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Abstract
We propose a new photon-coincidence measurement based on the time- and
wavevector-resolved detection of photons generated by the scattering of multiple x-ray pulses
with variable delays. The technique directly measures multipoint correlation functions of the
charge density through superpositions of valence excitations which are created impulsively by
the scattering process.
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1. Introduction

Experiments which employ sequences of attosecond pulses
to probe the electronic and nuclear dynamics of molecules in
the condensed phase with sub-femtosecond time and atomic
spatial resolution are made possible by newly developed bright
sources of soft and hard x-ray light [1–6]. These techniques
provide novel windows into molecular valence electronic
structure and chemical dynamics with much higher resolution
than is possible with visible light. Valence-electron motions
can be triggered impulsively by core excitations and then
monitored by x-ray pulse sequences. Coherent stimulated
x-ray Raman signals (SXRS), which observe electron
wavepackets created by attosecond pulses, may be described
by extending concepts used for vibrational wavepackets in the
visible regime [7]. The pulse envelopes in these time-domain
analogues of resonant inelastic x-ray scattering allow to control
both excitation and observation windows. Multidimensional
time-resolved photoelectron signals are possible as well, and
the quantum properties of the x-ray fields can be exploited to
control pathways in matter [8].

Resonant x-ray scattering is spatially selective and can
create a perturbation of the electronic charge distribution in
the vicinity of a selected atom [9]. Off-resonant scattering
is not spatially selective but offers a new window through
the wavevector dependence of the signal. If a scattering

event of a k1 photon is recorded at time T1 with scattering
wavevector k1 then we know that it leaves the molecule in
the superposition of valence electronic eigenstates σ̂ (q1)|g〉,
where σ̂ is the electronic charge-density operator in the many-
electron space and the scattering wavevector q1 = k1 − kI is
the difference between incoming and outgoing wavevectors.
If at time T2 we then record the scattering of a k2 photon
this event amplitude is given by a projection of that evolving
superposition onto the subspace defined by the operator σ̂ (q2).
Each k1 and k2 pair represents a separate window into the time
evolution of the electronic wavepacket.

One exciting application of x-ray free electron laser
sources is the possible determination of electronic structure
by x-ray diffraction of single molecules, eliminating the
tedious and often prohibitively time-consuming requirement
to crystalize samples such as proteins [10, 11]. It follows from
our recent work on spontaneous emission of visible photons
following impulsive x-ray Raman excitation [12] that inelastic
scattering, which does not contribute for Bragg diffraction, is
more pronounced for single molecules.

Diffraction is usually calculated by treating the x-ray field
as classical. The signal depends solely on the time-dependent
charge density. In a quantum description of the field [13, 14],
the off-resonant x-ray scattering signal has both an elastic
(Thomson or Rayleigh) and an inelastic (Compton or Raman-
type) components. Only the former is related to the charge

0953-4075/14/124037+08$33.00 1 © 2014 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0953-4075/47/12/124037
mailto:biggsj@uci.edu
mailto:kcbennet@uci.edu
mailto:yuz10@uci.edu
mailto:smukamel@uci.edu


J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 124037 J D Biggs et al

density and may be used to obtain the electronic structure of
a crystal. The latter involves a radiation back-reaction that is
missed by the classical treatment, and depends on transition
amplitudes between valence excitations. We have developed
a quantum-field treatment of x-ray scattering [15]. Extending
that analysis to a molecule initially prepared in an electronic
superposition state [16–19] will make it possible to track the
time-dependent electron density.

Multidimensional nonlinear spectroscopy is a class of
techniques in which multiple pulses are directed at the sample
and the intensity change of one of the beams is detected.
By varying the time delays between these pulses, as well
as other parameters (e.g. frequencies, polarizations, phases),
multidimensional plots can be constructed and the resulting
pattern of peaks reveal resonances in the material [20]. In this
paper, we propose to generate multidimensional signals by
using off-resonant scattering of two or more shaped broad-
band x-ray pulses. This permits the probing of correlations
in electronic structure at different times controlled by the
scattered pulses [21]. Throughout, we define the signal as
the intensity of the gated x-ray electric field [12]. A variety
of different detection modes are possible. Importantly, the
proposed technique requires single-photon detection (photon
k1 is scattered at T1, photon k2 at T2, etc) so that the
state of the system following each scattering event is well
controlled. We demonstrate that these techniques provide
valuable information about nonlinear charge fluctuations in
molecules.

Thanks to their broad spectral bandwidth, short pulses
can induce transitions between many-electron states of the
molecule which generate the signal. Due to the coherences
induced by the scattered x-ray pulses, the signal is not simply
given by the momentum space charge-density or a correlation
function thereof. Given the plethora of parameter choices for
such techniques, it is likely that they will be useful as a
complement to the ordinary (one-dimensional) x-ray scattering
signal.

2. Multidimensional scattering off a single particle

2.1. Correlation function expressions

We begin by reviewing the resonant x-ray scattering technique
SXRS. In that case, the interaction Hamiltonian is written

Ĥ ′(t) = e

c
p̂ · Â(t) (1)

where p and A(t) are the momentum and vector potential,
respectively. In an SXRS process, a valence excitation results
from two successive field-matter interactions via a high-
energy core-excited intermediate state. The broad bandwidth
of attosecond pulses creates a superposition of such valence
excited states, and by tuning the pulse to be resonant with
a given core edge, this electronic wavepacket is initially
localized near that core orbital.

Resonant x-ray spectroscopies probe the multipoint
correlation functions of the dipole operator between the core
and valence levels [20, 22]. SXRS, in contrast, depends on

correlation functions of the broadband core polarizability α̂,

α̂ =
∑
c,e,e′

|e〉 (εR · μec)(εR · μce′ )

2π

×
∫ ∞

−∞
dω

Â∗
R(ω)ÂR(ω + ωee′ )

ω − ωce + i�c
〈e′|. (2)

Here ÂR(ω) and εR are the envelope and polarization vector
for the Raman pulse, μec and ωce are the transition frequency
and dipole matrix element between core excited state c and
valence state e, and �c is the inverse core-hole lifetime. One-
dimensional SXRS is a two-pulse experiment with a single
delay period T, and is associated with the correlation function

S(T ) ∝ 〈α̂(T )α̂(0)〉 − 〈α̂†(0)α̂(T )〉 (3)

where 〈x〉 ≡ Tr[xρ], and the operators are written in the
interaction picture. In this section, we assume that the system
is initially in the electronic ground state, such that at time 0
we have ρ = |g〉 〈g|. This assumption is relaxed in the next
section. Two-dimensional SXRS uses three pulses, depends on
two time delays, and is associated with [7]

S(T1, T2) ∝ 〈α̂(T1 + T2)α̂(T1)α̂(0)〉−〈α̂†(0)α̂(T1 + T2)α̂(T1)

+〈α̂†(0)α̂†(T1)α̂(T1 + T2)〉 − 〈α̂†(T1)α̂(T1 + T2)α̂(0)〉.
(4)

Equation (1) applies below and slightly above the various
ionization-edges of the atoms in the system. Off-resonant
scattering, where photon energies are far above any of the
ionization thresholds, is determined by the following radiation-
matter interaction Hamiltonian

Ĥ ′(t) =
∫

drÂ2(r, t)σ̂ (r, t), (5)

where the charge density operator σ̂ (r, t) written in the
interaction picture is related by a spatial Fourier transform
to ˆσ (q, t).

One example of a time-dependent scattering signal
involves two x-ray pulses with a single time delay, making it
a one-dimensional signal. The first pulse, arriving at time 0, is
resonant with a core-to-valence transition and its interaction is
governed by equation (1). The second pulse, arriving at time T ,
is off resonance and interacts with the system via equation (5).
The correlation function for this signal is

S(k1, T ) ∝
〈σ̂ †(T, q1)σ̂ (T, q1)α̂(0)〉 − 〈α̂†(0)σ̂ †(T, q1)σ̂ (T, q1)〉.

(6)

This is a simplified expression, showing only the underlying
correlation function. The full expression is given by
equation (8) of [15] where we also present simulations for
the amino acid cysteine at the sulfur K-edge.

The scattering signal will, in general, contain both
elastic and inelastic scattering contributions. Since the core
polarizability acts only on one side of the density matrix (in
the first and second terms of the right-hand side of equation (6),
α̂ acts on the ket and bra, respectively), the system is prepared
in an electronic coherence rather than a population. In this
case, elastic scattering will only occur from that portion of
the electronic wavefunction still in the ground state, and will
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give a delay-time-independent background. By isolating the
portion of the scattering signal that changes with T , we can
eliminate the elastic-scattering contribution.

The signals described so far do not require single-photon
counting, and can be carried out using strong fields. Signals
which probe correlation functions of the charge density will
be experimentally more challenging. In the simplest such
experiment, a single molecule is subjected to two attosecond
off-resonant pulses, with wavevectors kI and kII . A single
scattered photon with frequency ω1 from pulse I is collected
in the direction k1 at time 0, and the molecule is left in a
superposition state for the interpulse delay, after which the
second pulse is scattered, and photons of frequency ω2 are
collected in a variety of directions k2 at time T .

The signal that results from two successive scattering
measurements is determined by the correlation function

S(k1, k2, T ) ∝ 〈σ̂ †(0, q1)σ̂
†(T, q2)σ̂ (T, q2)σ̂ (0, q1)〉. (7)

This signal is one-dimensional in that it only depends on a
single time delay T . Two-dimensional signals are acquired by
the application of one Raman and two scattering pulses

S(k1, T1, k2, T2) ∝ 〈σ̂ †(T1, q1)σ̂
†(T1 + T2, q2)

×σ̂ (T1 + T2, q2)σ̂ (T1, q1)α̂(0)〉
− 〈α̂†(0)σ̂ †(T1, q1)σ̂

†(T1+T2, q2)

× σ̂ (T1+T2, q2)σ̂ (T1, q1)〉, (8)

or by three successive scattering measurements

S(k1, k2, T2, k3, T3) ∝ 〈σ̂ †(0, q1)σ̂
†(T1, q2)

×σ̂ †(T1 + T2, q3)σ̂ (T1 + T2, q3)σ̂ (T1, q2)σ̂ (0, q1)〉. (9)

The equations above show how we can describe different
x-ray experiments, with combinations of resonant and off-
resonant pulses, using a common framework. Both resonant
Raman and off-resonant scattering interactions will leave the
molecule in an electronic superposition state. Even though
the light-matter interactions are different in these cases, the
response-function approach results in very similar expressions.
In [15] we examined the Raman/scattering signal described
by equation (6). In this paper, we look at the two-photon
coincidence measurement, equation (7).

2.2. Signal expressions

We consider experiments in which a series of pulses
are scattered by a single molecule. The pulses can have
arbitrary spectral and temporal shape, provided they are non-
overlapping in time and far from any material resonance. Under
these conditions the field-matter interaction Hamiltonian is
given by equation (5). Such experiments have been proposed
as a means of taking stroboscopic images of systems in non-
equilibrium states and thus tracking the system’s evolution
[23–26]. The use of temporally well-separated pulses reflects
the experimental goal of taking ‘pictures’ of the system
at distinct points in time and creating a stop-motion style
recording and, furthermore, greatly simplifies the resulting
expressions. The proposed experiment must involve single-
photon coincidence counting; otherwise information about the

Figure 1. Loop diagram for two-dimensional, off resonant x-ray
scattering from a single particle. The particle is initially in its ground
state |g〉 after which, an unspecified process (represented by a
shaded box) prepares it in a superposition state. Two well-separated
pulses then sequentially scatter from the sample and are detected by
a pixel array. The delays T1 and T2 can be independently varied.

dependence of the signal on both k1 and k2 is averaged out
across the diffraction pattern.

The manipulations employed in the derivation of single-
dimensional x-ray scattering are valid for each diffraction
event separately and the results from [15] are straightforwardly
generalized. Figure 1 shows a loop diagram representation of
the signal described here. These diagrams [27], show the state-
space pathways that lead to a measurement. The left and right
branches of the loop represent the ket and bra and real time
flows from bottom (initial state) to top (measurement event).
We can read off the diffraction signal from figure 1 as

S(k1, T1, k2, T2) =
∑
abcde

ρabω
2
1ω

2
2AI(ω1 + ωca)A∗

I (ω1 + ωdb)

×AII(ω2 + ωec)A∗
II(ω2 + ωed )σca

(
q(1)

ca

)
×σ ∗

db

(
q(1)

db

)
σec

(
q(2)

ec

)
σ ∗

ed

(
q(2)

ed

)
e−i(ωabT1+ωcd T2). (10)

In this expression, AI (AII) is the spectral envelope for the first
(second) pulse, a, b, c, d, and e represent valence eigenstates
of the material Hamiltonian and ω1 (ω2) are the first (second)
detected frequencies. Equation (10) includes matrix elements
σi j of the charge density operator in the basis of electronic
eigenstates of the molecule. The time between the initial state
preparation and the centre of the first diffracting pulse is
labelled T1 and the time between the two diffracting pulses
is labelled T2. Finally, the scattering vectors are defined by
q(1(2))

ab ≡ k1(2) − ω1(2)+ωab

c k̂I(II) where k̂I (k̂II) is the wavevector
of the first (second) pulse.

When the system is initially in a pure state (i.e. ρab = cac∗
b

where ca, cb are the amplitudes of state a, b so that the state
of the system is |ψ〉 = ∑

a ca|a〉), equation (10) can be recast
into a Kramers–Heisenberg (modulus square) form

S(k1, T1, k2, T2) =
∑

e

∣∣∣∣∣
∑

ac

caω1ω2AI(ω1 + ωca)

×AII(ω2 + ωec)σca(q(1)
ca )σec

(
q(2)

ec

)
e−i

(
ωaeT1+ωceT2

)∣∣∣∣
2

. (11)
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In many situations it is not feasible to calculate the
electronic eigenstates of the system, and it is therefore
desirable to rewrite equation (10) in terms of a time-correlation
function of the charge density. By assuming a flat pulse-
envelope (i.e. the spectral pulse envelopes are uniform over the
range of material eigenenergies so that AI/II(ω1/2 − ωab) ≈
AI/II(ω1/2) for any material states a, b), we recast equation (10)
as

S(k1, T1, k2, T2) = |ω1ω2AI(ω1)AII(ω2)|2

×
∫

drdr′dr′′dr′′′e−iq(1)·(r−r′′′ )e−iq(2)·(r′−r′′)

×〈σ̂ †(r′′′, T1 + k̂I · r′′′/c)σ̂ †(r′′, T1 + T2 + k̂II · r′′/c)

×σ̂ (r′, T1 + T2 + k̂II · r′/c)σ̂ (r, T1 + k̂I · r/c)〉. (12)

This expression incorporates the effect of inelastic scattering
on the momentum transfer, but does not hold for arbitrarily
shaped pulses. Equation (12) is simplified when considering
only elastic scattering, yielding

S(k1, T1, k2, T2) = |ω1ω2AI(ω1)AII(ω2)|2
〈
σ̂ †

(
q(1)

0 , T1
)

×σ̂ †
(
q(2)

0 , T1 + T2
)
σ̂
(
q(2)

0 , T1 + T2
)
σ̂
(
q(1)

0 , T1
)〉

(13)

with q(1(2))

0 ≡ q(1(2))
aa as the elastic scattering vector.

3. Simulations

3.1. Electronic structure

We have simulated the two-photon coincident measurement
on the sulfur-containing amino acid cysteine. Cysteine affects
protein structure because of the disulfide bonds it forms. We
have previously explored various resonant x-ray spectroscopic
signals from this molecule, including SXRS and x-ray photon
echo [22, 28]. Details of the electronic structure calculations
can be found in [28], and are recounted briefly here.
The optimized geometry of cysteine was obtained with the
Gaussian09 package [29] at the B3LYP [30, 31]/6-311G**
level of theory. Valence-excited states were found at the CAM-
B3LYP [32]/6-311G** level of theory, and with the Tamm–
Dancoff approximation [33] using a locally modified version
of NWChem [34, 35].

Since the higher-order energy gradient TDDFT is not
available in the current code, transition density matrices
between different valence excited states, which contribute to
the summation in equation (9), are calculated using the CI
coefficients from the TDDFT results, and are therefore an
unrelaxed excited-state property. For higher accuracy, we
should calculate such relaxed excited state properties using
the Z-vector method [36, 37]. This is left for future studies.

3.2. One-dimensional signals: two scattering events

We first examine the scattering signal from the ground state.
The states a and b in figure 1 and equation (10) are set equal
to the ground state g. In this case, we can recast the signal as
a modulus square of an amplitude

S(k1, k2, T ) =
∣∣∣∣
∑

ce

ω1ω2AI(ω1 + ωcg)AII(ω2 + ωec)

×σcg
(
q(1)

cg

)
σec

(
q(2)

ec

)
e−iεcT2

∣∣∣∣
2

. (14)

Figure 2. Ground-state scattering pattern for cysteine with kI set
along the lab-frame x-axis, and the detection frequency ω1 set to the
pulse central frequency. Four peaks are chosen in the kI pattern. The
spatial orientation of the molecule with respect to the incoming
wavevectors is shown in figure 3.

We took the sample to be a single cysteine molecule oriented
in the lab frame. The transform-limited Gaussian pulse has a
central frequency of 10 keV and a duration of 500 as FWHM
(3.65 as FWHM). The scattered photons are collected on a
square grid 2 cm in length positioned 1 cm from the molecule.
We take the wavevector for the first pulse to be along the
lab-frame x-axis. Figure 2 shows the single-pulse scattering
signal. For the coincidence measurement, we wish to eliminate
the elastic contribution, where state c in equation (14) is the
ground state g, which is independent of the delay T. To this
end, we take the detected frequency for the first photon to be
ω1 = 
I − 8 eV, ensuring that only states whose excitation
energies ωcg are within a region around 8 eV defined by the
pulse bandwidth contribute to the signal. Our simulations
include fifty valence-excited states with energies between 5
and 11 eV, all of which fit this criterion. The frequency of the
second photon was taken to be ω2 = 
II +8 eV, preferentially
detecting scattering events where the system returns to the
ground state after interaction.

We selected five peaks from the k1 signal, taken with
ω1 equal to the pulse central frequency 
I , and look at the
differences in the k2 pattern for these points. Figure 3 shows
an example of a k2 scattering pattern when k1 is taken to be
peak A. figure 4 shows isosurfaces of the charge density for
the molecule following the measurement of photon k1 for the
five labelled peaks in figure 2. The density is defined by

〈σ (r, T )〉 =
∑

cd

AI(ω1 + ωcg)A∗
I (ω1 + ωdg)σ

∗
dg

(
q(1)

dg

)

×σdc(r)σcg
(
q(1)

cg

)
e−iωcd T . (15)
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Figure 3. Two-photon coincidence measurement for the molecule cysteine. We show the wavevector for the first pulse kI in red, and for the
second pulse kII in blue. kI and kII are aligned with the lab frame x and y axes, respectively, and the orientation of the molecule is shown in
the middle. The panel to the right shows the k1 scattering pattern from figure 2. In a coincidence measurement only a single k1 photon is
detected, leaving the molecule in a superposition state. The k2 scattering pattern on the left corresponds to detecting a single photon k1 at the
point indicated on the right panel.

Figure 4. Time dependent charge density (equation (15)) of cysteine after detection of a scattered k1 photon detected at one of the five points
labelled in figure 2. We show the full density only for peak E at T = 2 fs, and all other plots have this density subtracted to highlight the
changes.

For the reasons described below, the densities for the different
peaks and times look very similar. To highlight the differences,
in figure 4 we plot the density differences, with the peak E
T = 2 fs subtracted prior to plotting. We see that the initial
density, for T = 0 fs is very similar for peaks A, C, and D, and
is different for peaks B and E. However, it is difficult to see
differences in the charge density at later times. This is due to
the fact that the dominant terms in equation (15) occur when
states c and d are the same, and do not depend on the delay
time. These involve diagonal elements of the charge density
σcc(r), which are much larger than off-diagonal elements. In

the scattering signals we are able to eliminate such terms,
which are independent of the interpulse delay, by choosing the
detection frequency to be outside the pulse bandwidth.

Figure 5 shows the k2 scattering pattern when both kI and
kII are set parallel to the x-axis. As can be seen from the top row,
wherein the interpulse delay T is set to zero, the k2 scattering
pattern strongly varies with k1. The choice of k1 determines
the nature of the electronic superposition that is measured in
the second scattering event. The first measurement leaves the
molecule in a superposition state because it is the photon, not
the molecule, that is measured. By detecting photon k1, we

5
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Figure 5. Two-photon coincidence k2 scattering patterns for five different interpulse delays. kI and kII are both set to the lab-frame x-axis,
with k1 taken to be one of the four points labelled in figure 2. In order to maximize the inelastic contribution to the signal, ω1 (ω2) is set 8 eV
to the red (blue) of the pulse central frequency. The interpulse delay is taken to be T = 0 in these plots.

Figure 6. Same as figure 5 but with kII set to the lab-frame y-axis.

6
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Figure 7. Same as figure 5 but with kII set to the lab-frame z-axis.

choose a projection of the total superposition created by the
scattering event. The bottom rows of figure 5 show that the k2

scattering pattern depends on time as well as on k1.
Figures 6 and 7 show the k2 scattering pattern when the

second pulse wavevector kII is parallel to the y- and z-axis,
respectively. We can see that the particular superposition state
for k1 peaks A and D are very similar initially, but become
different as the delay time increases.

4. Conclusions

We have proposed a new type of measurement that
uses scattered off-resonant x-ray light to probe multipoint
correlation functions of the charge density. This signal involves
the coincident measurement of two or more photons, with
control over the timing and wavevector for both, which
represents an extreme experimental challenge. The times T1

and T2 are controlled by the incoming pulses. To control
k1 and k2 we must work at low fluxes where single-photon
coincidence counting is possible. At high fluxes the correlation
information carried by the wavevectors will be eroded.

Simulations presented for the amino acid cysteine show
that these signals are highly dependent on the time-evolving
charge density. Static contributions resulting from diagonal
elements of the charge density, can be eliminated from
the scattering signal by setting the detection frequency
outside the pulse bandwidth. Additional information is
available through these measurements than in traditional
x-ray diffraction, which solely depends on diagonal elements
of the charge-density operator.
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