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ABSTRACT: We compute electroluminescent signal in a current
carrying single molecule junction using a superoperator formalism.
Liouville space loop diagrams are used to identify all density matrix
pathways that emit photons via the electroluminescence process. A
frequency resolved spectrum is expressed in terms of the various
Fock space states of the isolated molecule that participate in the
creation and subsequent recombination of exciton. Application is
made to a multilevel Coulomb blockade model system and to a
gold−benzene-1,4-dithiol−gold molecular junction.

I. INTRODUCTION

Molecular junctions are important examples of open quantum
systems1,2 that may consist of a single simple or complex
molecule or a quantum dot. A single molecule break junction or
a single molecule sandwiched between a scanning tunneling
microscopy (STM) tip and metal surface are well-known
examples of molecular junctions. They have potential
applications to single molecular electronic devices.3 Recently
optical spectroscopy of molecular junctions has become an
active area of research.4−15 Since molecular junctions are in a
current carrying state, its optical response differs from that of an
isolated molecule.16 The conduction properties of a molecular
junction are significantly affected by the configuration of the
molecule. It is therefore important to understand both the
electric and optical responses of the junction so as to fully
characterize the dynamics.
Theoretical formalism of molecular junctions must be based

on a quantum description of the detected field. Usually the
signal is evaluated directly by doing a perturbation in the
molecule−field interaction.17−20 The effect of the leads may be
treated within the quantum master equation (QME)21 (weak
molecule−lead coupling) or using the nonequilibrium Greens
function (NEGF) formalism.22,23 Several processes such as
current induced fluorescence,24 spontaneous and stimulated
Raman signals,21 and inelastic electron tunneling25 have been
theoretically studied previously in the single molecule junctions.
Recently, we presented a diagrammatic method21 to study the
optical response of a single molecule junction based on loop
diagrams combined with the quantum master equation
formalism. These loop diagrams describe the time evolution
of the density matrix which happens through various Liouville
space pathways.17 In this work we adopt the Liouville space

loop diagrammatic method to study electroluminescent signals
from molecular junctions.
In a molecular junction, the molecule continuously

exchanges electrons with the leads (electronic reservoirs)
creating excitons (electron−hole pair) in the molecule which
radiatively recombine, leading to the phenomenon of electro-
luminescence. Electroluminescence is the basic process in light
emitting diodes (LED)26 that can be made of both organic
polymers27 and quantum dots.28 Single molecule electro-
luminescence has been realized in the core-substituted
naphthalenediimide molecules entrapped between two metallic
single-walled carbon nanotube electrodes29 and perylene
adsorbed on silicon carbide probed by scanning tunneling
microscopy.30 STM tips have also been used as a source of
electron injectors to study electroluminescence in several
systems such as graphene, carbon nanotubes,31−33 and
conjugated polymer chain between a Au(111) surface and
STM tip.34

Within a QME or NEGF approach, the molecule−lead
interaction is treated nonperturbatively. This renders it difficult
to distinguish between electroluminescence and other sponta-
neous light emission processes since all such processes happen
simultaneously. The distinction can be made very easily by
doing a perturbation directly on the molecule−lead coupling.
Electroluminescence involves the injection of an electron and a
hole from the leads to the molecule, and the signal therefore
requires at least fourth-order perturbation in the molecule−lead
coupling. In this work we present a microscopic calculation of
electroluminescence signal at single molecular junctions based
on perturbation theory.
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The loop diagrams that contribute to the formation of an
exciton and the subsequent optical detection can be intuitively
drawn. The diagrams represent the several pathways by which a
signal can be obtained. We account for the electroluminescent
signal by considering the rate of change of photon occupation
in the detected mode as a perturbation in the molecule−field
and molecule−lead coupling and then combine it with the
many-body states (Fock states) of the isolated molecule. The
loop diagrams clearly show how various molecular states
(neutral or charged) are involved during the process. Hence the
computation is based on the isolated molecule’s Fock states
which can be obtained with standard quantum chemistry
calculations. Interpretation of these diagrams is based on
Liouville space superoperator algebra.35 We present a set of
rules that can be used to read the electroluminescent signal
directly from the diagrams. We apply these rules to a generic
multilevel Coulomb blockade model and a gold−benzene-1,4-
dithiol−gold molecular junction to compute the signal.
This work is organized as follows. In the next section, section

II, we introduce the Hamiltonian and formulate electro-
luminescence in terms of Liouville space loop diagrams. In
section III, we use Liouville space superoperator formalism to
evaluate the electroluminescence signal perturbatively. We
discuss rules to read the diagrams and write down the algebraic
expression for the signal directly from the loop diagrams. In
section IV, we apply these rules to evaluate the electro-
luminescent spectrum in a multilevel Coulomb blockade model
system. In section V, we evaluate the electroluminescence signal
from a benzene-1,5-dithiol molecular junction coupled to two
gold leads. We conclude in section VI.

II. DIAGRAMMATIC FORMULATION OF
ELECTROLUMINESCENCE IN MOLECULAR
JUNCTIONS

Consider a molecule sandwiched between two metal contacts
(leads) or an STM tip and a metal surface. A manifold of many-
body states (neutral or charged) with different oxidation states
can participate in the electron transfer process between the
molecule and leads. Electron exchange may occur either from
the ground states of the neutral molecule or the charged
molecule. This leads to excitations in the molecule. This may
induce transfer of an electron or a hole or both (Figure 1).
Transfer of electrons and holes leads to the creation of excitons
in the molecular junction. Radiative recombination of excitons
created by the charge current gives rise to electroluminescence.
The molecule−lead Hamiltonian can be written as Ĥ = Ĥo +

Ĥint

∑

̂ = ̂ + ̂ + ̂

= ̂ + ϵ ̂ ̂ + ϵ ̂ ̂

̂ = ̂ + ̂

†

∈

†

H H H H

H a a c c

H H H

(1)

(2)

(3)

o m f x

m f f f
x l r

x x x

int ml mf

,

Here Ĥm, Ĥf, and Ĥx are the molecular, the radiation field, and
the lead Hamiltonians, respectively. Ĥml and Ĥmf are the
molecule−lead coupling and molecule−field interaction Ham-
iltonians, respectively, defined as

∑̂ = ̂ ̂ + * ̂ ̂

̂ = ̂ ̂ + ̂ ̂

† †

† †

H T c c T c c

H t V t t V t

( ) (4)

( ) ( ) ( ) ( ) (5)

ml
x s

sx s x sx x s

mf f f

,

The molecular Hamiltonian need not be specified at this
point and may contain many-body effects, e.g., electron−
electron and electron−phonon interactions. ̂

f (r,t) = Ef(r,t)
a ̂f(t) represents the complex amplitude of the field, and Ef(r,t)
is the envelope of the field. a ̂f (a ̂f†) is the annihilation (creation)
operator in the field mode of energy ϵf. c

†̂ (c)̂ is the Fermion
creation (annihilation) operator belonging to the system (s),
left (l), and right (r) leads and ϵx is the energy of the x-th mode
in the lead. V̂ (V̂†) is the system dipole operator which destroys
(creates) an excitation in the molecule. Tsx is the system−lead
tunneling coefficient from the x-th mode of the lead to the s-th
orbital of the molecule.
In molecular junctions, the leads create excitations between

the many-body states which can radiatively relax and can be
detected optically. We are interested in electroluminescence,
the optically detected radiative recombination of an electron−
hole pair (exciton) created in the same oxidation state. To
lowest order, excited states of the ionic charged states, N ± 1,
can be created by two molecule−lead interactions that inject an
electron or a hole into the molecule. Fluorescence can then
arise by a transition between two states belonging to the ionic
species (two different oxidation states). We had denoted this
process as current induced fluorescence (CIF).24 Here we focus
emission from the same charged state (oxidation state). This
requires an injection of an electron and a hole into the molecule
and involves four molecule−lead interactions. We call it
electroluminescence.
In electroluminescence, formation of an exciton population

requires four interactions with the leads which provide several
pathways for the evolution of system states that contribute to
the signal. We identify all of the possible pathways that
populate excitons (electron−hole pair) in the form of two
Liouville space loop diagrams17,19 as shown in Figure 2. These

Figure 1. Orbital scheme in a molecular junctions. The orbitals are
shown as horizontal lines which are coupled to leads at chemical
potentials μl and μr. The arrows show possible electron and hole
exchange processes. ℏωf is the energy of a spontaneously emitted
electroluminescence photon.
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diagrams visualize physical processes and allow easy book-
keeping of the various times at which interactions take place.
To leading order in molecule−lead interaction, the electro-
luminescence signal requires a minimum of two interactions
from either side of the loop to generate an exciton via
populating a charged state. The other diagrams with three
(four) interactions from one side and one (no) interaction
from the other side give rise to current induced fluorescence
and coherent light emission processes. In this work we discard
those pathways since we are interested in incoherent
spontaneous processes which are the dominant process when
the molecule−lead coupling is weak. We follow the standard
convention to construct these diagrams. An arrow represents an
interaction at a specific time. If it is directed inward (outward)
on either branch of the ladder, it represents creation
(annihilation) of a new system state with one extra (less)
electron in the molecule. The loop is closed via an arc during
which there is no evolution. These loops are not time-ordered.
One can keep track of the time ordering of the lead interactions
and generate several ladder diagrams such that time increases
from bottom to top (t > τ > t1 > t2 >t3 > t4) . The difference
between ladder and loop diagrams is that the former is time-
ordered whereas the latter is not.
For better understanding, we illustrate the process of

electroluminescence by considering one ladder diagram that
can be obtained from the loop diagrams and is shown in Figure
3. We label the system orbitals as s,s′,g, and g′. The subscripts
on the operators provide an identification of the orbital (single
particle state) where the operators act. We assume that the
system is initially in one of its accessible states with N electrons.
We label a Fock state of the molecule with two indices, |a,N⟩
representing the a-th many-body state with N electrons.
In Figure 3, the bra vector (right branch) of the density

matrix evolves due to the action of a creation operator at time t4
due to the molecule−lead coupling Hamiltonian in eq 5. This
creates a new many-body state |b,N+1⟩. The state of the system
immediately after interaction is |g,N⟩⟨b,N+1|. This represents a
Fock space coherence between a neutral and anionic many-
body state. Next, the ket (left branch) evolves due to lead
interaction at time t3 leading to a new many-body state,
|c,N+1⟩⟨b,N+1|. This represents a coherence in the anionic
state. However, if g = s, the same state represents a population
of the anionic state. Third, during the time evolution t3 → t2,
the bra evolves, exciting the system to |c,N+1⟩⟨d,N|, a Fock
space coherence. Subsequently at time t1, the bra evolves such

that the system reaches a population state, |d,N⟩⟨d,N|. The state
|d,N⟩ contains one exciton. The four interactions at t4, t3, t2, and
t1 create a single exciton in the molecule by evolving the initial
state from |g,N⟩⟨g,N| to |d,N⟩⟨d,N| via an intermediate charged
state. Finally during the evolution τ → t, the system relaxes
radiatively to state |e,N⟩⟨e,N|, and a signal at frequency ωf is
detected. The final process is represented by interaction with
two dipole operators. The entire process involves five time
evolutions, t4 to t3, t3 to t2, t2 to t1, t1 to τ, and τ to t. In order to
detect the electroluminescence, it is necessary that the exciton
creation takes place before the optical detection: the interaction
times t and τ can occur only after the lead interaction times.

III. ELECTROLUMINESCENCE SIGNAL
We use the Liouville space superoperator formalism19,20,35 to
obtain algebraic expressions for the electroluminescence signal.
The state of the system is characterized by the density matrix
which is a vector denoted as, |..⟩⟩. The superoperators
interacting from left (right) are marked with an index L(R)
and are defined as

̂ | ⟩⟩ ≔ ̂| ⟩⟨ | ̂ | ⟩⟩ ≔ | ⟩⟨ | ̂A A A A.. . . .. . .L R (6)

̂ = ̂ + ̂ ̂ = ̂ − ̂+ −A A A A A AL R L R (7)

Â+ (Â−) in the Liouville space corresponds to anticommutation
(commutation) in the Hilbert space whose density matrix is
written as |.⟩⟨.|. The standard expression for spontaneous
optical signal at frequency ωf is given by (ℏ = 1)19,20,24

∫

∫

ω τ τ

τ τ

= ℜ ⟨⟨ ̂ ̂ ̂ ⟩⟩

= ℜ ⟨⟨ ̂ ̂ ̂ ⟩⟩

ω τ

ω τ τ τ

− †

− † − ∫ ̂ −

S t TV t V

TV t V

( , ) 2 d e ( ) ( ) (8)

2 d e ( ) ( ) e (9)

f
t

t
i t

L R

t

t
i t

L R
i H

o

( )

( ) d ( )

f

f t
t

ml

0

0
0

In the second line, we have used the interaction representation
defined with respect to the molecule−lead coupling. The time
evolution of operators is due to Hamiltonian, Ĥ0.

Figure 2. Two Liouville space loops that contribute to electro-
luminescence caused by populating excitons. Left and right branches
are not time-ordered.

Figure 3. Ladder diagram showing the role of several many-body
states during the process of electroluminescence. The interaction times
are ordered t > τ > t1 > t2 > t3 > t4. The four interactions, t4...t1 create a
single exciton. The excitonic state is |d,N⟩⟨d,N| which emits a photon
of frequency ωf at time t.
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We can now expand eq 9 to fourth order in molecule−lead
interaction, Ĥml− (Appendix A). We assume that contributions
from coherent processes, where the charged state is never
populated (Appendix A), is small as compared to incoherent
processes and ignore these pathways. We further neglect the
pathways which involve Fock space coherences between many-
body states separated by more than one charge units (Appendix
A). Such processes contribute with extremely low probability
(fast Fock space decoherence). The electroluminescence signal
then involves a time-integrated product of a six-point time-
dependent system correlation function and a four-point time-
dependent lead correlation function given by

∫ ∫ ∫ ∫ ∫
∑ ∑ ∑

ω τ

τ

τ

= ℜ

× * *

× ⟨⟨ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

+ ⟨⟨ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

ω τ−

′ ′ ′∈ ′∈
′ ′ ′ ′

′
†

′
†

′
†

′
†

′
†

′
†

†
′
†

′
†

S t t t t

T T T T

Tc t c t c t c t

TV t V c t c t c t c t

Tc t c t c t c t

TV t V c t c t c t c t

( ) 2 d e d d d d

[ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ]

el
f

t

t
i t

t

t

t

t

t

t

t

t

s g s g x x l r y y l r
s x sx g y gy

y L yR x L xR o

L R g L gR s L sR o

x L xR y L yR o

L R s L sR g L gR o

( )
1 2 3 4

, , , , , , ,

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

f

o0 0 0 0

(10)

Equation 10 is the basic form of the electroluminescent
signal and gives the leading order contribution to the signal at
ωf. Note that eq 10 can directly be read from Figure 2. The first
(second) term inside the brackets in eq 10 corresponds to the
left (right) loop diagram shown in Figure 2, where t ≥ τ ≥ ti, i =
1, ..., 4. Each loop diagram contains four ladder diagrams. All
eight ladder diagrams are drawn in Figure 4. It is to be
emphasized that both current induced fluorescence (CIF)24

and electroluminescence are spontaneous processes. However,
in CIF the final molecular state differs from the initial state by
an electron; i.e., the CIF photon is emitted from a different
oxidation state of the molecule than that of the ground state.
While in electroluminescence both the initial and the final
states have the same number of electrons; i.e., the exciton is
formed in the same oxidation state of the molecule as in the
ground state, although the pathway involves a change in
oxidation state.
The flow of electrons in the junction is maintained by an

applied bias and is responsible for the creation of an electron
hole pair in the molecule. The applied bias is therefore
analogous to the optical laser field in conventional spectros-
copy. However, in the present case, the excitations are created
by the lead interactions at all energies (summed over x and x′
in eq 10). In order to have a signal analogous to the
conventional signal, we need to take a derivative of the signal in
eq 10 with respect to applied bias. This picks up the
contribution due to lead interactions at energy eV. In Appendix
B, we present the diagram rules to get closed expressions for
the derivative of the signal by directly reading each ladder
diagram in Figure (4). The full treatment from which the rules
are derived is also discussed in the appendix. These rules apply
at low temperatures where there are no thermal fluctuations
and the electron flow is effectively unidirectional. The left and
right leads are assumed to be the same.
Here we illustrate these rules by applying them to the ladder

diagram in Figure 4i. We denote the system many-body states
by the letters a, b, c, d, and e. For clarity, we omit the label N
which denotes the number of electrons in the state. The system

starts from ground-state, ∑aaρaa|a⟩⟨a| with probability ρaa. The
initial ground state may correspond to a neutral state or a
charged state. Initially, a system operator acts such that the state
evolves to |a⟩⟨b|, a coherence between states with a different
number of electrons. The corresponding matrix element is cg,ab

†

(rule 1). Since this is the first interaction pointing outward, the

Figure 4. Ladder diagrams showing the contributions to the signal.
The various interaction times for each diagram increase from the
bottom to the top as t4, t3, t2, t1, τ, t. t4 is the first interaction time, and t
is the detection time.
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Green function during the evolution t4 → t3 does not
contribute to the signal (rule 3). At time t3, another interaction
from the left destroys the ket state and the system evolves
during t3 → t2 to create Fock space coherence between states
with the same number of electrons, |c⟩⟨b|. The corresponding
overlap matrix element is read top to bottom as cg′,ca The Fock
states involved are |c⟩ and |b⟩. t3 → t2 evolution is (ωcb) (rule
2). Similarly, the next interaction takes place from the right
such that there is a creation in the bra taking the system to the
coherent state |c⟩⟨d| with a different number of electrons. The
matrix element is cs,bd. Since this interaction is the first inward
interaction, the Greens function is (ωcd+eV) (rule 4). The
next interaction from the left takes the system to a population
state |d⟩⟨d|. The corresponding matrix element and the Greens
function are cs′,dc

† and (ωdd) = (0), respectively. Finally, due
to interaction with the field, the ket evolves to state |e⟩ from |d⟩
which is the final state. The matrix element is Ved

† , and the
corresponding Greens function is (ωde−ωf) (rule 5). The
detection interaction contributes via the matrix element Vde.
Following rule 6, the signal is written as (ℏ = 1)

∑ ∑ ∑ω ρ

ω ω ω ω

= ℜ Ω

× * * | |

× − +

ν

ν ν ν ν

′ ′ =

′
′

′
′ †

′ ′
†

S

T T T T V c c c c

d
deV

( ) 2

(0) ( ) ( eV) ( )

el
i

f
abcde ss gg l r

aa

s s g g de g ab g ca s bd s dc

de f cd cb

(( ))

,

2

2
, , , ,

(11)

where Ω is the wide-band approximated lead density of states.
All of the diagrams can be interpreted in a similar manner. After
writing down all of the expressions, we can combine diagram i
with ii since their contributions become equal. Similarly we can
combine diagram iii with vii, diagram iv with viii, and diagram v
with vi. The total electroluminescence signal can now be recast
as

∑ ∑ ∑ω ρ

ω ω ω

ω

ω

ω

ω

= ℜ Ω

× * * | | −

× +

+ +

+ −

+ −

ν

ν ν ν ν

′ ′ =

′
′

′
′

′
†

′
†

′
† †

′

†
′ ′

†

†
′ ′

†

S

T T T T V

c c c c

c c c c G

c c c c G

c c c c G

d
deV

( ) 4

(0) ( ) ( )

[ ( eV)

( eV)

( eV)

( eV)]

el f
abcde ss gg l r

aa

s s g g de de f cb

g ca g ab s bd s dc cd

g bd g dc s ca s ab ab

g bd g dc s ab s ca ca

g ab g ca s bd s dc db

,

2

2

, , , ,

, , , ,

, , , ,

, , , , (12)

Equation 12 is equivalent but a simplified version of eq 10. The
time-dependent system and lead correlation functions in eq 10
have been explicitly evaluated and put in closed forms in terms
of the system-only Greens functions and the matrix elements of
each system operator interacting with a system-only many-body
state. We can substitute for the Greens functions as defined in
eq B26 and obtain an algebraic expression for the frequency
resolved electroluminescence signal given as

∑ ∑ ∑ω ρ

ω ω ω

ω ω

ω ω

= − ℑ Ω

×
* * | |

Γ − − Γ − Γ

×
+ − Γ

+
+ − Γ

+
− − Γ

+
− − Γ

ν

ν ν ν ν

′ ′ =

′
′

′
′

′
†

′
†

′
† †

′

†
′ ′

† †
′ ′

†

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

S

T T T T V

i i

c c c c

i

c c c c

i

c c c c

i

c c c c

i

d
deV

( ) 4

( )( )

( eV ) ( eV )

( eV ) ( eV )

el f
abcde ss gg l r

aa

s s g g de

de f de cb cb

g ca g ab s bd s dc

cd cd

g bd g dc s ca s ab

ab ab

g bd g dc s ab s ca

ca ab

g ab g ca s bd s

db db

, ,

2

2

, , , , , , , ,

, , , , , , , ,dc

(13)

Since the signal is expressed in terms of the isolated molecule’s
Fock states, any quantum chemistry calculation done on the
molecule will allow us to identify the system states and the
corresponding overlap matrix elements. These can be used to
compute the signal. We shall discuss it in more detail in section
V.

IV. APPLICATION TO A MULTILEVEL MODEL SYSTEM

We apply the preceding formulation to a three spin−orbital
model system coupled to metal leads. We denote the three
spin−orbitals by g, s, and s′ such that the Fock state can be
written as |lmn⟩ where l, m, and n = 0, 1 represent the
occupation of each orbital. There are eight many-body states,
viz., one state with no electrons (|000⟩), three states with one
electron (in any one of the orbitals) (|100⟩, |010⟩, and |001⟩),
three states with two orbitals being occupied (|110⟩, |101⟩, and
|011⟩), and one triply occupied state (all orbitals are occupied,
|111⟩). If one assumes that electron−electron repulsion is very
high, all doubly and the triply occupied states can be ignored.
This is known as a multilevel Coulomb blockade system. The
system thus has only four Fock states available as shown
schematically in Figure 5. For simplicity we use |100⟩ ≡ |1⟩,
|010⟩ ≡ |2⟩, |001⟩ ≡ |3⟩, and |000⟩ ≡ |4⟩. We assume that the
ground state corresponds to one electron state, |1⟩. This can be

Figure 5. Schematics of the multilevel Coulomb blockade model.
|000⟩ is an excited positively charged state. |100⟩ is a ground singlet
state; |010⟩ and |001⟩ are two excited singlet states. Electroluminescent
photons can be spontaneously emitted from |010⟩ → |100⟩, |001⟩ →
|100⟩, and |001⟩ → |010⟩ transition brought about by the dipole
operators.
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a situation when the Fermi energy of the leads is between the
ground doublet state and the next excited doublet state of the
molecule. The next excited state is |2⟩ followed by another
excited singlet state |3⟩. |4⟩ represents a cationic state which is
the highest in energy.
In this model, the loop diagrams in Figure 2 contribute to the

signal only when g = g′. Since, the triply occupied state and the
doubly occupied states are not accessible, the pathways where
the first interaction corresponds to an electron transfer to the
molecule do not contribute. Therefore, the first interaction
must always create a hole by removing an electron from the
molecule. (state |4⟩ is accessible only via removal of an electron
from state |1⟩). The diagrams in parts iii, iv, vi, and vii of Figure
4 therefore do not contribute to the electroluminescence in the
Coulomb blockade limit. The other four diagrams allow
pathways where the hole creation is the first step thereby
contributing to the signal and are shown in Figure 6. From

Figure 6, we note that the exciton state corresponds to states
|2⟩ and |3⟩ (combinedly represented as |d⟩ in the diagram). The
radiative relaxation of the state |2⟩ to |1⟩, emits an
electroluminescence photon. While the exciton formed at |3⟩
can radiatively relax either to state |1⟩ or state |2⟩. Applying the
rules discussed in the previous section and by combining part i
with part ii of Figure 6 and part iii with part iv of Figure 6, we
get

ω ω ω ω ω

γ γ ω ω

γ γ ω ω

ω ω ω ω

ω ω

= − ℜ | ̂ | | | −

× | ̂ | + + | ̂ | −

+ | ̂ |
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(14)

Here, γjl = |Tj
l|2 is the rate of electron transfer from the left lead

to the jth orbital (j = s, s′) and γgr = |Tg
r|2 is the rate of electron

transfer from the molecule in the g-th orbital to the right lead.
Substituting the Greens functions from eq B26, we get
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Here Γij is the inverse lifetime of the i→ j transition and Γii is
the total inverse lifetime of the ith state. We see a total of three
peaks, viz., |2⟩ → |1⟩, |3⟩ → |1⟩, and |3⟩ → |2⟩. Since the
molecule is initially in state |1⟩, it loses an electron and excites
itself to the cationic state |4⟩. From |4⟩ there are only two
excited states |2⟩ and |3⟩ that it can access through electron
transfer. Therefore, the evolution to these two excited states
depend on the applied bias. The first term in eq 15 corresponds
to the transition |2⟩ → |1⟩, while the second term is a
combination of the |3⟩ → |1⟩ and the |3⟩ → |2⟩ transitions.
The maximum intensity of the signal corresponds to the

resonance. As we move off-resonance, the peak intensity
decreases gradually due to the broadening quantified by the
inverse lifetime as shown in Figure (7). In this case there exists

another resonance; when the applied bias equals the excitation
energy difference as can be seen from eq 15. E.g., for the
electroluminescent transition |3⟩ → |2⟩, the overall maximum
intensity is when both of the resonances take place; i.e., ω32 =
ωf and ω43 = −eV. This is expected since the only way to
populate state |3⟩ is via |4⟩, and when the bias energy is in
resonance with ω43, this process is most probable as seen in
Figure 8 and the inset of Figure 7. In the inset of Figure 7, we

Figure 6. Ladder diagrams for the multilevel Coulomb blockade
model. The ground state is marked |1⟩ ≡ |100⟩. |2⟩ ≡ |010⟩, |3⟩ ≡
|001⟩, and |4⟩ ≡ |000⟩. All LSPs involve populating the singly charged
state |4⟩ ≡ |000⟩. For i = s, the states |d⟩ = |2⟩ and |e⟩ = |1⟩, and for i =
s′, the states |d⟩ = |3⟩ and |e⟩ = |2⟩ or |1⟩.

Figure 7. Electroluminescence spectrum (arbitrary units) of the
multilevel Coulomb blockade model signal vs detected frequency
simulated at various applied bias values. All couplings and matrix
elements are set to unity. All lifetimes are set to 0.1, and ω1 = 0, ω2 =
1, ω3 = 3, and ω4 = 6. From top to bottom, curves correspond to eV =
0.5, 1, and 2, respectively. The three maxima in the intensity
correspond to the resonances ωf = ω21 = 1, ω32 = 2, and ω31 = 3. The
inset shows the nonlinear dependence of the signal intensity on the
applied bias. The left (right) peak curve is for the transition |2⟩ → |1⟩
(|3⟩ → |2⟩). The spectrum is evaluated at resonance.
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plot the transitions |2⟩ →|1⟩ and |3⟩ → |2⟩ at their resonance
values (ω21 = ωf; ω32 = ωf) as a function of bias.

Note that, the electroluminescence is not possible if the
ground state of the Coulomb blockade model system is in the
cationic state, |4⟩. This is because there is no other cationic
excited many-body state from which a radiative relaxation to
state |4⟩ can take place. For electroluminescent emission of a
photon, we need at least two many-body states which have the
same oxidation state and a many-body state that differs by one
oxidation number.

V. APPLICATION TO
GOLD−BENZENE-1,4-DITHIOL−GOLD
MOLECULAR JUNCTION

We now consider a single benzene-1,4-dithiol molecule which
is connected to two gold leads. This molecular junction is
widely studied and is similar to break-junctions.36 We take the
optimized geometry and quantum chemistry parameters,
including energies, transition dipole moments (TDMs), and
generalized overlap amplitudes (GOAs), from our previous
work.37 In our simulation we choose three Au-atoms bonded to
each of the sulfurs as shown in Figure 9. The internuclear
distance between the two Au atoms is fixed at 2.88 Å, taken
from the distance in the Au(111) surface.38 In the optimized
geometry, the distance between S and the Au(111) surface is
around 2.3 Å. Ten excited states were calculated at the time-
dependent DFT level with the Tamm−Dancoff approxima-
tion39 by using a locally modified NWChem package.40,41 After
filtering out nonphysical states with large spin contaminations,
10, 7, and 5 excited states for the neutral, cationic (n−1), and
anionic (n+1) molecule were obtained. The anionic molecule
has the lowest ground state energy. We rescale all of the other
many-body energies relative to this state (labeled as |g0⟩) which
is taken as zero. The 5 excited states for the anion are labeled as
|gi⟩, i = 1, ..., 5. Similarly, the ground and 10 excited states of the
neutral molecule are labeled as |ei⟩, i = 0, ..., 10. The cationic
states lie very high in energy (>9 eV) in comparison to the

neutral and anionic states. Within our bias range of 0−5 eV,
these cationic states cannot be populated. So we restrict our
calculations to only the neutral and the anionic many-body
states. The only dipole allowed transitions are between the
states with the same number of electrons. Dipole excitations
between excited many-body states are neglected. The energies
and the x-component of the transition dipole matrix elements
(TDMEs) are given in Table 1.

At finite bias, electrons start to flow through the molecular
junction and electroluminescence may be observed. We
compute the signal using eq 13 as a function of detected
frequency ωf at different eV values. The summations over the
many-body states in eq 13 run over all of the 17 many-body
states. The inverse lifetimes are directly proportional to the
width of the signal. Although it is possible to obtain the lifetime
from fluorescence measurements, we treat these as parameters
in our simulation. We fix Γ = 0.01, Γde = 0.005, Γcb = 0.01, and
Γcd = Γab = Γca = Γdb = 0.001. All energies are given in eV.
Plugging the respective values for the matrix elements and
energies from Table 1 and constructing the GOAs, the signal
can be numerically evaluated. Since the ground state
corresponds to the anionic (N+1) state, the emission of the
electroluminescent photon comes from the anionic many-body
state. We expect a total of five peaks in the signal emitted from
the excited anionic many-body states. However, the transition

Figure 8. Electroluminescence spectrum in the multilevel Coulomb
blockade system vs the bias voltage vs all emitted frequency ωf. The
bottom left maximum is at the resonance of ω21 = ωf and ω42 = −eV.
The middle maximum is at the resonance ω32 = ωf and ω43 = −eV.
The bottom-right peak corresponds to ω31 = ωf and ω43 = −eV.

Figure 9. Gold−benzene-1,4-dithiol−gold molecular junction. The
yellow balls represent Au atoms. The bigger brown balls connected to
Au are S atoms. The small brown and gray balls, respectively, represent
carbon and hydrogen atoms. The Au atoms represent the Au (111)
surface, and the S atom sits in its hollow site. The left Au lead is at
chemical potential eV and acts as the source of electrons which flow
through the junction. The chemical potential of the right Au lead is 0
and acts as an electron sink.

Table 1. Parameters Used for Calculation

many-body state ωm (eV) TDME

|go⟩ 0.0000 ⟨go|V|go⟩ = 0.0000
|g1⟩ 0.1339 ⟨go|V|g1⟩ = 0.0099
|g2⟩ 0.1602 ⟨ go|V|g2⟩ = 0.6354
|g3⟩ 0.8549 ⟨go|V|g3⟩ = 4.6131
|g4⟩ 1.2397 ⟨go|V|g4⟩ = 0.1970
|g5⟩ 1.2596 ⟨go|V|g5⟩ = 0.0026
|eo⟩ 2.7950 ⟨eo|V|eo⟩ = 0.0000
|e1⟩ 4.1422 ⟨eo|V|e1⟩ = 0.2098
|e2⟩ 4.1628 ⟨eo|V|e2⟩ = 0.0037
|e3⟩ 4.4538 ⟨eo|V|e3⟩ = 3.3120
|e4⟩ 4.6019 ⟨eo|V|e4⟩ = 0.1227
|e5⟩ 4.7224 ⟨eo|V|e5⟩ = 0.0122
|e6⟩ 4.7684 ⟨eo|V|e6⟩ = 0.0096
|e7⟩ 5.0353 ⟨eo|V|e7⟩ = 0.3512
|e8⟩ 5.1160 ⟨eo|V|e8⟩ = 1.2642
|e9⟩ 5.1613 ⟨eo|V|e9⟩ = 0.0080
|e10⟩ 5.1823 ⟨eo|V|e10⟩ = 0.2363
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dipole matrix elements ⟨go|V|g1⟩ and ⟨go|V|g5⟩ are very small as
compared to the other elements. This renders both transitions
too weak to be detected. As a result we see only three peaks as
shown in Figure 10. The dipole coupling ⟨go|V|g3⟩ is the highest
and hence the transition is the strongest of the three.

In Figure 10, the left peak corresponds to the transition |g2⟩
→ |go⟩, the middle peak to the transition |g3⟩ → |go⟩, and the
weak right peak, which is also shown in the expanded top-right
inset, to the transition |g4⟩ → |go⟩. The left inset shows the
variation in the signal intensity at ωf corresponding to the
transition |g3⟩ → |go⟩ as a function of the bias. The intensity
variation shows a nonlinear bias dependence. The presence of
multiple maxima as a function of bias is due to the multiple
transitions in the junction which resonate with the bias at
different values.

VI. CONCLUSIONS

We have presented a Liouville space diagrammatic method for
calculating the electroluminescence signal in a molecular
junction. The various Liouville space pathways through which
the signal can be generated are identified. We considered only
the incoherent pathways which involve populating the charged
(anionic or cationic) states of the molecule. Although the
presented diagrammatic approach is valid for all pathways, for
clarity, we have ignored the coherent contributions which are
assumed to be small in the weak molecule−lead coupling limit.
Two loop diagrams can be drawn from which eight time-
ordered incoherent ladder diagrams leading to electro-
luminescence can be constructed. We discussed signals in
terms of the derivative with respect to the applied bias. Diagram
rules allow one to read the algebraic form of the signals directly
from the diagrams. The method is applied to compute the
electroluminescent signal from a multilevel Coulomb blockade
model system and a molecular junction made of benzene-1,4-
dithiol molecule coupled to two Au leads.

■ APPENDIX

Appendix A: Microscopic Formulation of
Electroluminescence
The signal is defined as the rate of change of photon
occupation in the detected mode

= ⟨⟨ ̂ ̂ ⟩⟩†S t
t

a t a t( )
d
d

( ) ( )f f F (A1)

Here the subscript f represents the detected field mode and the
trace is over the full (molecule + field + leads) density matrix
denoted as a subscript F. Using the Heisenberg’s equation of
motion in eq A1 and the definition of coupling Hamiltonian
from eq 5, we can express the full signal in terms of Liouville
space superoperators as (ℏ = 1)

= − ℑ⟨⟨ ̂ ̂ ⟩⟩†S t t V t( ) 2 ( ) ( )fL L F (A2)

Defining the interaction picture with respect to molecule−field
coupling, we get

̂ = ̂

̂ = ̂

† ̂ † − ̂
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− −

− − − −

t
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= − ℑ⟨⟨ ̂ ̂ ̂ ⟩⟩τ τ† − ∫ ̂ −S t t V t( ) 2 ( ) ( ) efL L
i Hd ( )t

t
mf0 (A5)

Here, Ĥ−(τ) = ĤL(τ) − ĤR(τ) and ̂ is the Liouville space
time ordering operator.17 The trace in eq A5 is over the
product of the field and the interacting molecule−lead density
matrix. The evolution of this density matrix is due to
molecule−field interaction. eq A5 contains both the sponta-
neous and the stimulated light emission processes. To leading
order in the detected field (molecule−field interaction, Ĥmf−),
we can recast the signal as

∫ τ τ τ

τ τ

= − ℜ ⟨⟨ ̂ ̂ ̂ ⟩⟩ ⟨⟨ ̂ ̂ ̂ ⟩⟩

− ⟨⟨ ̂ ̂ ̂ ⟩⟩ ⟨⟨ ̂ ̂ ̂ ⟩⟩

† †

† †

S t t V t V

t V t V

( ) 2 { d ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) }

t

t

fL fL o L L

fR fL o L R

0

(A6)

The subscript o identifies that the trace is over the bare density
matrix of individual system components. Since we are
interested in the spontaneous signal, we assume that the
detected mode is initially empty. Setting |Ef |

2 = 1, we can arrive
at eq 8.
We now evaluate eq 10. Starting from eq 9, we define the

interaction picture with respect to molecule−lead interaction as

̂ = ̂

̂ = ̂

̂ − ̂

− ̂ ̂

− −

− −

V t V

V t V

( ) e e (A7)

( ) e e (A8)

L
iH t

L
iH t

R
iH t

R
iH t

m m

m m

The subscript o identifies that the trace is over the bare density
matrix of individual system components. In this representation
the trace of the correlation function in the RHS of eq 9 is with
respect to the bare molecular density matrix which evolves due
to molecule−lead interaction. We expand eq 9 to fourth order
(lowest contributing) in the molecule−lead coupling, Hml−. The
RHS in eq 9 can be now written as

∫ ∫ ∫ ∫ τ= ⟨⟨ ̂ ̂

× ̂ ̂ ̂ ̂ ⟩⟩

†

− − − −
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1 2 3 4

1 2 3 4

0 0 0 0

(A9)

Figure 10. Electroluminescent spectrum of the gold−benzene-1,4-
dithiol−gold molecular junction. The various curves correspond to
different bias values. From the the highest intensity peak (green), the
bias (in eV) values are 3, 4, 2, and 1. Top right inset shows the
expanded spectrum at ωf corresponding to the transition |g4⟩ → |go⟩.
The left inset shows the intensity variation of the signal with bias at
frequency ωf corresponding to the transition |g3⟩→ |go⟩ (central peak).
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The time arguments get integrated since they are not controlled
externally. Upon substituting Ĥml− = ĤmlL − ĤmlR, we get 16
terms in the equation. Out of the 16 terms only the terms with
two Ls and two Rs in the lead operators contribute to
electroluminescence. The other terms contribute to current
induced fluorescent signals which may come from either the
neutral or the charged states. The electroluminescent signal can
be expressed as

∫ ∫ ∫ ∫ ∫ω τ

τ

τ

τ

τ

τ

τ
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For weak system bath coupling, the perturbation formulation
allows us to factorize the system and lead correlation functions
after substituting the molecule−lead coupling Hamiltonian
from eq 5 in eq A10. The system correlation function includes
the product of all of the system operators along with their time
arguments in the loop diagrams. The product is averaged over
the system density matrix, |ρ⟩⟩. For each system operator there
is a corresponding lead operator. Since creation of electron in
the system is annihilation of an electron in the lead, the lead
operators are conjugate to each of the system operators. The
dipole operators have no lead counterpart.
In the first term of eq A10, one of the system correlation

functions is ⟨⟨V̂L(t) V̂R(τ) cĝ′L(t1) cĝL
† (t2) cŝ′R

† (t3) cŝR(t4)⟩⟩o,
Figure 11i. The first interaction destroys a system electron in

the bra. The second interaction creates a system electron in the
ket. The molecule is now in a Fock space coherent state with
the same number of electrons. The next two interactions from
the right excite the system to some other Fock space coherent
state with the same number of electrons. This state emits a
photon. This is a higher order spontaneous light emission
process from a neutral state in which the system evolved

through coherences alone. We identify such processes as
coherence induced luminescence, and they are different from
current induced fluorescence or electroluminescence.
Another system correlation function is of the type ⟨⟨V̂L(t)

V̂R(τ) cŝR(t1) cĝ′L(t2) cĝL
† (t3) cŝ′R(t4)⟩⟩o, Figure 11ii. The first two

interactions are from the right and hence create two
consecutive electrons in the bra. The next interaction is from
the left and creates an electron in the ket. This generates a
higher order Fock space coherence between states which differ
by more than one electron. These coherences are very fast and
occur with very low probability. So, we neglect such correlation
functions. We finally have two terms left in eq A10, which is
equivalent to eq 10 and corresponds to the two loop diagrams
shown in Figure 2.
Appendix B: Evaluation of Equation 13
Expanding the time-ordered integrals in eq 10, we get eight
expressions which correspond to the eight ladder diagrams
shown in Figure 4. Writing down the time evolution explicitly,
the signal becomes

∫

∫ ∫ ∫ ∫

∑ ∑

∑

ω τ= ℜ * *

×

ω τ

τ

−

′ ′
′ ′ ′ ′S t T T T T

t t t t S

( , ) 2 d e

d d d d

el
f
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t
i t

ss gg x y
s x sx gy g y
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t

t

t

t

i
i

( )

,

1 2 3 4
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o

0

0

1

0

2

0

3

(B1)

where Si corresponds to the ith ladder diagram (Figure 4) given
as

τ= ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω

†
′
†

′
†

′
† †

′
− − +′ ′

S V t V c t c t c t c t

c c c c

( ) ( ) ( ) ( ) ( ) ( )

e

L R s L sR g L gR o

xL x R yL y R o
i t t t t

1 1 2 3 4

( )x x y y1 2 3 4
(B2)

τ= ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω

†
′
† †

′

† † − + −′ ′ ′

S V t V c t c t c t c t

c c c c

( ) ( ) ( ) ( ) ( ) ( )

e

L R s L sR gR g L o

xL xR yR yL o
i t t t t

2 1 2 3 4

( )x x y y1 2 3 4
(B3)

τ= ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω

†
′

† †
′

† † − − +′ ′

S V t V c t c t c t c t

c c c c

( ) ( ) ( ) ( ) ( ) ( )

e
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(B4)

τ= ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω

† †
′ ′

†

† † − + + −′ ′

S V t V c t c t c t c t
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( ) ( ) ( ) ( ) ( ) ( )

e

L R gR g L sR s L o
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(B5)

τ= ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω

†
′
†

′
†

† † − + −′ ′

S V t V c t c t c t c t
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( ) ( ) ( ) ( ) ( ) ( )

e
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(B6)

τ= ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω

†
′
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′
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τ= ⟨⟨ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω

† †
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†
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τ= ⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

× ⟨⟨ ̂ ̂ ̂ ̂ ⟩⟩ ω ω ω ω
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†
′
†
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(B9)

For clarity, we first consider the evaluation of expression S1.
We denote the ground state to be ∑a ρaa|a⟩⟨a| (ρaa is the initial

Figure 11. Ladder diagrams involving (i) coherence induced
luminescence and (ii) higher order Fock space coherence. In i, the
pathway does not populate a charged state and evolves coherently
throughout. In ii, during the time evolution t3 → t2, the state of the
system is |c,N−1⟩⟨b,N+1|. This higher order Fock space coherence
occurs with extremely low probability. These pathways are ignored in
the present calculations.
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probability) and insert the identity I = ∑n|n⟩ ⟨n|, in terms of
molecular many-body states |n⟩. Using the mapping between
Liouville space and Hilbert space,35 we have

ρ ρ

ρ ρ

ρ ρ

ρ ρ

̂ | ⟩⟩ ≡ ̂

̂ | ⟩⟩ ≡ ̂

̂ | ⟩⟩ ≡ − ̂

̂ | ⟩⟩ ≡ − ̂

† †

−

† − + †

c c

c c

c c

c c

(B10)

(B11)

( 1) (B12)

( 1) (B13)

iL i

iL i

iR
M N

i

iR
M N

i
1

where ρ = ∑|M⟩⟨N| is the Hilbert space density matrix. The
system-only correlation function in S1 can be recast into the
Hilbert space operators.

∑
τ

ρ

⟨⟨ ̂ ̂ ̂ ̂ ̂ ̂ ⟩⟩

= | |

× ω ω ω ω ω ω τ

†
′
†

′
†

†
′ ′

†

+ + + − + −

V t V c t c t c t c t

V c c c c

( ) ( ) ( ) ( ) ( ) ( )

e

L R s L sR g L gR o

abcde
aa de g g s s

i t t t t t

1 2 3 4

2
,ab ,ca ,bd ,dc

( ( )( ))ab bc dc de f ed4 3 2 1 (B14)

where we denoted the matrix element, Ak,nn′ = ⟨n|Ak|n′⟩.
The lead correlation function in S1 can be recast into the

Hilbert space as ⟨⟨cx̂Lcx̂′RcŷL
† cŷ′R⟩⟩o = ⟨cŷ′cx̂′

† cx̂cŷ
†⟩. Since the two

leads do not interact among themselves one can separate the
four point correlation function as a product of two separate two
point correlation functions, ⟨cŷ′cx̂′

† cx̂cŷ
†⟩ = ⟨cŷcŷ

†⟩⟨cx̂
†cx̂⟩ +

⟨cx̂cx̂
†⟩⟨cŷ

†cŷ⟩ + ⟨cŷcŷ
†⟩⟨cŷ

†cŷ⟩ + ⟨cx̂cx̂
†⟩⟨cx̂

†cx̂⟩. So, ⟨cx̂
†cx̂⟩ = f x and

⟨cx̂cx̂
†⟩ = 1 − f x = fx̃, where f x’s are the Fermi functions of the

lead at the energy ωx such that x ∈ l, r defined as f x = 1/
(e(ℏωx−μx)/kTx + 1) and μx is the chemical potential of the xth
lead which are at temperatures Tx. The contribution from S1 to
the signal after simplification can be written down as

∫ ∫ ∫ ∫ ∫
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(B15)

The time integrals can be done by following the standard
integral

∫ ω
′ =

− Γ
ω

ω

−∞

′

Γ →
t

ie
i

d e lim
( )

k
i t

i k

mn mn0
mn

mn

mn

(B16)

These integrals correspond to the Greens functions discussed
in rule 2. Here Γmn is interpreted as the inverse lifetime of the
transition m → n. By taking t0 → ∞ and simplifying S1

el, we get

∑ ∑ ∑ω
ρ

ω ω ω ω
= − ℜ
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̃ ̃ ̃ ̃

×
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(B17)

where

ω
ω ω

ω
ω
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+ − Γ

̃ =
− Γi i

1
( )

1
( )ab

y ab ab
cb

cb cb

(B18)

ω
ω ω

ω
ω ω

̃ =
+ − Γ

̃ =
− − Γi i

1
( )

1
( )cd

cd x cd
de

de f de

(B19)

We now assume the lead states form a continuum and
replace the summation over lead states by integrations over lead
energies. This allows us to include the density of states (Ων)
corresponding to the leads. We further assume that the
tunneling coefficients are independent of energy. So we get

∫ ∫∑ ∑ ∑ω ω ω ω ω

ρ

ω ω ω ω

= − ℑ Ω Ω

×
| |

Γ ̃ ̃ ̃ ̃

× ̃ + ̃ + ̃ + ̃

ν ν

ν ν ν ν

′ ′ ′∈

′
* ′

′
′*

†
′ ′

†

S

T T T T
V c c c c

f f f f f f f f

( ) 2 d ( ) d ( )

( )

el
f

ss gg abcde l r
x x x y x y

s s g g
aa de g ab g ca s bd s dc

ab cb cd de

x y y x x x y y

1
, ,

2
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(B20)

The evaluation of eq B20 is far from a triviality. However, one
can analytically evaluate the signal at zero temperature where
there exists only unidirectional flow and no thermal effects ( f l =
1 and f r = 0). Thermal effects are known to play an important
role in affecting electron transfer processes42 which in turn may
affect the optical properties. However, due to analytical
restrictions to evaluate a thermally affected optical signal eq
B20, we invoke the zero temperature limit. A particular
advantage of the zero temperature limit is that it allows
identification of the ground state (ρaa = 1 can be achieved.) We
point out that eq B20 can be numerically evaluated using some
mathematical form of the lead density of states to obtain a
thermally affected electroluminescent signal. We are however
interested in analytical evaluation and reduction of computa-
tional costs. So, in the zero temperature limit, we have

∫ ∫
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(B21)

A realistic quantity is the derivative of the signal with respect
to external bias. The bias eV in molecular junctions is analogous
to an incoming excitation field in conventional spectroscopy.
We use μl = μ0 + eV and μr = μ0 and assume μ0 = 0. We
differentiate the preceding signal with respect to external bias to
get

∫
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The differentiation with respect to bias gives the eV
dependence in the first inward interaction (rule 4). Assuming
a slowly varying density of states, we can make use of the
integral
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∫ ∫χ
δ χ χϑ

Ω ϑ
+ ϑ − Γ

= ϑ Ω ϑ +ϑ = Ω
Γ→

∞ ∞

i
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( )
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d ( ) ( ) ( )i
i i

0 0 0

(B23)

We get
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This integral gets rid of the first outward interaction as
discussed in rule 3. We assume that the density of states is
independent of energy (wide band approximation) and is equal
in left and right leads. Now we get
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ω ω
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ω ω
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(B25)

This expression is identical to eq 11 if one writes the frequency
dependences in terms of the Greens function. Similar steps can
be followed for all of the diagrams to evaluate the full signal.
The same result for the signal is obtained by reading the ladder
diagrams directly following the subsequently mentioned rules.
(1) Each interaction with an operator A contributes a matrix

element of the type ⟨m|Ak|n⟩ = Ak,mn. The many-body state m
(n) corresponds to the state after (before) the interaction. On
the ket (bra) side, these are written down from top to bottom
(bottom to top). For example, in Figure 4, the interaction at
time t4 contributes as †̂cg ab, while the one at t3 contributes as
̂ ′cg ca, .
(2) Each time evolution from bottom to top in the ladder

diagram is represented by a system Greens function which
depends only on the energies of the states involved during that
specific evolution and is defined as

ω
ω

=
− Γ
i

i
( )mn

mn mn (B26)

Γ mn is the inverse lifetime of the excitation m → n, and ωmn =
ωm − ωn is the energy difference between the involved states.
(3) The evolution starting from the first outward interaction

does not contribute to the signal.
(4) The Greens function corresponding to the first inward

interaction has an additional energy dependence due to the
applied bias, (ωmn±eV). For the left (right) branch, the sign
on eV is − (+).
(5) The Greens function in the final evolution gets an extra

frequency dependence of the detected signal, (ωde−ωf) such
that |d⟩ → |e⟩ is the detected transition. Each lead interaction
brings in a factor of molecule−lead coupling coefficient.
(6) The full signal is equal to twice the real part of the

product of all of the preceding factors and square of the lead
density of states.
In section III, we used these rules to write down the

contribution from the ladder diagram shown in Figure 4i.
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