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a b s t r a c t

In the semiclassical theory of multidimensional spectroscopy, which describes a classical field coupled to
quantum matter, n-th order signals are calculated as a convolution of n spectral field envelopes and an n-
th order matter response function which enforces the time-ordering of interactions. In quantum field
spectroscopy, the electromagnetic field is in a nonclassical state and the product of spectral field envel-
opes is replaced by a correlation function of the associated field operators. In this paper, we introduce a
complementary representation in which the roles of field and matter are interchanged and signals are
given by an ordinary, correlation function of matter convoluted with a time-ordered response function
of the field. This suggests an inverse spectroscopy which uses matter to probe the state of the field.

� 2016 Published by Elsevier B.V.
1. Introduction

The key information extracted from spectroscopic signals is the
energies and lifetimes of excitations. Multidimensional spec-
troscopy can access higher-order excitations and the couplings
between their constituent single-excitations. In principle, this
information is contained in a simple, non-time-ordered correlation
function of material excitation operators (within the dipole
approximation, the relevant operator is the transition dipole
moment). We term the Fourier transform of such a correlation
function the n-th order multidimensional spectral density V ðnÞ in
analogy to the linear case [1,2].

The actual calculation of spectroscopic signals must keep track
of time-ordered interactions. This time-ordering is baked into the
matter correlation function, resulting, in the frequency domain,
in the n-th order nonlinear susceptibility vðnÞ [1,3]. Within the
semiclassical theory, the fields may be taken as ordinary functions
and the signal is then given as a convolution of the product of the
spectral field envelopes with vðnÞ. When spectroscopy is performed
with quantum fields, one must instead replace the product of field
spectral envelopes by a correlation function of frequency-domain
field operators. A wide range of novel states of light have been cre-
ated and analyzed [4–7] and performing spectroscopy with these
states has been an area of active interest [8–14]. Since both field
and matter are now quantum, a symmetric representation in the
roles of field and matter is called for. We can write the associated
Heaviside theta functions that enforce time-ordering in the Fourier

domain to obtain a function hðnÞ that connects the field and matter
quantities via a double-convolution while encoding the time-
ordering of interactions.

In this paper, we first derive a formula for multidimensional

spectroscopy signals in terms of the ‘‘connection” function hðnÞ.

An explicit expression for hðnÞ is given. Importantly, the hðnÞ func-
tion is universal and all system-specific information is encoded
in separate field or matter quantities. From this expression, one

can recover the susceptibility via convolving hðnÞ with the material
multidimensional spectral density. The relationship between the
spectral density and the material response function is known as
the Kramers–Kronig relation and is a well-known representation
of linear signals [1]. Analogy has previously been made at the level
of the third-order response [2] and is here extended to arbitrary

order. In an alternate representation, one may convolve hðnÞ with
the field correlation function to obtain a field-susceptibility ~vðnÞ,
the signal being then given by a convolution of the material multi-
dimensional spectral density and ~vðnÞ. This offers a new interpreta-
tion of spectroscopic signals that may be of particular use for
interrogating complex quantum states of the electric field via sim-
pler material systems with known multidimensional spectral
densities.
2. Formalism

In the standard theory of multidimensional spectroscopy
[2,15,16], signals are given as a convolution of a field correlation
function and the matter susceptibility vðnÞ, i.e.,
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SðnÞðKÞ ¼ I

Z
dxnþ1 . . .

Z
dx1vðnÞð�xnþ1;xn; . . . ;x1Þ

�
� Eðxnþ1Þ . . . Eðx1Þh i

�
: ð1Þ

The signal depends on the parameters defining the field envelopes,
collectively represented by K. Once one obtains the susceptibility,
this formula is easily employed to predict the results of any exper-
iment with a given set of classical, stochastic, or quantum fields
[17,18]. Note that it is assumed that the field and matter are not ini-
tially entangled. When the field is classical, its correlation function
reduces to the simple product of the spectral envelopes. The suscep-
tibility encodes all details of the material and is given as the Fourier
transform of a sum of dipole correlation functions with different
time-orderings.

Eq. (1) is asymmetric in the roles of field and matter. The field
enters as an ordinary, rather than time-ordered, correlation func-
tion whereas the matter enters as a response function, which is a
specific combination of correlation functions with different time-
orderings. This form is natural for the semiclassical description
which is causal, i.e., the field is given and the matter responds to
it. Once we consider quantum fields, the experiment involves cou-
pled field and matter degrees of freedom. It may then be useful to
reformulate the problem so that field and matter enter more
symmetrically.

In this paper, first we derive diagrammatically an alternative
exact expression for optical signals of the form

SðnÞðCÞ ¼ I

�Z
dx0

nþ1dxnþ1 . . .

Z
dx0

1dx1
bV x0

nþ1

� �
. . . bV x0

1

� �D E
0
hðnÞ

� ðx0
nþ1;xnþ1; . . . ;x0

1;x1Þ bEðxnþ1Þ . . . bEðx1Þ
D E

0

�
ð2Þ

where h. . . i0 � hw0 j . . . j w0i is the expectation value with respect to
the initial state. In this form, the roles of the field and matter are

completely symmetric. The function hðnÞ carries all the bookkeeping
of the various time-ordered pathways that contribute to the
response by connecting the unprimed (field) and primed (matter)
frequency variables. Since it is entirely independent of the field
and the material, we need only calculate this h-function once and
may then freely apply it to any field-matter configuration. This
approach formally simplifies the calculation of the nth-order signal
by allowing the replacement of the matter susceptibility with the
ordinary correlation function which, as will be shown below, has
a simple form. Moreover, the resulting expression for the signal is
insightful since it treats the field and matter in a symmetric fashion
and neatly bundles the complicated path-order bookkeeping via the
h-function. These three ingredients (material correlation function,
field correlation function, and h-function) then carry all information
necessary to reconstruct the signal. Carrying out the integrations
over dx0

i in Eq. (2) results inZ
dx0

nþ1 . . .

Z
dx0

1
bV x0

nþ1

� �
. . . bV x0

1

� �D E
hðnÞ x0

nþ1;xnþ1; . . . ;x0
1;x1

� �
¼ vðnÞ xnþ1; . . . ;x1ð Þ; ð3Þ

and substitution into Eq. (2) then recovers Eq. (1). This approach is
based on the idea of using simple fields, or fields with known
properties, to study complicated material systems of interest (or
those with unknown properties). However, Eq. (2) suggests that this
step can be inverted; utilizing a simple material systemwith known
properties to probe nontrivial electric field states (entangled
photons, etc.). We therefore define the ‘‘field susceptibility”

~vðnÞ x0
nþ1; . . . ;x

0
1

� �
¼

Z
dxnþ1 . . .

Z
dx1

bEðxnþ1Þ . . . bEðx1Þ
D E

hðnÞ

� x0
nþ1;xnþ1; . . .x0

1;x1
� �

ð4Þ
which allows one to express the signal as

SðnÞðCÞ ¼
Z

dx0
nþ1 . . .

Z
dx0

1
bV x0

nþ1

� �
. . . bV ðx0

1Þ
D E

~vðnÞ x0
nþ1; . . . ;x

0
1

� �
:

ð5Þ

The signal is now expressible as an (nþ 1) dimensional overlap
integral of the field susceptibility with the material dipole correla-
tion function. The present approach offers a new way of viewing
the n-th order spectroscopic signal that may prove insightful, par-
ticularly when employing novel states of the electromagnetic field.
To comprehend the structure of the non-time-ordered transition
dipole correlation function, we begin by taking matrix elements of
the dipole operator in the material eigenbasis

a j bV ðtÞ j bD E
¼ Vabeixabt: ð6Þ

The Fourier transform, the associated time integrations now being
unrestricted, is therefore

a j bV ðxÞ j b
D E

¼ VabdðxþxabÞ ð7Þ

and the eigenbasis expansion of the material correlation function
reads

bV x0
nþ1

� �
. . . bV x0

1

� �D E
0
¼

X
ai

Va0an . . .Va1a0d x0
nþ1 þxa0an

� �
. . .

� d x0
1 þxa1a0

� �
: ð8Þ

In analogy to the linear (n ¼ 1) case

(hbV ðx0
2ÞbV ðx0

1Þi ¼ hbV ð�x0
1ÞbV ðx0

1Þi), we term this the multidimen-
sional spectral transition density [2]. It encodes the spectral density
of material transitions at each of the x0

j variables. For the field, the
frequency domain correlation function is naturally obtained with a
second-quantized representation of the field-operators given an
arbitrary state of the field.

The derivation for the h-function is given in the appendix and
results in

hðnÞ xnþ1;x0
nþ1; . . . ;x1;x0

1

� �
¼ dðX1 þ . . .þXnþ1Þ

Xn
k¼0

ð�1Þkhðxn�kþ1Þ
ð2pÞ2nþ1 hðnÞ

k ðXnþ1; . . .X1Þ ð9Þ

with

hðnÞ
k ðXnþ1; . . .X1Þ ¼

Yk�1

j¼0

1P j
j0¼0Xnþ1�j0 � ig

Yn�k

j¼1

1P j
j0¼1Xj0 � ig

ð10Þ

where Xi � xi þx0
i and g is a positive infinitesimal. This expression

has nþ 1 terms reflecting the fact that the expectation values are
calculated via the wave-function picture. The auxiliary function

hðnÞ
k can be easily rationalized by considering an expansion along

the loop diagram shown in Fig. 1. In this figure, the frequencies
on the ket branch accumulate in the denominators of the second
product as one progresses up the ket branch. The frequencies on
the bra branch then de-accumulate in the denominators of the first
product as one descends the bra branch. One may thus easily con-
vert the loop diagram associated with a particular experiment of

interest into it’s corresponding hðnÞ
k (there may be one or several that

contribute to a given spectroscopic signal). The relevant hðnÞ
k can

then be combined with either matter or field to obtain the vðnÞ or
~vðnÞ that determines the signal.

The above discussion is predicated on a Hilbert-space descrip-
tion of the field-matter interaction, the natural language of which
is the loop diagrams which maintain separate ket and bra time
ordering. When the ket and bra evolve jointly, as when pure-
dephasing and system-bath interactions are important, one must



Fig. 2. This figure illustrates the conversion hðnÞ
k ! ~hðnÞ

k . For the ladder diagrams,
each period up the loop stands for a factor of 1=ðX� igÞ where the frequency
denominators accumulate as one goes up the ladder. A general formula for ~hðnÞ

k (in
the same spirit as Eq. (10)) is not convenient. We therefore simply illustrate the
conversion process. This results in Eq. (11).

Fig. 1. This loop diagram represents hðnÞ
k . Each period along the loop stands for a

factor of 1=ðX� igÞ where the frequency denominators accumulate as one goes up
the ket branch and then de-accumulate as one goes down the bra branch of the
loop. Time ordering is therefore kept separately on the ket and bra (i.e., along the
loop). This results in Eq. (10).
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switch to a fully time-ordered representation in which the density
matrix evolves as a vector in Liouville space [1,19]. One must then
split each partially time-ordered term, which maintains ket and
bra orderings separately, into fully time-ordered terms, which
maintain relative ordering of ket and bra interactions and are
represented by ladder diagrams. Just as a given loop diagram

may be expressed as a sum of ladder diagrams, the hðnÞ
k function

can be recast into a sum of terms ~hðnÞ
k that maintain absolute

time-ordering of ket and bra interactions, in contrast to hðnÞ
k which

only maintains time-ordering on the ket and bra separately. This

process results in n
k

� �
‘‘ladder” terms ~hðnÞ

k for each ‘‘loop” term hðnÞ
k .

This can be seen from Fig. 1 and considering that each of the k
interactions on the bra may go anywhere in the n� kþ 1 spaces
between interactions on the ket. The ladder-based expansion
therefore carries 2n terms as opposed to the nþ 1 terms when
expanding along the loop and is less compact. Each ladder diagram
represents a term in which the frequencies (in the denominators of
the product) accumulate in real-time order as one progresses up

the ladder. For concreteness, we use ~hðnÞ and ~hðnÞ
k to refer to

expansions performed with the ladder diagrams. The conversion

procedure is illustrated in Fig. 2 for hð3Þ
1 ! ~hð3Þ

1 and results in

hð3Þ
1 ¼ 1

X1 � ig
1

X1 þX2 � ig
1

X4 � ig
! ~hð3Þ

1

¼ 1
X1 � ig

1
X1 þX2 � ig

1
X1 þX2 þX4 � ig

þ 1
X1 � ig

1
X1 þX4 � ig

1
X1 þX4 þX2 � ig

þ 1
X4 � ig

1
X4 þX1 � ig

1
X4 þX1 þX2 � ig

ð11Þ

Unfortunately, in Liouville space, each of these ~hðnÞ
k is associated

with a different material correlation function, corresponding to
the possible positions of the k bra interactions. In Hilbert space,
these material correlation functions are all the same, a key fact that
permits the re-casting presented here. In Liouville space, it will not
therefore be possible to write so compact an expression as Eq. (2),
and the best one could do is write such a formula for each diagram.

The ~hðnÞ
k would then enforce the time-ordering while the k-index

would label a particular string of n L’s and R’s that specifies whether
each transition dipole operator acts on the ket or bra. Such a
representation may still be useful, as it would still be possible to

convolve the ~hðnÞ
k with the field correlation function to obtain the

Liouville-space equivalent of Eq. (5). The limitation is that this must
then be done separately for each diagram. Under Hamiltonian
evolution, i.e., when the Liouvillian is a simple commutator, the L
and R operators commute at all times and one can recombine these
fully time-ordered terms into the separately ket- and bra-ordered
terms associated with the Hilbert-space description. It is however
possible to account for finite excited state lifetimes by allowing
the transition frequencies to become complex and modifying the

hðnÞ
k . This alteration is somewhat subtle, in that it requires that real

and imaginary parts of the transition frequencies be incorporated
differently, and is described in the appendix resulting in Eq. (B8).

In summary, the present formalism allows one to put the entire
burden of time ordering either on the matter (Eq. (1)), the field (Eq.
(5)), or neither (Eq. (2)). Non-time-ordered correlation functions
are easier to calculated and have fewer terms compared to time-
ordered response functions. This approach thus offers a compact
representation of nonlinear spectroscopies that is symmetric in
field and matter quantities. Moreover, the ability to place the
time-ordering on the matter or field part gives a valuable flexibility
in the theoretical treatment of nonlinear signals. By convolving the
h-function with the field quantity, one obtains a field-susceptibility
(Eq. (4)) and the signal can then be viewed as a ‘‘matter spec-
troscopy”. That is, one may apply a given complicated external
electric field state to a variety of simple material systems, possibly
generated by alterations to some zero-order material system. One
then interrogates the response of the field to different materials
rather than vice versa as is ordinarily done. This can be done,
e.g., by the Ramsay setup whereby a molecular beam passes
through a series of optical cavities and the final molecular state
is detected say by fluorescence [20,21].
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Appendix A. Deriving the h-function

The Hamiltonian is given by the sum of the bare matter and
field Hamiltonian and the matter-field interaction.

H ¼ H0 þ H0ðtÞ: ðA1Þ

Throughout, we will work in the interaction picture with respect to
this H0ðtÞ (we also employ atomic units so that �h ¼ 1). The interac-
tion is assumed to be dipolar
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H0ðtÞ ¼ �
Z

drV̂ðr; tÞ � Êðr; tÞ ðA2Þ

To make the resulting expressions less cluttered, we take bV to be
the component of the transition dipole along the electric field. This
amounts to omitting the sum over cartesian components that arises
from the dot product V � E. These omissions can be easily reinstated
when the need arises (as in polarization spectroscopy). In the
interest of conciseness of the resulting expressions, we derive the
h-function for a sample consisting of an isolated particle of size
much less than the wavelength of the interacting light. Under these
conditions, we may simply write

H0ðtÞ ¼ �bV ðtÞbEðtÞ ðA3Þ

Omitting polarization, the transverse electric field operator is given
by

bEðtÞ ¼ i
X
i

ffiffiffiffiffiffiffiffiffiffi
x

8pV

r
âieiki �r�ixt � âyi e

�iki �rþixt
� �

� ÊðtÞ þ ÊyðtÞ: ðA4Þ

The signal at time t is defined by

SðtÞ ¼ h _Ni ðA5Þ

where N ¼
P

iâ
y
i âi is the photon number operator. Assuming that

½H0;N� ¼ 0, it is readily verified that

h _Ni ¼ i½H0ðtÞ;N� ¼ 2I bV ðtÞÊyðtÞ
D Eh i

: ðA6Þ

In order to obtain an expression of the form given in Eq. (2), we will
expand this expectation value using the wavefunction-based
approach (in the interaction picture):

bV ðtÞÊyðtÞ
D E

¼ wðtÞ j bV ðtÞÊyðtÞ j wðtÞ
D E

ðA7Þ

We could of course approach the problem via the density matrix but
the result then has 2n terms versus nþ 1 and a certain kind of path-
ordering (due to the commutators between the dipole operators
and the density matrix) cannot then be built into the h-function
but continues to reside with the correlation functions. This diffi-
culty can be overcome and the 2n terms may be combined into
nþ 1 but this exactly reproduces the result obtained more simply
from a direct application of the wavefunction-based approach. We
may of course extend this formalism to mixed states by averaging
over the distribution of initial wavefunctions at the end. Expanding
to n-th order, we have

SðnÞðtÞ ¼ 2I
Xn
k¼0

wðkÞðtÞ j bV ðtÞÊyðtÞ j wðn�kÞðtÞ
D E" #

ðA8Þ

Using the time-ordered expansion for j wi

j wðkÞðtÞi ¼ ðiÞk
Z t

�1
dsk

Z sk

�1
dsk�1 . . .

�
Z s2

�1
ds1 bV ðskÞbEðskÞ . . . bV ðs1ÞbEðs1Þ j wð�1Þi ðA9Þ

we obtain
wðkÞðtÞ j bV ðtÞÊyðtÞ j wðn�kÞðtÞ
D E

¼ð�1ÞkðiÞn
Z

dsn . . .
Z

ds1hðsn�1 � snÞ . . . hðt � sn�kþ1Þhðt � sn�kÞ . . . hðs2 � s1Þ ðA10Þ

bV ðsnÞbEðsnÞ . . . bV ðsn�kþ1ÞbEðsn�kþ1ÞbV ðtÞÊyðtÞbV ðsn�kÞbEðsn�kÞ . . . bV ðs1ÞbEðs1ÞD E
0

where we have extended the integrals to all time by adding theta
functions to enforce the proper time-ordering. We also suppress
the integration limits for brevity and use the shorthand
h. . . i0 � hwð�1Þ j . . . j wð�1Þi. It is convenient to symmetrize the
notation by t ! snþ1. We now substitute the fourier representation
for each of the time-dependent operators in the above:

bEðsjÞ ¼ Z
dxj

2p
bEðxjÞeixjsj ; bV ðsjÞ ¼ Z dx0

j

2p
bV ðx0

jÞe
ix0

j
sj ðA11Þ

Through the use of a theta function, we may write Ey in terms of E:

ÊyðsjÞ ¼
Z

dxj

2p
bEðxjÞeixjsjhðxjÞ: ðA12Þ

With these substitutions, Eq. (A10) becomes

wðkÞðsnþ1Þ j bV ðsnþ1ÞÊyðsnþ1Þ j wðn�kÞðsnþ1Þ
D E

¼ ð�1ÞkðiÞn
Z

dxnþ1dx0
nþ1 . . .

Z
dx1dx0

1
hðxnþ1Þ
ð2pÞ2nþ2 ðA13Þ

bV ðx0
nÞbEðxnÞ . . . bV ðx0

n�kþ1ÞbEðxn�kþ1ÞbV ðx0
nþ1ÞbEðxnþ1Þ

D
� bV ðx0

n�kÞbEðxn�kÞ . . . bV ðx0
1ÞbEðx1Þ

E
0

Z
dsn . . .

�
Z

ds1hðsn�1 � snÞ . . . hðsnþ1 � sn�kþ1Þhðsnþ1 � sn�kÞ . . .

� hðs2 � s1ÞeiðX1s1þ...þXnþ1snþ1Þ

where we have defined Xj ¼ xj þx0
j. The integrals over ds1 . . . dsn

can now be carried out. This amounts to Fourier transforms of the
theta function and results in:Z

dsn . . .
Z

ds1hðsn�1 � snÞ . . . hðsnþ1 � sn�kþ1Þhðsnþ1

� sn�kÞ . . . hðs2 � s1ÞeiðX1s1þ...þXnþ1snþ1Þ

¼ ð�iÞneiðX1þ...þXnþ1Þsnþ1
Yk�1

j¼0

1X j

j0¼0
Xn�j0 � ig

Yn�k

j¼1

1X j

j0¼1
Xj0 � ig

ðA14Þ

with g a positive infinitesimal. We now make the substitutions

xð0Þ
nþ1 ! xð0Þ

n�kþ1 and xð0Þ
n�kþj ! xð0Þ

n�kþjþ1 for j ¼ 1 ! k. This reorders

the xð0Þ to be in increasing order from right to left and results in

wðkÞðsnþ1Þ j bV ðsnþ1ÞÊyðsnþ1Þ j wðn�kÞðsnþ1Þ
D E

¼ ð�1Þk
Z

dxnþ1dx0
nþ1 . . .

Z
dx1dx0

1
hðxn�kþ1Þ
ð2pÞ2nþ2 ðA15Þ

bV ðx0
nþ1ÞbEðxnþ1Þ . . . . . . bV ðx0

1ÞbEðx1Þ
D E

0

� eiðX1þ...þXnþ1Þsnþ1
Yk�1

j¼0

1P j
j0¼0Xnþ1�j0 � ig

Yn�k

j¼1

1P j
j0¼1Xj0 � ig

We see then that this reordering has freed us from the need for a
k-index with regards to the correlation function. From a density-
matrix representation, one may see this re-ordering as a cyclic
permutation of the trace so as to re-order all bra operators to act
on the ket. The fact that the joint field-matter expectation values
of these various re-orderings differ only by a theta function that
picks out the bE operator associated with the emission is the central
fact that permits the re-formulation presented in this paper. We
may therefore immediately identify the h-function as
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hðnÞðsnþ1;xnþ1;x0
nþ1; . . . ;x1;x0

1Þ

¼ eiðX1þ...þXnþ1Þsnþ1
Xn
k¼0

ð�1Þkhðxn�kþ1Þ
ð2pÞ2nþ2

Yk�1

j¼0

1P j
j0¼0Xnþ1�j0 � ig

�
Yn�k

j¼1

1P j
j0¼1Xj0 � ig

ðA16Þ
SðnÞ ¼ I
X
�i

Z
dx0

nþ1dxnþ1 . . .dx0
1dx1 1 j bVþðx0

nþ1ÞbEþðxnþ1ÞbV�n ðx0
nÞbE�n ðxnÞ . . . bV�1 ðx0

1ÞbE�1 ðx1Þ
D ED E

0

"

� hðxnþ1Þ
ð2pÞ2nþ2 e

iðX1þ...þXnþ1Þsnþ1
Yn
j¼1

1P j
j0¼1Xj0 � ig

35 ðB2Þ
with which the signal may is given by

SðnÞðsnþ1Þ ¼ I

�Z
dxnþ1dx0

nþ1 . . .

Z
dx1dx0

1
bV ðx0

nþ1Þ . . . bV ðx0
1Þ

D E
� bEðxnþ1Þ . . . bEðx1Þ
D E

hðnÞðsnþ1;xnþ1;x0
nþ1; . . . ;x1;x0

1Þ
�

ðA17Þ

Since Eq. (A16) was obtained from the wavefunction perspective, it
may be viewed as originating from an expansion along loop dia-
grams. The k-th term in the summation giving h is then represented
by the loop diagram given in Fig. 1 For concreteness, we let

hðnÞðsnþ1;xnþ1;x0
nþ1; . . . ;x1;x0

1Þ

¼ eiðX1þ...þXnþ1Þsnþ1
Xn
k¼0

ð�1Þkhðxn�kþ1Þ
ð2pÞ2nþ2 hðnÞ

k ðXnþ1; . . .X1Þ ðA18Þ

which defines hðnÞ
k . The loop diagram given in Fig. 1 then directly

stands for hðnÞ
k . It is expanded by writing 1=ðX� igÞ for each propa-

gation period along the loop with the X accumulating as one goes
up the ket (left branch of the loop) and de-accumulating as one goes
down the bra (right branch of the loop). The integrated signal

SðnÞ �
Z

dsnþ1S
ðnÞðsnþ1Þ ðA19Þ

corresponding to the frequency-dispersed photon gain or loss, is
easily obtained from Eqs. (A17) and (A18). Since the only depen-
dence on snþ1 is through the phase factor in the h-function, this
integration results in a delta function that enforces conservation
of energy. Formally, we write

SðnÞ ¼ I

Z
dxnþ1dx0

nþ1 . . .

Z
dx1dx0

1
bV ðx0

nþ1Þ . . . bV ðx0
1Þ

D E�
� bEðxnþ1Þ . . . bEðx1Þ
D E

hðnÞðxnþ1;x0
nþ1; . . . ;x1;x0

1Þ
�

ðA20Þ

with

hðnÞðxnþ1;x0
nþ1; . . . ;x1;x0

1Þ

¼ dðX1 þ . . .þXnþ1Þ
Xn
k¼0

ð�1Þkhðxn�kþ1Þ
ð2pÞ2nþ1 hðnÞ

k ðXnþ1; . . .X1Þ ðA21Þ
Appendix B. Liouville space expression

We may also choose to expand the signal in Liouville space
utilizing the density matrix q �j wihw j (q �

P
kPk j wkihwk j for a

statistical mixture). In this case, Eq. (A7) becomes:
bV ðtÞÊyðtÞ
D E

¼ 1 j bVþðtÞÊy
þðtÞT e�i

R t

�1
H0
�ðsÞds j qð�1Þ

	 
	 

: ðB1Þ

The nth order signal is then
By expanding the � operators into L=R operators, we may bring this
expression for the signal to the same form as before

SðnÞðsnþ1Þ ¼ I

Z
dxnþ1dx0

nþ1 . . .

Z
dx1dx0

1
bV ðx0

nþ1Þ . . . bV ðx0
1Þ

D E�
� bEðxnþ1Þ . . . bEðx1Þ
D E

~hðnÞðxnþ1;x0
nþ1; . . . ;x1;x0

1Þ
�
: ðB3Þ

However, this requires the assumption that L operators commute
with R operators at all times, which, in the interaction picture, is
only true under Hamiltonian evolution. A general Liouvillian prop-
agator between the interactions would prohibit this recasting. With

the Liouville space h-function (which we denote ~h for clarity) given
by

~hðnÞðx0
nþ1;xnþ1; . . . ;x0

1;x1Þ

¼ dðX1 þ . . .þXnþ1Þ
Xn
k¼0

hðxnþ1�kÞ
ð2pÞ2nþ1

~hðnÞ
k ðXnþ1; . . .X1Þ ðB4Þ

and ~hðnÞ
k is now represented by a sum of ladder diagrams. Specifi-

cally, ~hðnÞ
k corresponds to the ladder diagrams whose sum is the loop

diagram representing hðnÞ
k . There are therefore n

k

� �
terms in ~hðnÞ

k (for a
total of 2n terms for the signal expressed with ladder diagrams ver-
sus the nþ 1 terms when using the loop diagrams) and it is
expanded by considering all possible interaction orders (subject to
the separate time-ordering of ket-bra constraint) and writing
1=ðX� igÞ for each propagation period with the X accumulating

as one goes up the ladder. This is illustrated for ~hð3Þ
1 in Fig. 2 and

results in:

~hð3Þ
1 ¼ 1

X1 � ig
1

X1 þX2 � ig
1

X1 þX2 þX4 � ig

þ 1
X1 � ig

1
X1 þX4 � ig

1
X1 þX4 þX2 � ig

þ 1
X4 � ig

1
X4 þX1 � ig

1
X4 þX1 þX2 � ig

ðB5Þ

as compared to

hð3Þ
1 ¼ 1

X1 � ig
1

X1 þX2 � ig
1

X4 � ig
ðB6Þ

obtained from expansion along the loop.
It is important to note that, since the derivation of the above

requires the assumption that ket and bra operators commute at
all times, it is not capable of accounting for pure dephasing which
depends on the joint ket-bra combination. However, the formalism
can be extended to account for finite lifetimes of states. First, one
allows the transition frequencies to be complex so that Eq. (7)
becomes
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a j bV ðxÞ j b
D E

¼ Vabdðxþ nabÞ; nab � xab þ ica ðB7Þ

where ca is the lifetime of state j ai. There is a subtlety in that, while
the transition frequencies accumulate, only a the last lifetime is

active in any given spectral propagator. Thus, the modified hðnÞ
k is

then given by

hðnÞ
k ðXnþ1; . . .X1Þ ¼

Yk�1

j¼0

1P j
j0¼0R Xnþ1�j0

� �
� i I Xn�j

� ��� ��
�
Yn�k

j¼1

1P j
j0¼1R Xj0

� �
� i I Xj

� ��� �� : ðB8Þ

This form of hðnÞ
k therefore allows the incorporation of excited state

lifetimes as in an effective Hamiltonian and only pure dephasing
remains unaccounted for.
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