
equations of motion read

dx

dt
= ∂H0

∂p
+ ∂μ

∂p
E(t),

dp

dt
= − ∂H0

∂x
− ∂μ

∂x
E(t).

(2.23)

From Eqs. (2.23), the corresponding perturbation operator in
Eq. (2.22) is

δDI (t)

= E(t)

[
∂μ(x0(t), p0(t))

∂p0(t)

∂

∂x0(t)
− ∂μ(x0(t), p0(t))

∂x0(t)

∂

∂p0(t)

]
= −E(t) {. . . , μ0(t)} , (2.24)

where μ0(t) ≡ μ(x0(t), p0(t)) and {. . . , . . . } is the Poisson
bracket operation {A,B} = ∂A

∂x0

∂B
∂p0

− ∂A
∂p0

∂B
∂x0

. The observable
measured in optical response theory is the dipole moment
μ(x(t), p(t)), which from Eq. (2.18) has the following form:

μ(x(t), p(t)) = μ0(t) −
∫ t

0
dτE(τ ) {μ0(t), μ0(τ )}

+
∫ t

0
dτ2

∫ τ2

0
dτ1E(τ2)E(τ1){{μ0(t), μ0(τ2)} ,

μ0(τ1)} + . . . . (2.25)

When the dipole moment μ(x(t), p(t)) in Eq. (2.25) is aver-
aged over equilibrium initial conditions, 〈μ(x(t), p(t))〉, the
multi-point averages under the integrals can be identified
as the nonlinear response functions29 (− 1)n 〈{. . . {μ0(t),
μ0(τ n)}, . . . μ0(τ 1)}〉.

III. APPLICATION OF NONLINEAR RESPONSE
THEORY TO CHEMICAL KINETICS

Equation (2.18) can be used to predict the linear or non-
linear responses of chemical systems to perturbations involv-
ing the concentrations of substances. In this section, we illus-
trate the application of Eq. (2.18) to several exactly solvable
problems of chemical kinetics.
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A. Perturbation of first order kinetics (unimolecular
reaction)

Consider a first-order chemical reaction
dC

dt
= −k(t)C + F (t), (3.1)

where F(t) is some external perturbation and C(0) = c0 is the
initial condition. If the observable of interest is the concentra-
tion C, then the parameters entering Eq. (2.18) are

f (C) = C, (3.2a)

x0(t) ≡ C0(t) = c0e
− ∫ t

0 k(t)dt , (3.2b)

δDI (t) = F (t)
∂

∂C0(t)
. (3.2c)

Substituting Eqs. (3.2a)–(3.2c) into Eq. (2.18) one gets the
following solution of Eq. (3.1):

C(t) = C0(t) +
∫

dτF (τ )
∂C0(t)

∂C0(τ )

= C0(t) +
∫

dτF (τ )e− ∫ t

τ
k(t)dt . (3.3)

This coincides with the well-known exact solution of
Eq. (3.1),

C(t) = c0e
− ∫ t

0 k(t)dt +
∫

dτF (τ )e− ∫ t

τ
k(t)dt . (3.4)

Since higher order derivatives ∂nC0(t)/∂C0(τ 1). . . ∂C0(τ n),
n ≥ 2, vanish for the unperturbed solution C0(t) in Eq. (3.2b),
higher order terms in powers of F(t) in Eq. (3.3) do not appear,
therefore no nonlinear response exists for a first order chem-
ical reaction with a linear observable f(C) = C; the system is
strictly linear.

It is also instructive to check by direct evaluation of
Eq. (2.18) that the time evolution of the observable f(C)
= C2,

C(t)2 = C0(t)2 + 2C0(t)
∫

dτ1F (τ1)e− ∫ t

τ1
k(τ )dτ

+ 2
∫ t

0
dτ2F (τ2)e− ∫ t

τ2
k(τ )dτ

∫ τ2

0
dτ1F (τ1)e− ∫ t

τ1
k(τ )dτ

(3.5)

again coincides with the exact solution, i.e., squared Eq. (3.4).
One should keep in mind when making the latter compar-
ison that the time-ordered integral

∫ t

0 dτ2
∫ τ2

0 dτ1f (τ2)f (τ1)
is exactly one half of the full time domain integral∫ t

0 dτ2
∫ t

0 dτ1f (τ2)f (τ1).

B. Perturbation of second order kinetics
(bimolecular reactions)

Another exactly solvable kinetic scheme is a bimolecular
reaction

dC

dt
= −k(t)C2 + F (t)C. (3.6)

The perturbation is taken to be of the form F(t)C only to make
the kinetic equation the same as exactly solvable Bernoulli
equation. The unperturbed solution C0(t) is

1

C0(t)
= 1

c0
+

∫ t

0
k(τ )dτ, (3.7)

and the exact solution C(t) of the perturbed equation, i.e.,
Bernoulli equation, is

1

C(t)
= 1

c0
e− ∫ t

0 F (τ )dτ + e− ∫ t

0 F (τ )dτ

∫ t

0
e
∫ τ ′

0 F (τ )dτ k(τ ′)dτ ′.

(3.8)

We now apply Eq. (2.18) to obtain perturbative solution
of Eq. (3.6). In this case, the corresponding operator of per-
turbation is δDI(t) = F(t)C0(t)∂/∂C0(t). Using the perturbation
theory result (2.18) for an observable f(C) = 1/C, we obtain

1

C(t)
= 1

C0(t)
+

∫ t

0
dτ1F (τ1)C0(τ1)

∂

∂C0(τ1)

1

C0(t)

+
∫ t

0
dτ2

∫ τ2

0
dτ1F (τ2)F (τ1)C0(τ1)

∂

∂C0(τ1)
C0(τ2)

× ∂

∂C0(τ2)

1

C0(t)
+ . . .

= 1

C0(t)
− 1

c0

∫ t

0
F (τ )dτ −

∫ t

0
k(τ )dτ

∫ t

τ

F (τ1)dτ1

+ 1

c0

∫ t

0
dτ2

∫ τ2

0
dτ1F (τ2)F (τ1) +

∫ t

0
dτ

∫ t

τ

dτ2

×
∫ τ2

τ

dτ1F (τ2)F (τ1)k(τ ) + . . . . (3.9)

This coincides with the Taylor expansion of the exact solution
in Eq. (3.8) in powers of F(t).

IV. SPECIAL TYPES OF PERTURBATIONS

We now examine two particular cases of perturbations
that can be used to probe chemical systems.

A. Impulsive perturbation

The simplest way to perturb a chemical system is to in-
stantaneously add a small amount of ith chemical species (it is
assumed that chemical system is well stirred and that the sys-
tem is homogeneous). This corresponds to impulsive increase
in concentration of species i by some amount �ci and results
in the following kinetic scheme:

dCj

dt
= gj ( �C, t) + �ciδij δ(t − t1), (4.1)

where δij is the Kronecker symbol and δ(t − t1) is Dirac delta-
function that represents impulsive perturbation at time t1. The
perturbation operator δDI(t) corresponding to the system of
differential equations (4.1) is

δDI (t) = �ciδ(t − t1)
∂

∂C0i(t)

= �ciδ(t − t1)C−
0i(t), (4.2)
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where �C0(t) is a solution of the unperturbed system of equa-
tions dCi/dt = g( �C, t), and we have defined the operator
C−

0i(t) ≡ ∂/∂C0i(t) to simplify further notation.
At later times after the perturbation, one can measure the

concentration Cj(t) of a species j, i.e., a response of the chem-
ical system. Cj(t) is given in Eq. (2.18) and reads

Cj (t) = C0j (t) + �ciC
−
0i(t1)C0j (t)

+ 1

2
�c2

i C
−
0i(t1)C−

0i(t1)C0j (t) + . . . . (4.3)

If a set of experiments are performed at various initial con-
ditions, or if the chemical system fluctuates, the quantity Cj

should be replaced with its average over initial conditions
〈Cj (t)〉 = ∫

d �C(0)ρ( �C(0))Cj (t),

〈Cj (t)〉 = 〈C0j (t)〉 + �ci〈C−
0i(t1)C0j (t)〉

+ 1

2
�c2

i 〈C−
0i(t1)C−

0i(t1)C0j (t)〉 + . . . . (4.4)

We note that the right side of Eq. (4.4) contains multi-
point averages which are functions of the solution �C0(t) of the
unperturbed system and can therefore serve as multidimen-
sional characteristics of the unperturbed system. In Hamilto-
nian systems, these quantities are called response functions,
and we will adopt the same terminology for chemical kinetics.
These response functions can be measured experimentally.
For instance, the “linear” response function 〈C−

0i(t0)C0j (t)〉
can be obtained from Eq. (4.4) (or measured in experiments
with single impulsive perturbation at time t1) as

〈C−
0i(t1)C0j (t)〉 = ∂

∂(�ci)
〈Cj (t)〉

∣∣∣∣
�ci=0

. (4.5)

Similarly, the higher order, “nonlinear,” response func-
tions 〈C−

0i(t1)C−
0n(t2)C0j (t)〉 can be obtained from experiments

with two consecutive perturbations: first, of concentration of
species i at time t1, second, of species n at time t2, and a mea-
surement of concentration of species j at time t,

dCj

dt
= gj ( �C, t) + �ciδij δ(t − t1) + �cnδnj δ(t − t2),

(4.6)

and thus from Eq. (2.18) one can find

〈C−
0i(t1)C−

0n(t2)C0j (t)〉 = ∂2

∂(�ci)∂(�cn)
〈Cj (t)〉

∣∣∣∣
�ci ,�cn=0

.

(4.7)

The k-point response functions 〈C−
0i(t1)

. . . C−
0n(tk−1)C0j (t)〉 depend on k − 1 time intervals t

− tk−1, . . . t2 − t1, and thus can serve as k − 1-dimensional
dynamic measures of the unperturbed chemical system under
study. The latter provides additional tools for exploring the
(unknown) behavior of �C0(t) and thus the reaction topology
and its kinetic parameters. In Sec. V, we expand the class of
these multidimensional measures even further by introducing
generalized response functions that correspond to exper-
iments that combine multiple perturbations and multiple
measurements.

B. Oscillatory perturbations

Another way to perturb a chemical system is to change
one of its control parameters (or several parameters) periodi-
cally. For instance, if a chemical system reaches a steady state
with a constant influx ji of species i, one can modulate this
flux by adding an oscillatory component δji(t) = εcos (	t).
Another example: if the concentration of species i is held con-
stant by buffering, Ci = const, one can modulate this concen-
tration by adding an oscillatory perturbation. General kinetic
scheme corresponding to oscillatory perturbation can be writ-
ten as

dCj

dt
= gj ( �C, t) + εhj ( �C) cos(	1t). (4.8)

The perturbation operator corresponding to Eq. (4.8) is

δD(t) = ε cos(	1t)
∑

j

hj ( �C(0))
∂

∂Cj (0)

≡ ε cos(	1t)V−. (4.9)

Using Eq. (2.18), one can expand an observable concentration
Cj(t) in a perturbative series

Cj (t) = C0j (t) + ε

∫ t

0
dτD0(τ )V−D−1

0 (τ )D0(t)C0j (0) cos(	1τ )

+ ε2
∫ t

0
dτ2

∫ τ2

0
dτ1D0(τ1)V−D−1

0 (τ1)D0(τ2)V−D−1
0 (τ2)

×D0(t)C0j (0) cos(	1τ1) cos(	1τ2) + . . . . (4.10)

Averaging Eq. (4.10) over stationary initial conditions
and using the property of invariance of trace under
time shift Tr[ρ(C(0))D0(τ )f ] = Tr[D−1

0 (τ )ρ(C(0))D0(τ )f ]
as well the property of invariance of stationary distribution
density with respect to time shift Tr[D−1

0 (τ )ρ(C(0))D0(τ )f ]
= Tr[ρ(C0(−τ ))f ] = Tr[ρ(C0(0))f ], Eq. (4.10) can be sim-
plified

〈Cj (t)〉 = 〈C0j (t)〉 + ε

∫ t

0
dτ 〈V−D0(t − τ )C0j (0)〉 cos(	1τ )

+ ε2
∫ t

0
dτ2

∫ τ2

0
dτ1〈V−D0(τ2 − τ1)V−D0(t − τ2)

×C0j (0)〉 cos(	1τ1) cos(	1τ2) + . . . . (4.11)

Taking Fourier transform of Eq. (4.10), one gets

〈C̃j (ω)〉 = 〈C̃0j (ω)〉

+ ε

∫
dω1δ(ω − ω1)〈V−D̃0(ω1)C0j (0)〉

×π (δ(ω1 − 	1) + δ(ω1 + 	1))

+ ε2

2π

∫
dω1

∫
dω2δ(ω − ω1 − ω2)

×〈V−D̃0(ω1)V−D̃0(ω1 + ω2)C0j (0)〉
×π2 (δ(ω1 − 	1) + δ(ω1 + 	1)) (δ(ω2 − 	1)

+ δ(ω2 + 	1)) + . . . . (4.12)
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Defining nonlinear susceptibilities χ (n)(ω1, . . . ω2),

〈C̃j (ω)〉 = 〈C̃0j (ω)〉

+
∑

n

1

(2π )n−1

∫
dω1 . . .

∫
dωnδ(ω − ω1 − . . . − ωn)

×χ (n)(ω1, . . . , ωn)F̃ (ω1) . . . F̃ (ωn), (4.13)

with F(t) = εcos (	1t), Eq. (4.12) provides a way to measure
these quantities:

χ (1)(	1) ≡ 〈V−D̃0(	1)C0j (0)〉

= 1

π

∂

∂ε

[∫ 	1+�	

	1−�	

〈C̃j (ω)〉dω

]
ε=0

, (4.14a)

χ (2)(	1,	1) ≡ 〈V−D̃0(	1)V−D̃0(2	1)C0j (0)〉

= 1

2π

∂2

∂ε2

[∫ 2	1+�	

2	1−�	

〈C̃j (ω)〉dω

]
ε=0

. (4.14b)

Similarly, for a perturbation with two frequencies, F(t)
= ε1cos (	1t) + ε2cos (	2t), one gets

χ (2)(	1,	2) ≡ 〈V−D̃0(	1)V−D̃0(	1 + 	2)C0j (0)〉

+〈V−D̃0(	2)V−D̃0(	1 + 	2)C0j (0)〉,

= 1

π

∂2

∂ε1∂ε2

[∫ 	1+	2+�	

	1+	2−�	

〈C̃j (ω)〉dω

]
ε1=0,ε2=0

.

(4.15)

In general, the nth order nonlinear susceptibility can be ob-
tained from the experiment with F (t) = ∑n

i=1 εi cos(	it) as
follows:

χ (n)(	1, . . . , 	n)

= 1

π

∂n

∂ε1 . . . ∂εn

[∫ 	1+...	n+�	

	1+...+	n−�	

〈C̃j (ω)〉dω

]
ε1=0,...,εn=0

,

(4.16)

where the integral on the right side is taken over an interval
(	0 − �	, 	0 + �	) in the vicinity of the peak at ω = 	0

= 	1 + . . . + 	n.
Similar to the time domain chemical nonlinear response

functions discussed in Subsection IV A, the nonlinear sus-
ceptibilities constitute n-dimensional frequency-domain mea-
sures of the unperturbed kinetics �C0(t). The only difference,
however, is that perturbations in nonlinear response functions
are ordered in time, while in nonlinear susceptibilities they are
not. We also note that in some cases Laplace transform may
be used instead of Fourier transform to more clearly represent
non-oscillating exponential signal decays.

V. GENERALIZED RESPONSE FUNCTIONS:
COMBINING MULTIPLE PERTURBATIONS
AND MEASUREMENTS

In Secs. II– IV, we have introduced response functions
which can serve as multidimensional causal measures of
chemical kinetics. The nth order response function depends
on n time intervals (thus being an n-dimensional measure)
and corresponds to experiment consisting of n perturbations
of a chemical system followed by a single measurement of
concentration of some species. However, this class of multi-
dimensional measures can be extended even further, by intro-
ducing a new type of experiments which combine multiple
perturbations and measurements.30, 31 Indeed, one can perturb
a chemical system k times while measuring concentrations m
times between or after perturbations to result in k + m dimen-
sional measure. We now examine what new information can
be extracted from this type of experiments.

Suppose the concentration of species i is impulsively in-
creased by �ci at time t1, after which the concentration of
species j is measured at time t2 and the concentration of
species l is measured at time t3. From the latter two measure-
ments one can construct a correlation function 〈Cj(t2)Cl(t3)〉.
Using the perturbative expansion in Eq. (2.18), one can ex-
press the concentrations Cj(t2) and Cl(t3) as

Cj (t2) = C0j (t2) + �ciC
−
0i(t1)C0j (t2) + O

(
�c2

i

)
Cl(t3) = C0l(t3) + �ciC

−
0i(t1)C0l(t3) + O

(
�c2

i

)
,

(5.1)

which leads to

〈Cj (t2)Cl(t3)〉
= 〈C0j (t2)C0l(t3)〉 + �ci〈C0j (t2)C−

0i(t1)C0l(t3)〉
+�ci〈C0l(t3)C−

0i(t1)C0j (t2)〉 + O
(
�c2

i

)
= 〈C0j (t2)C0l(t3)〉 + �ci〈C−

0i(t1)C0j (t2)C0l(t3)〉+ O
(
�c2

i

)
.

(5.2)

Equation (5.2) implies that the following quantity can be ex-
tracted using an experiment involving one perturbation and
two measurements

〈C−
0i(t1)C0j (t2)C0l(t3)〉 = d

d(�ci)
〈Cj (t2)Cl(t3)〉

∣∣∣∣
�ci=0

.

(5.3)

The object on the left side of Eq. (5.3) is a new quantity that
depends on two time intervals, t2 − t1, t3 − t2, and is de-
termined by time evolution �C0(t) of the unperturbed chemi-
cal system. Thus, this object can serve as an additional two-
dimensional measure of the chemical kinetics �C0(t) under
study.

One can notice a similarity between the two-dimensional
measures in Eqs. (5.3) and (4.7) and note that the operation
of perturbation corresponds to the time-dependent operator
C−

0 (t), while the operation of measurement corresponds to
C0(t). It is therefore easy to write down all possible two-
dimensional measures that can be obtained from other ex-
periments with multiple perturbations and measurement. For
instance, an experiment consisting of a measurement at t1,
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perturbation at t2 and measurement at t3 will produce the fol-
lowing quantity:

〈C0j (t1)C−
0i(t2)C0l(t3)〉 = d

d(�ci)
〈Cj (t1)Cl(t3)〉

∣∣∣∣
�ci=0

.

(5.4)

In Ref. 30, we called these new quantities generalized re-
sponse functions. Overall, there are 2n generalized response
functions that depend on n time intervals. For instance, for n
= 3, the following 8 quantities can be obtained in 8 type of
experiments with k perturbations and m measurements (k + m
= 4),

〈C0i(t1)C0j (t2)C0l(t3)C0p(t4)〉; 〈C0i(t1)C0j (t2)C−
0l (t3)C0p(t4)〉;

〈C0i(t1)C−
0j (t2)C0l(t3)C0p(t4)〉; 〈C−

0i(t1)C0j (t2)C0l(t3)C0p(t4)〉;
〈C−

0i(t1)C−
0j (t2)C0l(t3)C0p(t4)〉; 〈C−

0i(t1)C0j (t2)C−
0l (t3)C0p(t4)〉;

〈C0i(t1)C−
0j (t2)C−

0l (t3)C0p(t4)〉; 〈C−
0i(t1)C−

0j (t2)C−
0l (t3)C0p(t4)〉,

where the first quantity is a 4-point ordinary correlation func-
tion and the last quantity is the 3rd order ordinary response
function. All of these quantities carry different complemen-
tary information about the unperturbed chemical system and
can thus be used as convenient probes of reaction topology
and kinetics. In Sec. VII, we will demonstrate what informa-
tion generalized response functions can provide and how they
can be used to uncover the topology of complex reaction net-
works.

Similar to the discussion in Sec. IV B, one can also define
generalized frequency-domain susceptibilities χ (m, k),

〈C̃1(ω1) . . . C̃m(ωm)〉
= 〈C̃01(ω1) . . . C̃0m(ωm)〉

+
∑

n

1

(2π )n−1

∫
dω′

1 . . .

∫
dω′

kδ(ω1 + . . .

+ωm − ω′
1 − . . . − ω′

k)

×χ (m,k)(ω1, . . . , ωm, ω′
1, . . . , ω

′
k)F̃ (ω′

1) . . . F̃ (ω′
k),

(5.5)

each corresponding to k perturbations on frequencies ω′
1, . . . ,

ω′
k and m = n − k + 1 measurements on frequencies ω1, . . . ,

ωm.

VI. FLUCTUATION-DISSIPATION RELATIONS
FOR GAUSSIAN STATISTICS

In Sec. V, we have shown that one can construct various
kinds of experiments with m perturbations and k = n − m + 1
measurements to obtain 2n different n-dimensional measures
of dynamics of the chemical system of interest. However, in
Ref. 30 we have shown, that in case of systems with ther-
mal a Boltzmann distribution, only n of them will actually be
independent, since there exist 2n − n generalized fluctuation-
dissipation relations connecting these quantities. In chemical
kinetics, however, the reference state is not thermal equilib-
rium but instead a steady-state. Fluctuation-dissipation rela-

tions in systems at steady-state are not trivial even for the
linear case.32 Nevertheless, they can have a simple form if
the distribution function of system’s variables can be approx-
imated with a Gaussian.

Consider a general kinetic scheme

dCj

dt
= gj ( �C, t), (6.1)

which can reach a steady state. In a finite size open chemi-
cal system the number of molecules of species i can vary due
to molecules coming and leaving the reactor cell. The uncer-
tainty in the number of molecules results in a finite-size sta-
tionary distribution density ρ( �C), which can be approximated
with a Gaussian using the central limit theorem

ρ( �C) = A

N∏
i=1

exp

(
−

(
Ci − C

μ

i

)2

2σ 2
i

)
, (6.2)

where σ 2
i and C

μ

i are the variance and the mean of Ci. Con-
sidering Eq. (6.2) as distribution function for the initial con-
ditions, one can derive fluctuation-dissipation-type relations
for the generalized response functions. For instance, in case
of first-order chemical response function, one has

〈C−
0i(0)C0j (t)〉 =

∫
d �C(0)A

N∏
j=1

exp

(
−

(
Cj (0) − C

μ

j

)2

2σ 2
j

)

× ∂

∂C0i(0)
C0j (t)

=
∫

d �C(0)A
N∏

j=1

exp

(
−

(
Cj (0) − C

μ

j

)2

2σ 2
j

)

×
(
C0i(0) − C

μ

i

)
σ 2

i

C0j (t)

= 1

σ 2
i

〈C0i(0)C0j (t)〉 − C
μ

i

2

σ 2
i

, (6.3)

where integration by parts was used in the second step.
Similarly, for nonlinear two-dimensional generalized re-

sponse functions one obtains the following relations:

〈C−
0i(0)C0j (t1)C0l(t2)〉 = 1

σ 2
i

〈C0i(0)C0j (t1)C0l(t2)〉

− C
μ

i

σ 2
i

〈C0j (t1)C0l(t2)〉,

〈C−
0i(0)C−

0j (t1)C0l(t2)〉 = 1

σ 2
i

〈C0i(0)C−
0j (t1)C0l(t2)〉

− C
μ

i

σ 2
i

〈C−
0j (t1)C0l(t2)〉,

(6.4)
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and for three-dimensional generalized response functions, one
gets

〈C−
0i(0)C0j (t1)C0l(t2)C0p(t3)〉

= 1

σ 2
i

〈C0i(0)C0j (t1)C0l(t2)C0p(t3)〉

− C
μ

i

σ 2
i

〈C0j (t1)C0l(t2)C0p(t3)〉,

〈C−
0i(0)C−

0j (t1)C0l(t2)C0p(t3)〉

= 1

σ 2
i

〈C0i(0)C−
0j (t1)C0l(t2)C0p(t3)〉

− C
μ

i

σ 2
i

〈C−
0j (t1)C0l(t2)C0p(t3)〉,

〈C−
0i(0)C−

0j (t1)C−
0l (t2)C0p(t3)〉

= 1

σ 2
i

〈C0i(0)C−
0j (t1)C−

0l (t2)C0p(t3)〉

− C
μ

i

σ 2
i

〈C−
0j (t1)C−

0l (t2)C0p(t3)〉,

〈C−
0i(0)C0j (t1)C−

0l (t2)C0p(t3)〉

= 1

σ 2
i

〈C0i(0)C0j (t1)C−
0l (t2)C0p(t3)〉

− C
μ

i

σ 2
i

〈C0j (t1)C−
0l (t2)C0p(t3)〉,

〈C0i(0)C−
0j (t1)C0l(t2)C0p(t3)〉

= 1

σ 2
j

〈C0i(0)C0j (t1)C0l(t2)C0p(t3)〉

− C
μ

j

σ 2
j

〈C0j (t1)C0l(t2)C0p(t3)〉

− 〈C0p(t3)C0l(t2)C−
0j (t1)C0i(0)〉.

(6.5)

When the concentration of the same species is perturbed and
measured, i.e., i = j = l = . . . = p there should be at least n
independent generalized response functions due to the n inde-
pendent stability derivatives ∂kC0(t)/∂C0(t1). . . ∂C0(tk), k = 0,
. . . , n − 1 appearing the expressions of GRFs.

It is interesting to note that fluctuation-dissipation rela-
tions provide an opportunity to replace some measurement
operations with perturbations. This has an important practi-
cal aspect, since in chemical systems it may be difficult to
measure concentrations of particular species, while it can be
straightforward to perturb them.

VII. INFORMATION CONTAINED
IN MULTIDIMENSIONAL SIGNALS

The ordinary and generalized nonlinear response func-
tions and susceptibilities, introduced in Secs. II– VI, are mul-
tidimensional characteristics (measures) of complex reaction
kinetics and contain valuable information on the mechanism
and connectivity of chemical reactions.

Below we present two examples of what extra informa-
tion can be obtained from multidimensional signals as com-
pared to one-dimensional techniques. We consider two ex-
periments which provide two different two-dimensional mea-
sures: (1) a second-order nonlinear response experiment in
which a chemical system is subjected to 2 perturbations and
1 measurement, and (2) a generalized second-order response
experiment, introduced in Sec. V, in which a chemical sys-
tem is subjected to 1 perturbation and 2 measurements at later
times. As discussed in Secs. II– VI, these two-dimensional
measures can be obtained either in time domain or in fre-
quency domain. For the purpose of illustration we consider
the first experiment in the frequency domain, and the second
in the time domain.

A. Multidimensional frequency domain signal

Consider a one-variable nonlinear kinetic scheme

dx

dt
= f (x, ε), (7.1)

where x is a substance concentration and ε is a system’s pa-
rameter, which can be perturbed. This kinetic scheme corre-
sponds, for instance, to a Schlögl model14, 33

A + X
k1

�
k2

2X,

X
k3

�
k4

B,

(7.2)

where the concentrations of A and B are kept constant and act
as control parameters (i.e., ε = [A] or ε = [B]),

d[X]

dt
= −k2[X]2 + k1[A][X] − k3[X] + k4[B]. (7.3)

Assume that the control parameter ε in Eq. (7.1) is sub-
jected to oscillatory perturbations ε = ε0 + δε(t). For a sin-
gle frequency perturbation δε(t) = ε1cos (ω1t), the second-
order nonlinear response will oscillate at frequencies ±2ω1,
as shown in the Appendix. From Eqs. (A4) and (4.14b) we
obtain a single-frequency quadratic signal

χ (2)(ω1, ω1) = − 1

4(fx + ı2ω1)

×
[

fxxf
2
ε

(fx + ıω1)2
+ fεε − 2fxεfε

fx + ıω1

]
, (7.4)

the f’s are defined in the Appendix. This is plotted in Fig. 1(a)
for the Schlögl model in Eqs. (7.2) and (7.3).

If the system is perturbed simultaneously at two frequen-
cies, δε(t) = ε1cos (ω1t) + ε2cos (ω2t), one can measure two-
dimensional quadratic signal

χ (2)(ω1, ω2) = − 1

4(fx + ı(ω1 + ω2))

×
[

fxxf
2
ε

(fx + ıω1)(fx + ıω2)
+ fεε − fxεfε

×
(

1

fx + ıω1
+ 1

fx + ıω2

)]
, (7.5)
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FIG. 1. Absolute value of the second order susceptibility for the Schlögl
model in Eqs. (7.2) and (7.3): (a) single-frequency susceptibility χ (2)(ω1,
ω1), (b) two-frequencies susceptibility χ (2)(ω1, ω2).

which follows from Eqs. (A5) and (4.15). The two-
dimensional susceptibility χ (2)(ω1, ω2) is plotted in Fig. 1(b)
for the Schlögl model. Fig. 1(b) carries some additional in-
formation compared to Fig. 1(a). For instance, it is difficult to
extract parameters such as fεε , fxε , fxx from Eq. (7.4) since it
is rather complicated. However, they are much easier to ex-
tract from the two-dimensional signal χ (2)(ω1, ω2): for large
ω1 Eq. (7.5) behaves as

lim
ω1→∞ Im

[
ω1χ

(2)(ω1, ω2)
] = −1

4

(
fεε − fxfxεfε

f 2
x + ω2

2

)
.

(7.6)

It is straightforward to obtain the parameters fx, fεε , and fxε fε
of the Lorentzian in Eq. (7.6) by fitting. The product fxxf

2
ε

can be then determined from

lim
ω1→0

χ (2)(ω1, ω1) = − 1

4fx

(
fxxf

2
ε

f 2
x

+ fεε − 2fxεfε

fx

)
.

(7.7)

Provided that fε is found from a linear experiment (see
Eqs. (4.15), (A5a)) the two-dimensional second order suscep-
tibility χ (2)(ω1, ω2) allows to find all the second order deriva-
tives fεε , fxε , fxx, which characterize kinetic system in Eq. (7.1)
at steady state. For the Schlögl model in Eq. (7.2) with ε ≡ [A]
these parameters are fxx = −2k2, fxε = k1, and fεε = 0. If in-
formation on system (7.1) beyond second order derivatives is
needed, one can run higher order n-dimensional experiments
involving n + 1 perturbations and measurements.

B. Multidimensional time domain signal

In Sec. VII A, we discussed a second order response
experiment which consisted of two perturbations (one at
frequency ω1 and another at frequency ω2) and a single mea-
surement. Here, we discuss a different two-dimensional ex-
periment which consists of one perturbation and two measure-
ments. Such experiments can be used, for instance, to study
the connectivity of complex reaction networks as demon-
strated below.

Consider a chain of chemical reactions,

A
k1

�
k−1

X1

k2

�
k−2

X2

k3

�
k−3

X3

k4

�
k−4

X4

k5

�
k−5

B, (7.8)

in which the concentrations of species A and B are held con-
stant by buffering, and each elementary reaction step can be
either of linear (first order) or nonlinear (such as Michaelis-
Menten) kinetics. Suppose that the reaction (7.8) is initially in
steady state. We then impulsively perturb the concentration of
species Xi at time t1 and measure concentrations of species Xj

and Xl at times t2 and t3, respectively. From this experiment,
one can obtain a two-dimensional measure, as introduced in
Sec. V,

Rl+,j+,i−(τ2, τ1) ≡ [Xi]
−
0 (t1)[Xj ]0(t2)[Xl]0(t3) (7.9)

that depends on two time intervals τ 1 = t2 − t1 and τ 2 = t3
− t2. In Eq. (7.9), we have used the conventional notation in-
troduced in Ref. 30, in which “−” corresponds to perturbation
and “+” to measurement.

In Fig. 2 we plot Rl+, j+, i−(τ 2, τ 1) for the model in
Eq. (7.8), in which all elementary steps are first-order reac-
tions with k1 = . . . = k5 = 0.7, k−1 = k−3 = k−4 = 0.1,
k−2 = 0.3, k−5 = 0.5, [A]0 = 3, [B]0 = 3 and the chemical
system is initially in steady state. From the two-dimensional
plots in Fig. 2, one can make several observations. First,
[Xi]

−
0 (t1)[Xj ]0(t2)[Xl]0(t3) has a long “memory” tail along

the τ 2 axis in cases when species Xi in reaction network is
closer to species Xj rather than to species Xl, i.e., the species
are arranged in the order Xi − Xj − Xl. The latter can be
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FIG. 2. Two-dimensional measures Ri+,j+,k−(τ2, τ1) = [Xk]−0 (0)[Xj ]0(τ1)
× [Xi ]0(τ1 + τ2) for reaction chain in Eq. (7.8).

illustrated with the following example. If one considers a se-
ries of unidirectional first order reactions,

A1
k→ A2

k→ A3
k→ . . . , (7.10)

in which only A1 has non-zero initial concentration, then
time behavior of concentrations [Ai] are [A1] = [A1](0)
exp (−kt), [A2] = [A1](0)kt exp (−kt), [A3] = [A1](0)k2t2

exp (−kt)/2, and so on. The maximum of [A2] is achieved
at t2,max = 1/k, while the maximum of [A3] is achieved at
t3,max = √

2/k, i.e., signal propagates in reaction network
from left to right. From the latter time behavior of concen-
trations it follows that the product [A2](τ 1)[A3](τ 1 + τ 2)
at large times τ 2 behaves as ∼ τ 2

2 exp(−kτ2) and thus is
more stretched along τ 2 than the product [A3](τ 1)[A2](τ 1

+ τ 2) which behaves as ∼τ 2exp (−kτ 2). For the same
reason, the 2D plots [X1]−0 (0)[X2]0(τ1)[X3]0(τ1 + τ2),
[X2]−0 (0)[X3]0(τ1)[X4]0(τ1 + τ2), and [X4]−0 (0)[X3]0(τ1)
[X2]0(τ1 + τ2) in Fig. 2 have longer tails along the τ 2

axis, than the plots [X1]−0 (0)[X3]0(τ1)[X2]0(τ1 + τ2),
[X2]−0 (0)[X4]0(τ1)[X3]0(τ1 + τ2), and [X4]−0 (0)[X2]0(τ1)
[X3]0(τ1 + τ2). The latter observations allow one to restore
the arrangement of species Xi in the reaction network, which
is found to be

X1 − X2 − X3 − X4. (7.11)

Another observation that can be made from Fig. 2 is that
2D plots corresponding to correct ordering of species in the
reaction chain (left column in Fig. 2) show a well-defined
peak at (τ 0

1 , τ 0
2 ). It is yet another illustration of the perturba-

tion propagation mechanism described in the previous para-
graph. If the maximum change in concentration of Xj (Xl)
is achieved at time τ 0

1 (τ 0
1 + τ 0

2 ) after a perturbation of Xi,
then the correlation function 〈[Xj](τ 1)[Xl](τ 1 + τ 2)〉 will have
its maximum value at (τ1, τ2) = (τ 0

1 , τ 0
2 ). For the same rea-

son the correlation function 〈[Xl](τ 1)[Xj](τ 1 + τ 2)〉 does not
have a peak, since [Xl](τ 1) and [Xj](τ 1 + τ 2) cannot simul-
taneously reach their maximum values for any τ 1 > 0 and
τ 2 > 0.

One should note that the multidimensional picture pro-
vided by the measure Rl+, j+, i−(τ 2, τ 1) allows easier conclu-
sions on the above observations such as longer memory tails
for correct order of species and peak position corresponding
to delay in signal propagation. The latter conclusions would
be less obvious from one-dimensional techniques.

VIII. DISCUSSION

We have developed a theory of nonlinear response in
chemical kinetics. By subjecting a chemical system to n
perturbations one can measure the nth order nonlinear re-
sponse function, which depends on n time intervals between
perturbations and a measurement and thus acts as an n-
dimensional characteristics of the chemical system of interest.
Multidimensional characteristics such as nonlinear response
functions contain significantly more detailed information on
chemical dynamics and mechanisms of chemical reactions
than one-dimensional techniques.

In Sec. V, we extended the concept of nonlinear re-
sponse, and introduced a different class of experiments that
employ a combination of multiple perturbations and multi-
ple measurements. These generalized experiments produce a
new class of multidimensional measures called generalized
response functions, which can carry complementary informa-
tion to the ordinary nonlinear response functions. Although
some generalized and ordinary response functions may be re-
lated via fluctuation-dissipation expressions, they can serve
as alternative or more convenient tools to collect or repre-
sent multidimensional information about the chemical sys-
tem. Fluctuation-dissipation relations also provide a way to
substitute measurements of unaccessible concentrations of
particular species with rather straightforward perturbations of
their concentrations.

We have provided formal closed expressions of multi-
dimensional measures that can be obtained from chemical
experiments with multiple perturbations and measurements.
These expressions depend on stability derivatives which carry
additional information about the underlying chemical dynam-
ics. Coupled with further analyses and applications of multi-
dimensional techniques to complex chemical systems, the de-
rived multidimensional measures will help better understand
information contained in the measured signals. In Sec. VII,
we gave two such examples and showed that multidimen-
sional techniques can be useful tools to reveal the mechanism
of chemical reactions.
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APPENDIX: SECOND-ORDER RESPONSE OF A
NONLINEAR ONE-VARIABLE KINETIC SCHEME

In this Appendix, we derive expressions for second-order
response of the single-variable kinetic scheme in Eq. (7.1).
One can expand solution of the perturbed Eq. (7.1) as

x(t) = x0 + x(1)(t) + x(2)(t) + . . . , (A1)

where x(n) is on the order of εn
1 and x0 is a steady-state solution

of the unperturbed system. Expanding f(x, ε) around x0, ε0 and

collecting terms of the same order, one gets

dx(1)

dt
= fxx

(1) + fεδε,

dx(2)

dt
= fxx

(2) + 1

2
fxx(x(1))2 + 1

2
fεε (δε)2 + fxεx

(1)δε,

(A2)

where fx = ∂f(x0)/∂x. Taking the Fourier transform F[f ]
= ∫

dtf (t) exp(ıωt) = f̃ (ω) of Eq. (A2), one gets

x̃(1)(ω) = − fε

fx + ıω
δ̃ε(ω)

(A3)

x̃(2)(ω) = − 1

fx + ıω

(
1

2
fxxF[(x(1))2]

+ 1

2
fεεF[(δε)2] + fxεF[x(1)δε]

)
.

In case of single-frequency perturbation, δε

= ε1 cos (ω1t), which has been also discussed in Ref. 14,
Eqs. (A3) result in the following:

x̃(1)(ω) = − fεε1

fx + ıω
π (δ(ω − ω1) + δ(ω + ω1)) ,

(A4)

x̃(2)(ω) = − ε2
1

fx + ıω
π

{
δ(ω − 2ω1)

[
fxxf

2
ε

4(fx + ıω1)2
+ fεε

4
− fxεfε

2(fx + ıω1)

]
+ δ(ω + 2ω1)

[
fxxf

2
ε

4(fx − ıω1)2
+ fεε

4
− fxεfε

2(fx − ıω1)

]

+ δ(ω)

[
fxxf

2
ε − 2fxεfεfx

2
(
f 2

x + ω2
1

) + fεε

2

]}
.

We note that if perturbation in Eq. (7.1) can be expressed in the form of Eq. (4.8), i.e., when fεε = 0, then Eqs. (A4) could
also be obtained from Eq. (4.12) by evaluating action of the differential operators D̃0(ω) = F[D0(t)] = F[exp(tf (x)∂/∂x)]
= 1/[ıω + (fx(x − x0) + fxx(x − x0)2/2)∂/∂x] and V− = (fε + fxε(x − x0))∂/∂x at x = x0.

In case of perturbation on two frequencies, δε = ε1cos (ω1t) + ε2cos (ω2t), Eqs. (A3) result in the following:

x̃(1)(ω) = − fε

fx + ıω
π [ε1 (δ(ω − ω1) + δ(ω + ω1)) + ε2 (δ(ω − ω2) + δ(ω + ω2))] , (A5a)

x̃(2)(ω) = − ε1ε2

fx + ıω
π

{
δ(ω − ω1 − ω2)

[
fxxf

2
ε

4(fx + ıω1)(fx + ıω2)

+ fεε

4
− fxεfε

4

(
1

fx + ıω1
+ 1

fx + ıω2

)]
+ δ(ω + ω1 + ω2)

[
fxxf

2
ε

4(fx − ıω1)(fx − ıω2)

+ fεε

4
− fxεfε

4

(
1

fx − ıω1
+ 1

fx − ıω2

)]
+ . . .

}
, (A5b)

where in the last equation we explicitly wrote only expres-
sions for the two peaks at ω = ±(ω1 + ω2).
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