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Symmetry breaking caused by geometric fluctuations can enable processes that are otherwise forbid-
den. An example is a perylene bisimide dyad whose dipole moments are perpendicular to each other.
Förster-type energy transfer is thus forbidden at the equilibrium geometry since the dipolar coupling
vanishes. Yet, fluctuations of the geometric arrangement have been shown to induce finite energy
transfer that depends on the dipole variance, rather than the mean. We demonstrate an analogous
effect associated with chirality symmetry breaking. In its equilibrium geometry, this dimer is non-
chiral. The linear chiral response which depends on the average geometry thus vanishes. However, we
show that certain 2D chiral optical signals are finite due to geometric fluctuations. Furthermore, the
correlation time of these fluctuations can be experimentally revealed by the waiting time dependence
of the 2D signal. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903858]

I. INTRODUCTION

Almost all biological molecules such as nuclear bases,
sugars, and peptides are chiral. These chiral structures oc-
cur in enantiomer pairs connected by a reflection symme-
try. While chiral enantiomers show large differences in their
biological activity and their chemical reactivity, most physi-
cal properties are identical. Thus, only few physical methods
are usable to study chirality.1, 2 Most commonly, the circu-
lar dichroism (CD),3 the difference between the absorption
of left- and right-handed circularly polarized light, is used.
Equivalent information to that from CD can be obtained from
the Iyz − Izy tensor component of the free induction decay
signal for linearly polarized light propagating along the x-
direction.4 Often, chiral molecules have more than a single
conformation which are thermally accessible at finite temper-
atures. Each conformation has its own chiral response, and,
thus, only a thermal average over these conformations can be
measured in the experiment.5 Recently, nonlinear optical sig-
nals have been proposed as a measure for chirality. They, in
addition, allow us to determine the relevant time scale of the
chirality switching between conformations and enantiomers.6

By these nonlinear optical signals, molecules can also be stud-
ied which are achiral in their equilibrium configuration, but
show a finite chirality when thermal fluctuations of their con-
figuration break spatial symmetry.6 They can also reveal the
correlation time of such thermal fluctuations directly in ex-
periments. The nonlinear optical signals also provide useful
information when they are obtained from molecules in the
bulk after averaging over all molecular orientations. They in
particular do not suffer from the artifacts of the fluorescence
detected linear CD which even may occur in the linear dichro-
ism in single immobilized molecules.7

Here, we focus on geometry fluctuations in a pery-
lene bisimide donor acceptor (PBDA) pair. These have been
shown to induce rather strong Förster resonant energy transfer

(FRET) that is forbidden in the average geometry.8 We extend
the same idea to chirality and show that a molecule which is
achiral in its equilibrium configuration may show signatures
of chirality induced by geometry fluctuations in its nonlinear
optical 2D spectrum.

FRET9 is a well established and widely used measuring
tool to determine the molecular proximity of light-absorbing
and fluorescent structures.10, 11 These applications rely on
the basic property of FRET that the energy transfer time
is proportional to the dipolar coupling strength between the
transition dipole moments �μj of the energy donor/acceptor
(j = 1/2) spaced at distance R with connecting unit vec-
tor �n, i.e., τFRET ∝ ([�μ1 �μ2 − 3(�μ1�n)(�μ2�n)]/R3)−2. Accord-
ingly, FRET vanishes for orthogonally arranged dipoles when
�μ1 �μ2 = 0 and �μi �n = 0. In this work, we consider a pery-
lene bisimide donor acceptor pair, which is a heterodimer
and has such a property. It has also been analyzed in re-
cent experiments12, 13 and its chemical structure is sketched in
Fig. 1. Surprisingly, despite the orthogonal arrangement, a fast
energy transfer was measured with a transfer time of 9.4 ps
for PBDA in chloroform.13 It could be explained on the basis
of angular thermal fluctuations in the geometric structure.8

These angle fluctuations induce fluctuations of the dipolar
energies and contribute to the FRET.14, 15 Treating the angle
fluctuations as environmental fluctuations results in strong ef-
fective excitonic dipolar donor-acceptor couplings and thus
in a considerable noise-induced energy transfer. The angular
fluctuation strength can be estimated from the energy fluctua-
tions which are observable by the optical Stokes’ shifts. Then,
the energy transfer time and its temperature dependence even
quantitatively could be accounted for.8 Moreover, the distance
dependence of τFRET is modified to ∝ R3 as compared to ∝R6

from standard Förster theory.8

The quantitative success of these results crucially de-
pends on the relation between energy and angular fluctu-
ations. The angular fluctuations are not directly accessible
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experimentally so far which finally prevents an experimen-
tal verification. In equilibrium, the PBDA pair is an achi-
ral molecular structure. However, angular fluctuations clearly
break this symmetry and also result in a finite chirality. This
can be quantified by the nonlinear spectroscopic signals, as it
was proposed by Sanda and Mukamel.6 We apply this concept
of chirality fluctuations to the particular case of the PBDA
pair and determine the chiral signals by treating the slow an-
gular fluctuations as an Ornstein-Uhlenbeck process. We cal-
culate for a finite fixed angle the Iyz − Izy tensor component
of free induction decay for linearly polarized light propagat-
ing along the x-direction. This yields the information which
is equivalent to the circular dichroism. We also study how the
response changes when tuning the PBDA pair towards a ho-
modimer. Such an arrangement in particular facilitates the in-
vestigation of the noise-induced energy transfer.8 Then, we
study the angle-averaged 2D chiral spectrum and its depen-
dence on the waiting time. In particular, this allows us to de-
termine the angle fluctuation correlation time and strength.
We show quantitatively that the chirality fluctuations can be
used to test the orthogonality of the dipoles in the PBDA pair
on an entirely independent footing.

II. MODEL

A. Geometric setup

The focus of our study is an orthogonally arranged PBDA
pair which is sketched in Fig. 1. To model excitonic energy
transfer, the arrangement of the electric dipoles is relevant.
Fig. 2 displays the perpendicular dipole moments μ1 and μ2
and the connecting vector R, which is parallel to μ2 and
perpendicular to μ1. Thus, n ⊥ μ1 ⊥ μ2 and n ‖ μ2 and the
dipole-dipole coupling strength

J = μ1μ2 − 3(μ1n)(μ2n)

|R|3 (1)

vanishes accordingly. Here, n is the unit vector in the direction
of R.

Since the donor and the acceptor are rigid, any deviation
from the orthogonal arrangement of the dipoles should arise
from rotations at the location of the chemical bonds between
the spacer and the donor and between the spacer and the ac-
ceptor. In order to simplify the following calculations, we as-
sume that the connecting vector fixes the coordinate system

FIG. 1. Sketch of the chemical structure of an orthogonally arranged pery-
lene bisimide donor acceptor pair (PBDA) together with the transition dipole
moments.12
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FIG. 2. Left: Sketch of the arrangement of the two transition dipole moments
μ1 and μ2 and the connecting vector R of the PBDA pair. Right: Illustration
of the angle θ and φ when μ2 does not point along the x-axis.

and the two dipole moments can only rotate around their cen-
ters. Rotations of μ1 might then result in a finite dipole-dipole
coupling, but the PBDA is still achiral. In other words, since
n ‖ μ2 any additional vector will span a plane with the for-
mer two vectors and the whole system is planar. Thus, a chiral
signal can only result when μ2 rotates out of the plane of μ1
and n, thereby forming a helical structure. For simplicity, we
disregard rotations of μ1 completely since for not too strong
angular fluctuations, they will leave our results qualitatively
unchanged.

To describe the rotation of μ2, we introduce two angles.
First, θ measures the angle between μ2 and the x-axis. Sec-
ond, φ denotes the angle between the projection of μ2 in the
y − z plane and the z-axis (see Fig. 2). We note that rotations
with φ = 0 cause a finite dipolar coupling although the com-
plex remains planar and thus achiral. For φ = π /2, however,
the complex is chiral but the dipolar coupling vanishes. To
observe an optical chiral signal from and a finite energy trans-
fer in the complex, both a finite dipolar coupling and a chiral
geometry are necessary. Thus, we have to consider variations
in both angles, θ and φ, in contrast to the somewhat simpler
situation of the complex studied in Ref. 6.

Using the coordinate system defined in Fig. 2 (right
panel), the dipole moments are parametrized according to

μ1 = (μ1)êz, (2)
μ2 = (μ2 cos θ )êx + (μ2 sin θ sin φ)êy + (μ2 sin θ cos φ)êz.

The dipolar coupling is

J ≡ J (φ) = μ1μ2

R3
sin θ cos φ (3)

with R = |R| and R = (R)êx and J0 = μ1μ2/R3 � 85 cm−1

for the PBDA pair.

B. Slow dynamics of angular movement

When the dipole moments fluctuate around their orthog-
onal arrangement, the angles evolve stochastically in time and
induce a diffusive dynamics in a potential. In the simplest
model, the potential is harmonic, and, in more detail, we ex-
pect a harmonic potential for the angle θ with equilibrium
angle θ0 = 0 and free rotation about φ. For a stochastic time
evolution of θ , we assume slow movements described by an
Ornstein-Uhlenbeck process. This results in an equilibrium
density for θ of the form

ρ
eq
θ (θ ) = 1

σ
√

2π
exp

[
− θ2

2σ 2

]
(4)
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and a probability density to observe θ at time t when the orig-
inal angle at initial time 0 was θ ′ as

Pθ (θ, θ ′, t) = 1

2σ 2π
√

1 − e−2Dt

× exp

[
−θ2 + θ ′2 − 2θθ ′e−Dt

2σ 2(1 − e−2Dt )

]
. (5)

Herein, the diffusion constant D is the inverse autocorrela-
tion time of the fluctuations. Comparing this description with
a system-bath approach (as employed in Ref. 8), D−1 = ωc
� 2500 cm−1. Here, ωc is the high-energy cutoff of the en-
vironmental spectral density. The dependence of the chiral
2D spectra on the waiting time determined below will al-
low us to extract D from experimental data. The width of
the angular distribution is σ 2 = 〈θ2〉. In Ref. 8, the angu-
lar reorganization energy was estimated as λθ � 1 cm−1. At
high temperatures, we have that λθ = 1

2 〈J 2
0 θ2〉/(kBT ) with

J0 = μ1μ2/R3 � 85 cm−1. Thus, we may estimate at room
temperature for the PBDA pair under consideration the width
of σ � 0.24.

For the angle φ, we assume a homogeneous equilib-
rium probability density ρ

eq
φ (φ) = 1/(2π ). It is reasonable to

expect for the dynamics of φ a similar form as for the θ -
dynamics, but the corresponding width is σφ → ∞, since free
rotation is possible. Since we are interested on the time scales
of the diffusive angular dynamics and shorter, we also model
the dynamics for computational simplicity by the form

Pφ(φ, φ′, t) = 1

2σ 2
φπ

√
1 − e−2Dt

× exp

[
−φ2 + φ′2 − 2φφ′e−Dt

2σ 2
φ (1 − e−2Dt )

]
(6)

with σφ = 2π .

C. Hamiltonian

The PBDA pair is a heterodimer. Describing each
monomer as a quantum two-level system, the dimer is de-
scribed by a Frenkel exciton Hamiltonian

H = 1

2
ε1σ

(1)
z + 1

2
ε2σ

(2)
z + Jσ

(1)
x σ

(2)
x , (7)

with the standard Pauli matrices σ
(j=1,2)
x,z . It is readily diago-

nalized by the transformation

T̂ = exp

(
i

2
ασ

(1)
y σ

(2)
x + i

2
βσ

(1)
x σ

(2)
y

)
(8)

with the angles α and β following from

tan(α + β) = −J

ε
and tan(α − β) = − J

δε

with ε = 1
2 (ε1 + ε2) and δε = 1

2 (ε1 − ε2). For the PBDA het-
erodimer under consideration, δε � 2500 cm−1. This leads to
two independent effective two-level systems described by the
Pauli matrices τ

(j=+,−)
z with the Hamiltonian

Hd = T̂ H T̂ † = 1

2
E+τ

(+)
z + 1

2
E−τ

(−)
z (9)

with E± = √
J 2 + ε2 ± √

J 2 + δε2.

D. Light-matter interaction

The total dipole moment μ̂ = μ1σ
(1)
x + μ2σ

(2)
x of the

dimer is transformed in the same way leading to

μ̂ = μ1

[
γ1τ

(+)
x − γ3τ

(+)
z τ

(−)
x

] + μ2

[
γ4τ

(−)
x − γ2τ

(+)
x τ

(−)
z

]
with γ 1 = cos α, γ 2 = sin β, γ 3 = sin α, and γ 4 = cos β.

The two effective two-level systems can be spectroscop-
ically addressed independently, and thus we focus on the re-
sponse of the τ± systems. The corresponding dipole compo-
nents are

μ̂+ = [
μ1γ1 − μ2γ2τ

(−)
z

]
τ

(+)
x ,

μ̂− = [ − μ1γ3τ
(+)
z + μ2γ4

]
τ

(−)
x .

Since ε � δε � J � kBT, we have that α � −β and thus
tan (2α) = −J/δε. At the same time, γ 1 = γ 4 and γ 3 = −γ 2.
Typically, optical spectroscopic experiments start with the
system in the ground state. Hence, we may simplify

μ̂+ � [γ1μ1 + γ2μ2]τ (+)
x

= [(γ2μ2 cos θ )êx + (γ2μ2 sin θ sin φ)êy

+ (γ1μ1 + γ2μ2 sin θ cos φ)êz], (10)

and similarly,

μ̂− � [−(γ1μ2 cos θ )êx − (γ1μ2 sin θ sin φ)êy

+ (γ2μ1 − γ1μ2 sin θ cos φ)êz]. (11)

In the following, we use the notation γ1 ≡ γ1(φ) = J (φ)/
N (φ) and γ2 ≡ γ2(φ) = (

√
δε2 + J 2(φ) − δε)/N (φ) with

N 2 = J 2 + (δε − √
δε2 + J 2)2.

Standard multipole expansion of the interaction with the
laser electric field generates effective magnetic dipoles and
electric quadrupoles.6 Those typically dominate over the con-
tributions from real magnetic dipoles and electric quadrupoles
of the two monomers.16 In the following, we neglect the latter.
Then, we combine the effective magnetic dipole moment M±
and the effective electric quadrupole tensor Q± to obtain the
tensor

T±,αβ = −iRαμ∓,β/2 = iQ±,αβ − εαβγ M±,γ /k, (12)

with Rα = x, y, z being the components of the distance vector
R. k is the absolute value of the wave vector of the incident
laser field and where Q±, αβ is symmetric and εαβγ M±, γ anti-
symmetric. We find

T− = − iR

2

⎛
⎜⎝

γ2μ2 cos θ 0 0

γ2μ2 sin θ sin φ 0 0

γ1μ1 + γ2μ2 sin θ cos φ 0 0

⎞
⎟⎠, (13)

T+ = − iR

2

⎛
⎜⎝

−γ1μ2 cos θ 0 0

−γ1μ2 sin θ sin φ 0 0

γ2μ1 − γ1μ2 sin θ cos φ 0 0

⎞
⎟⎠, (14)
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and

Q− = −R

4
·

⎛
⎜⎝

2γ2μ2 cos θ γ2μ2 sin θ sin φ γ1μ1 + γ2μ2 sin θ cos φ

γ2μ2 sin θ sin φ 0 0

γ1μ1 + γ2μ2 sin θ cos φ 0 0

⎞
⎟⎠,

Q+ = −R

4
·

⎛
⎜⎝

−2γ1μ2 cos θ −γ1μ2 sin θ sin φ γ2μ1 − γ1μ2 sin θ cos φ

−γ1μ2 sin θ sin φ 0 0

γ2μ1 − γ1μ2 sin θ cos φ 0 0

⎞
⎟⎠.

Moreover, the electric dipole moments assume the form

M− =− ikR

4
(0, γ1μ1+γ2μ2 sin θ cos φ,−γ2μ2 sin θ sin φ)T ,

M+ =− ikR

4
(0, γ2μ1−γ1μ2 sin θ cos φ, γ1μ2 sin θ sin φ)T .

The interaction Hamiltonian of a laser pulse with
field F(t)exp (ik R/2) with the dimer in the rotating wave
approximation17 and to first order in k = |k| only reads

Hint = −
∑

α=x,y,z

∑
j=±

Fατ
(j )
↑

{
μj,α + i

∑
β=x,y,z

kβQj,αβ

−
∑

β,γ=x,y,z

εαβγ kβMj,γ

}
+ h.c. (15)

with τ
(j )
↑ = 1

2 (τ (j )
x + iτ

(j )
y ). Moreover, Fα are the field com-

ponents of F.

III. CHIRAL LINEAR RESPONSE

We assume that the two frequencies E± can be probed
separately and focus in the following on E+ which results
in a simplified effective field-matter interaction Hamiltonian
Hint = −Fα(t)Jατ↑ + h.c. with Jα = μα + kβTαβ + O(k2).
The tensor elements Tαβ follow from Eq. (12) after omit-
ting the index ( + ). Moreover, repeated Greek symbols are
summed over.

Linear optical response is given by the correlation func-
tion Iαβ(t) = 〈Jα(t)Jβ(0)〉. Experimentally, the response of
single molecules is rarely accessible. Instead ensembles are
investigated with each molecule with arbitrary orientation in
space. Thus, orientational averaging (denoted by 〈·〉� in the
following) over the solid angle � is performed following stan-
dard rules.18 This finally results in

Iαβ(t) = 1

3
δαβ〈μ∗

γ (t)μγ (0)〉�

+1

3
εαβγ kγ [〈M∗

δ (t)μδ(0)〉� − 〈μ∗
δ (t)Mδ(0)〉�]. (16)

Only the second part is a chiral signal. With light propagat-
ing along the x-direction, i.e., kα = kδα, x, we can observe the

chiral component by measuring

I±
yz(t) ≈ 2i

3

∫
dθρ

eq

θ (θ )
∫

dφ

2π

· Im{M∗
δ (θ, φ)μδ(θ, φ)}e−�te−iE±(θ,φ)t . (17)

Here, we have assumed that the angles vary only slowly on
internal system time scales such that we may set φ(t) ≈ φ(0)
and θ (t) ≈ θ (0). Herein, � is the dephasing rate. We assume
throughout the paper a dephasing time of ∼100 fs correspond-
ing to � = 50 cm−1. Fourier transforming the integrand re-
sults in

I±
yz(ω, θ, φ) = ±kRμ1μ2

6(2π )
· sin θ sin φ · ρ

eq
θ (θ )

× ω − E±(θ, φ) − i�

[ω − E±(θ, φ)]2 + �2
. (18)

This function is antisymmetric in φ and θ . Thus, on average
the chiral linear response vanishes. Note that each angle aver-
age separately results already in a vanishing chiral signal.

Fig. 3 shows the real (upper row) and the imaginary
(lower row) part of the chiral linear signal color coded ver-
sus frequency ω and angle φ with fixed θ = π /4. We use
the parameters as extracted in Ref. 8, i.e., J = 85 cm−1,
� = 50 cm−1, and the standard deviation σ = 0.24 for the
θ -angle fluctuations. We show the results for three differ-
ent values of δε, i.e., δε = 2500 cm−1 (left column), which
corresponds to the PBDA pair experimentally studied,8 then
δε = 85 cm−1 (middle column) and 25 cm−1 (right column).
For φ = 0, the complex is achiral and no signal is observed.
For finite φ, we observe a double peak structure with opposite
sign for the real part and a single peak in the imaginary part
for varying frequency. For a fixed ω, we also observe a dou-
ble peak structure when φ is varied for δε = 2500 cm−1 (left
column). With decreasing δε, however, the peak form (of the
imaginary part and of the peak at lower frequency in the real
part) changes towards a heart shape exhibiting (for some ω)
two positive peaks followed by two negative ones. We note
that the case of small δε is closer to a homodimer. Similar re-
sults are expected, when the structure would fluctuate around
a chiral equilibrium with φ �= 0 and θ �= 0. Those could be
used to determine the geometric structure of such complexes.
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FIG. 3. Real (upper row) and the imaginary (lower row) part of the chiral linear spectrum versus frequency ω and angle φ with fixed θ = π /4 for J = 85 cm−1,
� = 50 cm−1, σ = 0.24 and δε = 2500 cm−1 (left column), δε = 85 cm−1 (middle column), and 25 cm−1 (right column).

IV. 2D CHIRAL SPECTRUM

Next, we focus on nonlinear chiral signals, in particular
on 2D chiral spectra. We determine the 4-point correlation
function6

Rc = Rxx
[yz][yz] + 2Rzx

[xy][yz], (19)

which yields a purely chiral 2D signal. Therein, Rzx repre-
sents the response in a setup where the first two pulses prop-
agate along the x-direction and the third pulse and the detec-
tion is along the z-direction. Correspondingly, Rxx represents
a collinear arrangement with all pulses and detection along
the x-direction. The subscripts are short-hand notations for

Rzx
[xy][yz] = Rzx

xyyz − Rzx
yxyz − Rzx

xyzy + Rzx
yxzy,

Rxx
[yz][yz] = Rxx

yzyz − Rxx
zyyz − Rxx

yzzy + Rxx
zyzy,

and

Rαβγ δ = 〈J ∗
α (τ3)Jβ(τ2)Jγ (τ1)J ∗

δ (0)〉�, (20)

with Jα = μα + kβTαβ + O(k2) as defined before. Thus, the
subscripts in Rαβγ δ denote the polarization of the pulses, i.e.,
α for the first pulse, β and γ for the second and third one,
and δ for the detection. In the following, we focus on the τ+-
subsystem. Thereby, we neglect coherences between the τ+

and τ− subsystems on the basis of assuming the laser pulses
to be spectrally narrower than the energy difference E+ − E−.
For this situation, cross peaks were shown to yield no clear
chiral signatures.6 Hence, we may concentrate on the diagonal
peaks.

Optical signals associated to a chirality exchange result
from the two-time correlation of the pseudo-scalar μ · M.
These are weak signals and they scale as ∝(kR)2.

We next determine their contribution to the 4-point cor-
relation function Rc. All contributions which are linear in
kR vanish after the orientational averaging (see Appendix D
in Ref. 6). Likewise, the zeroth order contributions coming
from Rzx

[xy][yz] also vanish for the same reason. Yet, we may
consider

Rxx
[yz][yz] ∝ [〈J ∗

α (τ3)Jβ(τ2)Jα(τ1)J ∗
β (0)〉�

−〈J ∗
α (τ3)Jβ(τ2)Jβ(τ1)J ∗

α (0)〉�].

In case of very fast angular fluctuations, we could average
over φ and θ separately at all times τ i resulting in a vanish-
ing Rxx

[yz][yz]. Typically, however, angular motion is slow com-
pared to the internal system time scales. Thus, a significant
signal strength is only observed at experimental times t1 = τ 1
and t3 = τ 3 − τ 2, over which the 2D Fourier transform is later
performed, for which Dt1, Dt3 � 1 holds. Thus, the angles do
not change during these time intervals. However, the waiting
time t2 = τ 2 − τ 1 is experimentally varied over much longer
times and accordingly angular motion during this time inter-
val has to be taken into account. This is done by employing
the above introduced probability densities to observe θ and φ

at time t2 when originally at time 0 the angles were θ ′ and φ′.
Thus, we calculate in detail

〈J ∗
α (τ3)Jβ(τ2)Jγ (τ1)J ∗

δ (0)〉�

=
∫

dθ

∫
dθ ′

∫
dφ

∫
dφ′

×Pφ(φ, φ′, t2)Pθ (θ, θ ′, t2)

×〈J ∗
α (τ3, θ, φ)Jβ (τ2, θ, φ)Jγ (τ1, θ

′, φ′)J ∗
δ (0, θ ′, φ′)〉�.

(21)

Thus, for slow angular fluctuations, Rxx
[yz][yz] yields no zeroth

order contribution.19 Thus, all zeroth and first order contri-
butions, i.e., ∝(kR)0 and ∝(kR)1, vanish and Rc(t3, t2, t1) ∝
(kR)2. Possible contributions to that order from contributions
due to the light-matter interaction also vanish due to the same
arguments6 (note that we have neglected these terms above
already).

Thus, Rc is dominated by contributions from the two-
time correlations of the pseudo-scalar μ · M of order ∝(kR)2.
Following the derivation of Sanda and Mukamel,6 we find that

Rc(t3, t2, t1) = −2k2

3
[〈Xαβγγβα〉� + 2〈Xαβγβαγ 〉�], (22)

with the definition

Xαβγ δξη = [−Im{Tαβ(τ2)μ∗
γ (τ2)} + Im{Tγβ(τ2)μ∗

α(τ2)}]
·[−Im{Tδξ (0)μ∗

η(0)} + Im{Tηξ (0)μ∗
δ (0)}].
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FIG. 4. Real (left) and imaginary part of R
c
(ω3, t2, ω1) for very short wait-

ing times Dt2 = 10−5 for the PBDA pair with J = 85 cm−1, δε = 2500 cm−1,
and σ

φ
= 2π and σ

θ
= 0.24.

For our PBDA dimer, we have that

〈Xαβγγβα〉 = −2

(
R

2

)2

μ2
1μ

2
2

· 〈cos θ2 cos θ0 + sin θ2 sin φ2 sin θ0 sin φ0〉�,

〈Xαβγβαγ 〉 =
(

R

2

)2

μ2
1μ

2
2〈cos θ2 cos θ0〉�,

with θ i ≡ θ (τ i) and φi likewise.
Next, we observe that the energy E+ ≡ E+(θ , φ) is a func-

tion of the angles θ and φ and that the primed energy means
that the energy depends on the primed angles. With t1 = τ 1,
t2 = τ 2 − τ 1, and t3 = τ 3 − τ 2, we obtain after a Fourier
transformation with respect to the times t1 and t3 that

Rc(ω3, t2, ω1) = (kR)2

3
μ2

1μ
2
2

∫∫∫∫
dθdθ ′dφdφ′

×Pφ(φ, φ′, t2)Pθ (θ, θ ′, t2)r(θ, φ, θ ′, φ′)

(23)

with

r(θ, φ, θ ′, φ′) = sin θ sin φ sin θ ′ sin φ′

× � + i(ω3 − E+)

�2 + (ω3 − E+)2

� + i(ω1 + E′+)

�2 + (ω1 + E′+)2
.

(24)

Fig. 4 shows the 2D chiral signal Rc(ω3, t2, ω1) for a very
short waiting time Dt2 = 10−5. We employ the parameters of
the PBDA pair, i.e., J = 85 cm−1, δε = 2500 cm−1, and σφ

= 2π and σ θ = 0.24. The left (right) panel depicts the real
(imaginary) part. Similar peak shapes are observed for smaller
δε and for longer waiting times. The peak shape reflects the
assumption of a Markovian dephasing dynamics which is in-
herent to our assumption of the dephasing taken in the form
of an exponential decay with a fixed dephasing time �. The
integrand r(θ , φ, θ ′, φ′) determines which angular conforma-
tion dominantly contributes to the signal. As expected, these
are the chiral conformations μ2 ⊥ μ1 ‖ n ⊥ μ2.

We expect that the overall strength of the nonlinear chi-
ral signal rapidly decreases with increasing waiting times on
a time scale determined by the autocorrelation time of the an-
gular fluctuations. This is depicted in Fig. 5 which shows the
maximal amplitude R(t2) = maxω1,ω3

Rc(ω3, t2, ω1) scaled to

R0 = R(t2 = 10−5D−1). Nonlinear chiral signals are in gen-
eral weak since typically (kR)2 ∼ 10−6. The fact that only

10
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Dt
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0

FIG. 5. Maximal amplitude of the real part R(t2) = max
ω1,ω3

R
c
(ω3, t2, ω1)

scaled to R0 = R(t2 = 10−5D−1) versus waiting times Dt2 for J = 85 cm−1,
δε = 2500 cm−1, and σ

φ
= 2π and σ

θ
= 0.24.

non-vanishing fluctuations lead in the present case to a finite
contribution to the signal only reduces the signal strength by
another factor R0 � 0.08. In turn, by determining the peak
maximum of the chiral 2D signal Rc(ω3, t2, ω1) for various
waiting times, one can experimentally measure the autocorre-
lation time of the angular fluctuations.

V. CONCLUSIONS

We have determined the linear and 2D optical chiral spec-
tra for a dimer system whose dipole moments are orthogonal
with a connecting vector orthogonal to one of the dipoles. In
its equilibrium configuration, the dimer is achiral and no chi-
ral signal is expected. At the same time, the dipolar coupling
vanishes and no Förster-type energy transfer arises. Geomet-
rical fluctuations, however, result in finite dipolar couplings,
causing rather fast energy transfer which has been experimen-
tally observed. We show that to assign the fast energy trans-
fer unambiguously to angular fluctuations around an orthog-
onal equilibrium configuration, chiral signals can be used. As
long as the dimer configuration fluctuates around an orthogo-
nal equilibrium configuration, the linear chiral spectrum van-
ishes, but is non-zero for (fluctuating) non-orthogonal config-
urations. The nonlinear 2D spectrum vanishes in the equilib-
rium configuration but is non-zero when angular fluctuations
are present as long as the waiting time is short compared to the
autocorrelation time of the fluctuations. This, in turn, can be
used to determine the autocorrelation times experimentally.
Hence, our approach may also be used to reveal correlation
times of fluctuations which are otherwise hardly accessible
experimentally.
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