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Abstract
Orientational averaging of response tensors is an essential operation in calculating optical signals
in randomly oriented liquid or gas phase molecular ensembles. When expanded in multipoles,
rotational averaging can be performed simply through contraction with isotropic tensors.
Alternatively, the multipolar expansion can be avoided and all multipoles may be naturally and
implicitly incorporated via nonlocal response tensors which are fields and may not be
rotationally averaged in a simple manner. The nonlocal response is useful when the light beam
variation across the system is non negligible. Examples are nano-sculpted or short wavelength
x-ray field. We derive exact expressions which recast optical signals as a convolution of a
nonlocal response function of matter with a nonlocal intrinsic property of the electromagnetic
field. The approach involves a gauge invariant calculation based on the minimal coupling
Hamiltonian.

Keywords: chirality, nonlocal response, orientational averaging, gas phase spectroscopy,
chemical physics

(Some figures may appear in colour only in the online journal)

Experimental and engineering advances in the development
of new electromagnetic sources [1, 2] and nanofabrication [3]
make it possible to explore novel light–matter interaction
regimes. Part of the fascinating properties of nanosystems is
that their size is comparable or smaller than the wavelength in
the visible spectrum. To describe their interaction with light, it
is necessary to take into account the nonlocal nature of the
response [4]. This can be done by including higher multi-
poles. The drawback is that high order multipoles are not
simple to understand physically. By alternatively describing
the interaction in terms of current and charge densities allows
to take in account the nonlocality while using physically
intuitive quantities. Previously, we applied the nonlocal
responses of a single particle to study chiral [5] or x-ray [6]

signals. However, to describe the signals from molecules in
solution, one has to consider rotationally and translationally
averaged nonlocal response functions. The averaging protocol
of local response tensors is well developed [7–9] but the
nonlocal case is more involved mathematically [10, 11] since
it deals with tensor field and has not been considered so far.
Such averaging of nonlocal response tensor becomes
increasingly important with the development of nano-sculpted
fields.

Here we formulate the optical response using the minimal
coupling Hamiltonian and derive exact general expressions for
the nonlocal response of a randomly oriented sample. By
working with the nonlocal response rather than multipoles we
avoid the tedious canonical transformation to the multipolar
Hamiltonian. Our results define precisely the joint field+matter
quantity to be optimized. We show how to translationally and
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orientationally average the nonlocal response tensors by using
a projection over invariant subsets instead of doing an
ensemble average. Besides nanostructures, the present form-
alism may be used for spectroscopy with short wavelength (e.g
x-ray) fields and to the study of chirality.

1. The nonlocal response functions

We start by reviewing the nonlocal response functions for
heterodyne resonant linear signals (useful for chiral sensing
and nanoptics) and for spontaneous x-ray diffraction signals.
The minimal coupling Hamiltonian for the radiation/matter
coupling is

H t t
e

mc
tr j r A r r r A rd ,

2
d , ,

1

int
2ò ò s= - +( ) ( ) · ( ) ( ) ( )

( )

where A is the vector potential of the electromagnetic field, e
and m are the electron charge and mass and c is the speed of
light. Charge and current are simple operators as opposed to
multipoles.

er r r 2s y y=( ) ( ) ( ) ( )†

e

mi
j r r r r r

2
. 3


y y y y=  - ( ) ( ( ) ( ) ( ( ) ) ( )) ( )† †

Here, ry ( )† and ry ( ) are the electron field Fermion creation
and annihilation operators at position r. j r( ) is a purely
material current density operator and is gauge non-invariant
[12]. Using this Hamiltonian, we can express optical signals
as correlation functions of charge and current densities of
matter [12]. The response functions are nonlocal in space and
time. Signals simulated in the multipolar approach, truncated
at a given multipolar order, are in that sense an approximation
of those calculated in the minimal coupling picture.

Generally, the nonlocal linear response tensor is given by
a multipoint correlation of the current densities for resonant
interactions. At the lowest order, i.e. for linear resonant
spectroscopy, it is a two-point correlation function of the
current density tr r, ,1 1z ( ) which can be expressed as

t t G t tr r j r j r, , , 41 1 0 1 1 0z = áY Y ñ( ) ( )∣ ( ) ( ) ( )∣ ( ) ( )

where t0Y ñ∣ ( ) is the initial state of the system before interac-
tion and G t1( ) is the non-perturbed molecular propagator. The
σ term gives a small off-resonant correction. The corresp-
onding linear signal is obtained through an integration with
the incoming field

S t t t t t tr r r r A r A rd d d d , , , , , 51
1 1 1 1 1 1ò z= -( ) ( ) ( ) ( )( )

where we have omitted the variable on which depends S 1( ).
There variables are usually the central frequency of the A
field, its FWHM and its polarization. In the nonlocal picture,
the signal will also depend on the spatial parameters of the
incoming beam that can also be varied and scanned.

2. Rotational and translation averaging of response
functions

In this section, we consider various averaging schemes.
Details are given in appendices A–C. In these appendices, the
components of the matter quantities (current or charge density
transition matrix elements) are expanded over a basis of
Cartesian Gaussian type orbitals (GTO). In many cases such
as in gas or liquids, a randomly oriented sample possesses
also translational invariance. Only rotational averaging is
required in the case of a molecule in a spherical trap for
example.

We shall omit the time dependence of the nonlocal
response tensor for brevity. Additionally, one can consider a
non uniform probability density that would physically cor-
respond to a non-homogeneous distribution of the molecule in
space. However, as shown in appendix A, this is equivalent to
considering nonlocal exciting fields and we will follow that
path instead. The translational averaging is given by

r r r r r r r, , d . 6T 1 13òz zá ñ = + +( ) ( ˜ ˜) ˜ ( )

Making the change of variables r r r1 -˜ ˜ and defining
R r r1= - , we get:

R R r r r, d . 7T 3òz zá ñ = +( ) ( ˜ ˜) ˜ ( )

The integral is carried out in appendix A for current densities
expanded over a Cartesian GTO basis. The components of the
response tensor are then expressed as a sum of Cartesian GTO.

We now turn to rotational averaging of the response tensor.
For a translationally invariant system, the linear response
depends only on the R variable. The rotational averaging of a
tensor field over a three dimensional space is given by:

R R R R d sin d d , 8T T,
1

òz z a b b gá ñ = á ñ
w

w wW
-( ) ˆ ( ˆ ) ( )

where á ñW stands for the rotational averaging, and Rwˆ is
the rotation operator expressed in terms of Euler angles

, ,w a b g= ( ). The rotation operator reduces to the usual
rotation matrix when applied on R and to Wigner  matrices
when applied on an irreducible tensor. However, this averaging
protocol is difficult to implement in practice and one should use
some symmetry arguments to simplify it.

A rotationally invariant response function can be gen-
erally obtained using representation theory in the following
way. The response function RTzá ñ ( ) is a second rank tensor
that corresponds to the coupling of two J=1 angular
momenta. The coupling of angular momenta [13] leads to
total angular momenta J 0, 1, 2= . The J=0 irreducible
component of the tensor is its rotationally invariant part. It can
be obtained by projecting the response on the J=0 tensor
spherical harmonics of the same rank. The rotationally aver-
aged response tensor can be expanded as a sum of tensor
spherical harmonics Yls

JM with zero total angular momentum J
(see appendix D):

R R Y , , 9T
s

ss ss,
0

2
00 00åz z q já ñ =W

=

( ) ( ) ( ) ( )

2
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where we have used l=s (because l s 0-∣ ∣ ). The coef-
ficients Rss

00z ( ) of this expansion are defined by:

R R Y , d , 10ss T ss
00

,
00òz z q j= á ñ W

W
W( ) ( ) · ( ) ( )

where Ω is the solid angle. Now, one can average the non-
rotationally invariant RTzá ñ ( ) tensor by projecting it over the
subset of its rotationally invariant components. Our final
expression for calculating the rotational average of the

RTzá ñ ( ) is then

R R Y Y, d , .

11

T
s

T ss ss,
00 00òåz z q j q já ñ = á ñ ¢ ¢ W¢W

W
⎜ ⎟
⎛
⎝

⎞
⎠( ) ( ) · ( ) ( )

( )

This definition makes the rotational averaging numeri-
cally tractable by replacing the averaging over ensemble by a
projection. It is calculated in appendix C for a response tensor
expanded over spherical GTO. We emphasize that the rota-
tionally and translationally averaged nonlocal response
function is expanded over only three isotropic components,
equation (9). Only the s=1 term contributes to chiral signal
and it is the overlap with that term and the corresponding field
component that needs to be maximized to increase the mag-
nitude of chiral signals. The conversion from the Cartesian
GTO to the spherical GTO is given in appendix B. Projecting
both the matter response function and the nonlocal exciting
fields, we can express the averaged linear signal as a sum over
the J=0 irreducible tensors:

S RR r F R rd d , , 12
s

ss
J

s
J1 0 0òå z= = =˜ ( ) · ( ˜) ( )( )

where R is the norm of R. The F tensor describes the various
irreducible components of the vector potential direct products
that have a total angular momentum J=0, i.e. interacts with
the rotationally invariant part of the response tensor. The
matter response can be factorized out of the integral over r̃
and the angular part of the integral over R, leading to

S R R Rd , 13
s

ss
J

s
1 0 òå z= = ( ) · ( ) ( )( )

where the distance-dependent bilinear functionals of the field
R( ) have the form

r nR F R rd d , 14s
S

s2
 ò ò=( ) ˜ ( ˜) ( )

with n is the unit vector in the direction of R and
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It is possible to write these functionals in component notation
nF F A A Rr rs ij s

ij
i j= å +(˜) (˜ ) where the Fs

ij are defined by

F
3

, 16ij
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d
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2
d
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Equations (13)–(15) point out to which field quantity
should be optimized in order to maximize the overlap with the
matter response and hence the signal. The R1 ( ) component
provides a unique measure of field chirality and expresses the
chiral linear response of a molecule which lacks an inversion
center in terms of R1 ( ) and the response function RJ

1
0z = ( ) as

a one-dimensional overlap integral over R. Note that in the
long-wave limit the nonlocal functional R1 ( ) becomes local.
A simple long-wave limit expansion substituted into
equation (15), reproduces the universal functional [14]

R A R A RS RR R
1

3 2
d d rot .

19

1

0

3
1 *ò òz= ´

¥
( ) ( ) · ( )

( )

( )

3. Rotational but not translational averaging of the
response functions

When only rotational averaging is needed. The rotation
average response function is defined by

r r R R Rr r, , , d sin d d .

20

1
1 1

1òz q z a b b gá ñ =
w

w w wW
- -( ) ˆ ( ˆ ˆ )

( )

This corresponds to a single molecule in a spherically
symmetric trap. In this case, one has to average the 6
dimensional tensor field r r, 1z ( ). Similarly to the rotationally
and translationally averaged linear response, it is possible to
achieve the averaging by projection over an appropriate
nonlocal isotropic basis. We use spherical harmonics but the
presence of two arguments r and r1 requires then to use the
more cumbersome bipolar spherical harmonics [13]. Instead,
we introduce a different approach to define the rotation
invariant tensor basis. After rotational averaging, the norms of
the r1 and r2 vectors and their relative angle θ is sufficient to
describe a specific configuration. This is equivalent to the
description of triatomic molecules in terms of bond lengths
and internal angle. In the same way, translational–rotational
averaging only involves a single variable R similarly to the
description of diatomic molecules. The signal Sstim can be
represented as a sum of nine functionals:

S r r r r F r rd d d , , , , , 21
las

las las
1

1 1 1òå q z q q= ( ) · ( ) ( )( )

where r r, ,las 1z q( ) and F r r, ,las 1 q( ) are the projection onto
the invariant basis of the matter correlation function and the
field tensor, respectively. The ‘·’ represents the scalar product
in the invariant basis and we introduce it in the following.
The nine invariants basis functionals G X r Y r,las 1( ( ) ( )) are

3
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given by
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where s=1, 2. We can interpret G X r Y r,las
kl

1( ( ) ( )) as rotation
invariant tensor functions of r r, 1( ) by representing the local
functionals G X r Y r,las 1( ( ) ( )) as

rG GX r Y r r X r Y r, , . 23las
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ij

i j1 1 1å=( ( ) ( )) ( ) ( ) ( ) ( )

Glas
ij form a basis set in the space of rotational invariant rank 2

tensor functions of r r, 1( ). Using the summation of repeated
indices convention, this basis is explicitly written as
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where ò is the Levi–Civita symbol. We can then expand both
the matter correlation function and the field tensor over this
basis

r r r rr r G, ; , , ; , , 25ij
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las
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1 1 1åz w z q w=( ) ( ) ( ) ( )

r r r rF r r GA A, ; , , ; , , 26ij
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Their scalar product is defined by
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They are readily evaluated

r r

r r

r r r r r r

r r

r r

m

m r r
m

m r r

m r

m r r

m r r

3,

sin ,
,

2
2

3
,

2
2

3
,

1

3
,

2 sin . 28

ss s s

s s s s

ss s s s s

ss s s

00,00

10,00
2

1
2 2

11,

20,00
2

1
2

1
2

20,0 1 1
2

20,
2 2 2

21,
2

1
2 2

q

q

=

=
=

= +

= -

= -

=

¢ ¢

¢ ¢ ¢

¢ ¢

·

( · )

( · )( · ) ( · )

( · )

( · ) ( )

The stimulated signal can then be recast as

S r r m r r F r rd d d , , , , , 29
lass
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ss

las las
1

1 1 1òå q z q q=
¢

¢
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where mla
ss¢ is the inverse matrix of the scalar products of

invariant tensor functions obtained from the condition

m r r m r r, , , , . 30
r

la
sr

la rs s
s

1 , 1å q q d=¢ ¢( ) ( ) ( )

Equation (29) is equivalent to equation (21) with the scalar
product explicitly given in terms of the mla ss, ¢. In the above
expressions the index a denotes even (a= 0) and odd (a= 1)
parity.

Out of the 9 contributions to the linear response in a
spherically symmetric trap, 4 terms are chiral (a= 1) and 5
non-chiral (a= 0). All a=1 components of lasz vanish for
non-chiral molecules. It is easy to see that if the fields A rhet ( )
and A r1( ) have a well-defined and opposite parity with respect
to inversion via the spherical symmetry center of the trap, we
have 0las = when a=0. Therefore, in such setting the
linear response of non-chiral molecules vanishes and appro-
priate spatial tuning of the incoming fields can provide a
background-free measurement of molecular chirality.

4. Other applications; chiral signals and x-ray
diffraction

An important effort has been made towards the optimization
of chiral signals using ultrafocused or spatially varying light
at the molecular scale. The nonlocal response may be used for
these applications. Chiral molecules that lack inversion
symmetry play important roles in biological activity. Chiral
signals such as circular dichroism (CD) or optical rotatory
dispersion [15] are intrinsically weak (typically order ka
smaller that non-chiral signals, where k and a are the light
wavevector and molecular size) compared to their non-chiral
counterparts, typically by a factor 10 102 3- -– in the visible
regime. Enhancing the chiral response has been a long-
standing goal of many applications such as to chemical sen-
sors. Cohen and co-workers [16] have discussed ways of
enhancing chiral signals by manipulating nano-optical fields
to have strong spatial variation. Such manipulations of the
field are now possible by nano-antennas [17]. Within the
magnetic dipole approximation [18], they have identified an
intrinsic property of the electromagnetic field, the field chir-
ality [19], that is responsible for chiral signals and then dis-
cussed how to maximize the field chirality using spatially
sculpted fields [20]. Adding the magnetic dipole in the
interaction expansion amounts to taking into account small
variations of the electromagnetic fields across the molecule.
When the field variation becomes more pronounced and the
structure is larger, additional multipoles must be included. A
discussion in term of nonlocal quantities (charge and current
densities) can shed a new light on the physical nature of the
chiral response.

The resonant response is dominated by the first (current)
coupling in equation 1. The stimulated (heterodyne), linear

4
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CD signal is then given by [5]

S t t t

t t t t t t

r r r r

A r A r A r A r

Im d d d d , ,

, , , , ,

31

TCD
1

1 1 1 1 ,

het 1 1 het 1 1

ò z= á ñ

´ - - -

W

+ + - -

( )

( ( ) ( ) ( ) ( ))
( )

( )

where tA r ,het 2( ) is the heterodyne (local oscillator) field and
t tA r ,1 1-( ) is the driving field. For standard local CD, the

fields are plane waves of wavelength much larger than the
molecule size, allowing for a quickly converging multipolar
expansion, and the difference of the linear absorption is taken
between left polarized (noted +) and right polarized (noted
−). In the nonlocal extension, the fields in the signals are
replaced by beams spatially varying across the molecule and
carrying an orbital angular momentum, such as Laguerre–
Gauss beams.

In other developments, new light sources such as x-ray
free electron laser [21] or high harmonic generation [22]
allow to carry out coherent nonlinear spectroscopies in the
x-ray regime. While much can be learned from the IR, visible
and UV experiments, a large number of multipoles may
become relevant in the interaction due to the short wavelength
of x-ray light. It is them customary to use instead the minimal
coupling Hamiltonian that circumvents the multipolar
expansion and uses the more intuitive charge and current
densities instead. Moreover, scattering processes involved in
diffraction signals are usually expressed using the A2s term in
the minimal coupling Hamiltonian [23]. Gas phase phase
diffraction are dominated by one-molecule contribution and
their matter correlation function is thus a two-point correla-
tion function of the charge density. The averaging techniques
presented here focus on the correlation function involving the
current densities but they can readily be applied to multipoint
correlation functions of the charge density (or mixed current/
charge ones).

We consider for example spontaneous off-resonant x-ray
diffraction signals. X-ray diffraction is usually carried out in
crystals to preserve long-range order. In that case, the signal is
dominated by two-molecule contributions [24]. In randomly
oriented samples, the signal is given by the one-molecule
contribution [25] which is given by

S t t

t t t t

r r

r r A r A r

d d d d e

, , , , , 32T

q r rdiff i

,

ò
s s

µ ¢ ¢

´ á ¢ ¢ ñ ¢ ¢

- ¢

W( ) ( ) ( ) · ( ) ( )

·( )

where ...á ñ stands for the expectation value of the operator
within the brackets. The matter correlation function

t tr r, ,s sá ¢ ¢ ñ( ) ( ) is also a two-point correlation function in
space as in the nonlocal signal in equation (31) and averaging
techniques presented in this paper can be applied to it as well.
The ssá ñ correlation function is a scalar field and is then
much simpler to average using scalar bipolar spherical
harmonics.

5. Conclusions

In this paper, we have addressed a broad class of signals that
can be recast in terms of nonlocal response functions. Non-
locality becomes increasingly important for strongly varying
electromagnetic fields over the relevant region of space. We
have provided techniques for averaging these nonlocal
response tensor in rotationally and translationally invariant
systems, e.g. liquids and gases. We then showed how the
signal is finally given by the spatial overlap integral between
the average matter response tensor and a nonlocal field tensor.
This permits the calculation of spectroscopic signal of e.g.
colloidal solutions of nanoparticles or x-ray diffraction in gas
or liquid phase.

We have treated ensemble averaging over multiple
molecules within the exciting pulse excitation volume.
Another possibility is to use a small excitation volume in
which molecules pass through randomly during the detection
time. Thus, one needs to consider a time average of molecular
orientations within the excitation volume and, using the
ergodic principle, this average can be done with the averaging
discussed here.

The averaging technique presented here can be used to
simulate such signals and it also provides a guideline for
amplifying intrinsically weak chiral signals. We have shown
previously that the intrinsic relevant chirality of the electro-
magnetic field is a nonlocal property which, when convoluted
with the nonlocal matter response, gives the chiral signal [5].
Thus, the optimization of the chiral response using nano-
shaped light must depend on the nature of the nonlocal
molecular response. In particular, we have shown that chiral
signals originate from a subset of the J=0 irreducible
components of the field tensor. To enhance these chiral sig-
nals, one must then focus on maximizing the spatial overlap
between this component of the fields and the corresponding
chiral irreducible part of the response tensor. Unlike the
magnetic dipole approximation where the chiral signals are
related to a universal local chirality of the field [16], more
generally, we need to optimize the field taking into account
the form of the nonlocal matter response. Then, the best field
chirality has to be defined with respect to the chiral part of the
molecular response tensor and is not simply a number as
described in the dipole (local) approximation. The field
chirality is then a nonlocal property of the electromagnetic
field. In the nonlocal translationally and rotationally averaged
case, it is a function of one argument and in the rotationally
only averaged case, it is four functions of three arguments.
Specific molecular traps will create different averaging geo-
metries and the nonlocal field chirality changes accordingly.
Another route to explore chirality using nonlocal response
tensors has made use of beams carrying an orbital angular
momentum such as Laguerre–Gauss beams [26]. These are
widely unexplored possibilities to enhance nonlocal signals
using spatially shaped pulses.

5
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Appendix A. Translational averaging of GTOs

The components of the response tensor can be written as a
direct product of current densities. Omitting the time variables
that do not need to be integrated over space [5, 12], we have
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The components of the current density are expanded over
Cartesian GTO:
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The integral over the product of current densities can be
calculated:
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The integration has been calculated analytically but it is not in
the form of a sum of Cartesian GTO depending on r. Defining

r r rn mD = - , this can be achieved by simplifying the fol-
lowing product of monomials:

x x x x x

x x x

x x x

x x x

x x x

2

2 . 42

p n
k i

p m
k j

m
k i

n m
k i n

k j

n m
k j

m
k i

m
k i n

k j

n
k j

n x m x

n x
n x

m x

m x

n x
n x

m x

m x

a
a

a
a

a
a

a
a

- + -

= - + -

´ + +

= - D - -

´ - D +

- -

-
-

-

-

-
-

-

-

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( ( ))

( ( ))

( )

( ) ( )

Using the binomial expansion, we get:
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Using the same steps for the products of monomials in Sy and
Sz, we finally obtain the result of the initial integral as a sum
of Cartesian GTO:
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Appendix B. Conversion of Cartesian GTO to
spherical GTO

We consider that the components of the response tensor have
been rotationally averaged and, using the results of the pre-
vious appendix, expressed as a sum of Cartesian GTO. The
rotational averaging is easier to accomplished using spherical
GTO and we review in this section how to do this change of
basis. The coefficients of the transformation have been cal-
culated by Schlegel and Frisch [27] and we simply state their
results here. Unnormalized spherical GTO are defined as:
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The spherical GTO are constructed from the Cartesian GTO
in the following way:
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Appendix C. Rotational averaging

In this appendix, we consider that the translationally averaged
response tensor is expanded over the basis of spherical GTO.
We also further assume that the response tensor has been
expanded into its trace, antisymmetric and symmetric traceless
parts. The irreducible components are noted using the letters Ss
(S 0, 1, 2= ) to make a clear distinction with the total angular
momentum JM that is obtained by coupling the spin and the
orbital part of the tensor. The components of the translationally
average response tensor are expanded over spherical GTO:
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The components of the translationally and rotationally average
tensor are calculated in the following way:
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This last expression is our final result for the radial part of
the averaged response tensor.

Appendix D. Irreducible tensors and tensor
spherical harmonics

In this appendix, we provide basic definition of the irreducible
formalism and tensor spherical harmonics [13]. Tensor
spherical harmonics [28] are obtained through an irreducible
tensor product of spherical harmonics Ylm and the tensorial
irreducible basis ess formed by taking irreducible products of
the Cartesian vectors
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Tensor spherical harmonics for s=1 (vector spherical har-
monics) and s=2 (rank 2 spherical harmonics) are routinely

used in electromagnetism [29] and gravitation theory [30],
respectively. The three irreducible basis vectors are given by
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The five irreducible basis second rank tensors are given by
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