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ABSTRACT: We present a hierarchy of Fermi golden rules
(FGRs) that incorporate strongly coupled electronic/nuclear
dynamics in time-resolved photoelectron spectroscopy
(TRPES) signals at different levels of theory. Expansion in
the joint electronic and nuclear eigenbasis yields the
numerically most challenging exact FGR (eFGR). The
quasistatic Fermi Golden Rule (qsFGR) neglects nuclear
motion during the photoionization process but takes into
account electronic coherences as well as populations initially
present in the pumped matter as well as those generated
internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the
electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon
approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of
TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and
the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave
packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving
splitting between electronic states of the neutral molecule in the curve-crossing regime.

1. INTRODUCTION
Photoelectron spectroscopy1(PES), in which the kinetic energy
of electrons liberated from a sample via interaction with light is
measured, has long been utilized to gain knowledge of the level-
structure of molecules and materials. Energy conservation
implies that the photoelectron energy is indicative of the
difference between the frequency of ionizing radiation and the
ionization potential of the material. More recently, the
technique has been extended to the time-domain. In time-
resolved photoelectron spectroscopy2(TRPES), a pump pulse
prepares the molecule in a nonstationary state, the dynamics of
which are subsequently tracked by varying the delay time
between the pumping pulse and a subsequent ionizing XUV or
X-ray pulse, the detected quantity being the energy-resolved (or
energy integrated) photoelectron yield. With the advent of
ultrashort pulses, such experiments are able to achieve
femtosecond resolution of excited state dynamics, allowing
one to stroboscopically track ultrafast photochemical processes
and nuclear dynamics.
Special attention has been drawn to the nonadiabatic

dynamics through Conical Intersections (CoIns) due to their
broad impact on photochemical and even photobiological
processes.3−7 CoIns provide ultrafast, nonradiative decay
pathways which influence product yields and reaction rates in
virtually all photochemical processes. Near a CoIn, the nuclear
and electronic degrees of freedom become strongly coupled,
and the Born−Oppenheimer approximation (BOA), which is
based on the separation of electronic and nuclear frequencies,
breaks down.8,9 The passage through a CoIn can be detected by
vibrational spectroscopic signatures,10−13 fast population

dynamics,3,14 and TRPES.15,16 However, with shorter pulses
in the attosecond regime available, measuring17 and even
controlling the electronic dynamics18 becomes possible. With
the increasing availability of ultrashort pulses from high
harmonic generation sources19,20 and free electron lasers,21

novel techniques based on a direct measurement of the
electronic coherence become feasible.22,23

The nuclear coupling in the CoIn-region transfers population
between the electronic states, while also generating coherences
between them. In this paper, we show that TRPES with
subfemtosecond pulses can be utilized to detect the electronic
coherence created by the non-BOA coupling encountered by a
nuclear wavepacket as it passes through the region of a CoIn.
Multimode wave packet simulations of the TRPES of
pyrazine24,25 show that the time-dependence is essentially an
overlay of electronic population with coherent nuclear
dynamics, the latter of which produces oscillations at nuclear
frequencies. This result can be well-understood from the
perspective of a semiclassical Fermi Golden Rule (scFGR, eq 5)
in which the contributions from the various adiabatic electronic
surfaces add incoherently, weighted by their time-dependent
populations. The scFGR is intuitive and frequently employed to
simulate and interpret spectra.15,16,26 It is applicable in the
BOA, where the electronic states do not couple. However, the
non-BOA coupling that redistributes electronic population also
generates electronic coherence, even if none is initially
produced by the pumping process. We show that these
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electronic coherences result in oscillations in the signal
intensity that are missed in the standard scFGR expressions.
Under certain conditions, the period of these oscillations is
indicative of the average energy separation between the neutral
electronic potential surfaces. This effect has been reported from
experiments in the NO molecule,27 which showed subpico-
second oscillations. New subfemtosecond light XUV and X-ray
light sources can access the appropriate time-domain to observe
this effect in polyatomic molecules with larger energy
separations.
This paper focuses on demonstrating the signatures of

electronic coherence in the TRPES signals generated by
subfemtosecond pulses. We provide a novel formalism, which
allows for inclusion of the electronic coherences and show how
well effects are reproduced by the various simulation protocols
with model systems. The paper is organized as follows. In
section 2, we describe the model and the semiclassical Fermi
golden rule for TRPES. In section 3, we obtain an exact
correlation-function expression for the signal as well as a
corresponding exact FGR, written as an expansion in the
eigenbasis. From these exact expressions, we then rigorously
derive the scFGR in section 4 by making the quasi-static
approximation. In the process we obtain, an additional class of
terms, arising from the electronic coherences. We discuss under
what conditions these terms must be accounted for and what
information they carry. In sections 5 and 6, we compare the
features of the different levels of approximation using
simulations for model systems.

2. FERMI’S GOLDEN RULE FOR TRPES
We describe TRPES with a Hamiltonian of the form discussed
in ref 28, which neglects the interaction between the ionized
molecule and the photoelectron. We work in the adiabatic basis
and consider a set of neutral electronic states (labeled by a, b)
and ionized electronic states (labeled by α). The nuclear kinetic
energy operator (T̂) generates nonadiabatic coupling between
the neutral electronic states. This coupling is responsible for
population transfer between electronic states and also generates
coherences that can impact the signal, as we will show. For
simplicity, we only consider such coupling in the neutral
molecule. We therefore write the total Hamiltonian as

̂ = ̂ + ̂ + ̂H H H H t( )pM x (1)

We assume that the pumping process bringing the system to a
nonstationary state is temporally well-separated from the
probing X-ray pulse. Thus, we have omitted the interaction
with the pumping field for simplicity. The molecular
Hamiltonian is

∑ ∑ ∑ α α̂ = | ⟩ ̂ + ̂ ⟨ | + | ⟩ ̂ ⟨ | + | ⟩ ̂ + ̂ ⟨ |
α

α αH a T E a a T b T E( ) ( )
a

a a
a b

abM
,

(2)

with ̂Ea ( α̂E ) is the energy of the a-th (α-th) adiabatic electronic
state of the neutral (ionized) molecule, and T̂ is the nuclear
kinetic energy operator which couples states in the neutral
species. Nonadiabatic couplings between ionized states are
ignored. All of these quantities are therefore operators in the
nuclear subspace (as indicated by the circumflexes). Following
ref 28, we utilize a second-quantized description of the
photoelectron states and a first-quantized description of the
bound states. This facilitates our treatment of PES in analogy
with spontaneous light emission and the inclusion of molecule-

photoelectron interactions (the latter are beyond the scope of
this paper and not included in our model). We take the
photoelectron states to be independent of the nuclei and
assume they do not interact with the ion (justified for
sufficiently high-energy photoelectrons) and therefore write

∑ ε̂ = ̂ ̂†H c cp
p

p p p
(3)

for the photoelectron Hamiltonian (cp̂
†, cp̂ are Fermi creation/

annihilation operators for free photoelectrons with energy εp).
Note that the formalism can be straight-forwardly applied to
photo detachment29 as well, which only differs in the initial and
final states (anion to neutral).
We work in the direct product space of bound (molecular)

and continuum (photoelectron) states, and the interaction with
the photoionizing X-ray pulse is then written as

∑ μ α μ α̂ = − ̂ ̂ | ⟩⟨ | + ̂ ̂ | ⟩⟨ |
α

α α
† † †H t E t c a c a( ) ( )

a
a a

p
p p p px x , ,

(4)

where Ex(t) is the ionizing X-ray pulse envelope. Throughout,
we work in the interaction picture with respect to Ĥint(t) =
Ĥx(t) and use atomic units, setting ℏ = me = e = 1. The
electronic matrix elements of the transition dipole remain
operators in the nuclear space, as indicated. For simplicity, we
assume that μ̂ is independent of the momentum p, which is a
reasonable approximation for fast photoelectrons,30 but not for
slow electrons which do interact with the ion.
The photoelectron spectrum obtained via ionization by an X-

ray pulse with frequency ωx and arrival time td is most
commonly simulated using the scFGR16

∫
∑

ε ω ω ε ω

ε ω μ ρ

δ ε ω

= | |

= ⟨| |

× − + − ⟩
α

α

α

S t d E S t

S t t t

t t

q q

q q

( , ) ( ) ( , , )

( , , ) ({ }( )) ({ }( ))

( ({ }( )) ({ }( )))

d d

d
a

a d aa d

d a d

p p

p

p

sc x x x
2

scFGR,0 x

sc,0 x
2

x (5)

where {q}(t) is the time-dependent set of nuclear coordinates
(now written explicitly since they are computed classically), and
⟨...⟩ indicates an averaging over these coordinates. This
averaging can be done at various levels of theory (ab initio
multiple spawning,31 surface hopping,32 etc.). Below, we will
derive a fully quantum-mechanical version of the scFGR, in
which the averaging comes as expectation values taken over the
time-dependent nuclear wave function. This derivation will
clarify the origin and applicability regime of eq 5 while naturally
generating additional terms proportional to the electronic
coherence ρab. Note that eq 5 only contains terms proportional
to the populations ρaa and the signal is solely dependent on the
power spectrum of the ionizing X-ray pulse |Ex(ω)|

2. In
contrast, the coherence terms appear with Ex(ω)Ex*(ω′), which
can be manipulated by on the phase of the ionizing field.

3. THE EXACT TIME DEPENDENT PHOTOELECTRON
SIGNAL

We follow the microscopic treatment outlined in refs 28 and 33
and define the photoelectron signal as the energy-resolved,
integrated rate of change of the number of photoelectrons
which gives the total energy-resolved photoelectron yield. This
results in (see Appendixes A and B)
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∫ ∫ε μ μ= ′ ̃* ̃ ′ ′ ⟨ ̂ ̂ ′ ⟩ε ω− − − †S t dt dt E t E t t t( , ) ( ) ( )e ( ) ( )d
i t t

pe x x
( )( )

0
xp

(6)

where ⟨...⟩0 indicates an expectation value with respect to the
initial state |Ψ(t0)⟩ = |ψ(t0)⟩⊗|ϕ(t0)⟩ with ψ0 and ϕ0 the initial
electronic and nuclear wave functions. The assumption of a
product state form for the initial total wave function is justified
when a single excited electronic state can be targeted by the
pumping process, but the generalization to a sum of such
product states is straightforward if less succinct. The “e”
subscript stands for “exact” and serves to differentiate it from
the various approximate expressions defined below. In the
above equation, the photoelectron part of the dipole correlation
has been evaluated (this is possible since [Ĥp, ĤM] = 0) and
μ̂(μ̂†) “annihilates” (“creates”) the ion

∑μ μ α̂ ≡ ̂ | ⟩⟨ |
α

α
† a

a
a

(7)

We note that eq 6 assumes a uniform density of photoelectron
states and will only be physical for εp > 0. This can be ensured
by shifting the carrier frequency of the ionizing pulse. We have
also expanded the electric field amplitiudes into their positive
and negative frequency components with carrier frequencies
(Ẽx

(*)(t)e∓iωxt) and kept only the rotating-wave terms. Equation
6 is the most straighforward way to simulate the time-resolved
photoelectron spectrum, and this will be done for a model
system in sections 5 and 6.
The molecular dipole correlation function in eq 6 can be

straightforwardly expanded in the eigenstates of ĤM in the full
nuclear+electronic space. Indexing such states by i, j, k, ... and
expanding the initial wave function |Ψ0⟩ = ∑ici0|i⟩, we obtain

∑ ∑

∑

ε μ ε ω ε ε

ρ μ δ ε ω ε ε

= | ̃ − − + |

→ | ̃ | − − +

S t c E

E

( , ) ( )

( )

d
k i

i ki i k

ki
ii ki i k

p p

p

e 0 x x
2

x
2

x
(8)

where the last relation follows on assumption of a mixed state
with population of state i given by ρii (electronic decoherence
to such a mixed state can be described more rigorously in
Liouville space28) and assuming a narrow-band pulse power
spectrum. This exact Fermi Golden Rule (eFGR) in the full
nuclear+electronic space is always possible to write but difficult
to implement. The difficulty lies in the calculation of the
eigenstates which is numerically intractible for all but the
simplest systems. This form does however reveal that TRPES
can be written as a sum of squares of transition amplitudes and

is thus positive-definite (as must physically be the case). Also of
note is the fact that the signal consists of an incoherent sum of
exact population terms that do not mix; population transfer
does not occur. Of course, this is a special property of the
eigenbasis and does not generally hold for the product-state
(adiabatic or diabatic) bases. This is of particular importance
for CoIns since the “good basis” becomes “bad” near the CoIn
as the BOA breaks down and the nuclei couple different
electronic states.
It is important to note that expressions formally equivalent to

eq 23 can also be obtained by calculating the expectation value
of the photoelectron population for any time after the passage
of the ionizing pulse. This is easily seen from the fundamental
theorem of calculus on eq 19 and the initial condition of no
photoelectrons.24,25 We have presented this slightly different
derivation to highlight the relationship with transient
absorption and other heterodyne-detected signals, which are
derivable from the integrated rate-of-change of the photon
number.
For comparison to the eFGR, it will be useful to also develop

an understanding for the separate roles that electronic
populations and coherences play in eq 6 (note that populations
and coherences are basis-dependent and we refer here to the
adiabatic basis as opposed to the full eigenbasis which is not
practial to utilize). To that end, we rewrite eq 6 using eq 7 as

∫ ∫
∑

∑

ε

μ μ

μ μ

= ′ ̃* ̃ ′ ′

× ⟨ ̂ * ̂ ̂ − ′ ̂ ̂ ′ ⟩

+ ⟨ ̂ * ̂ ̂ − ′ ̂ ̂ ′ ⟩

ε ω

α
α αα α ϕ

α
α αα α ϕ

− − −

†

≠

†

S t dt dt E t E t

M t M t t M t

M t M t t M t

( , ) ( ) ( )e

( ( ) ( ) ( )

( ) ( ) ( ) )

d
i t t

a
a a a a

a b
b b a a

pe x x
( )( )

0 0

,
0 0

p x

0

0

(9)

In the above, we have defined the electronic transition
amplitudes

ψ

α α

̂ = ⟨ | | ⟩

̂ = ⟨ | | ⟩αα

− ̂

− ̂

M t a

M t

( ) e

( ) e

a
iH t

iH t

0 0
M

M (10)

where the expectation values are now solely over the initial
nuclear wave function. The assumption of no coupling between
ionized electronic states of the molecule prevents us from
having to consider such terms as M̂βα(t) for β ≠ α.
The first term in eq 9 represents the contribution of

electronic populations, while the second term contains the
coherence contributions. If the state initially prepared by the
pump contains no electronic coherences and the states |a⟩ do
not mix during the time propagation (they are eigenstates in
the electronic subspace and the BOA holds), then the
coherence terms would vanish by orthogonality. If either of
these conditions is violated, the coherences must be accounted
for.

4. THE QUASISTATIC APPROXIMATION
To obtain the final FGR-like expression, we will substitute the
temporal field envelopes in eq 9 for their Fourier transforms
and approximate the nuclei as static during interaction with the
ionizing pulse. This gives the quasi-static Fermi Golden Rule
(qsFGR)

ε ε ε= +S t S t S t( , ) ( , ) ( , )d d dp p pqs qs
pop

qs
coh

(11)

Figure 1. Two loop diagrams for the TRPES signal (eq 22). Since the
usual rules for loop diagrams maintain time-ordering, we show these
two loops rather than a single loop with unrestricted times as would be
implied by eq 6.
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∑ε ρ μ ε ω= | ̃ − + − |
α

α αS t t t E t t( , ) ( ) ( ) ( ( ) ( ))d
a

aa d a d d a dp pqs
pop

x x
2

(12)

∑ε ρ ϕ ϕ μ μ

ε ω

ε ω

= ⟨ | ⟩

× ̃* − + −

× ̃ − + −

α
α α α α

α

α

≠

†S t t t t t t

E t t

E t t

( , ) ( ) ( ) ( ) ( ) ( )

( ( ) ( ))

( ( ) ( ))

d
a b

ab d b d a d b d a d

d b d

d a d

p

p

p

qs
coh

,

x x

x x (13)

where we have replaced ca(t)cb*(t) = ρab(t) for the electronic
populations (a = b) and coherences (a ≠ b) and explicitly
separated the population and coherence terms ( b and μαb are
defined in analogy with eqs 39 and 40). This is a FGR type
expression in the electronic space where the time dependence
due to expectation values is taken over the time-dependent
nuclear wave packet as opposed to the full nuclear+electronic
space. Since the summations in eq 11 contain far fewer terms
than those in eq 8, this expression is much more tractable. On
the other hand, it includes terms that are absent from the
scFGR (eq 5). The scFGR is an approximation to the
population part of the qsFGR (eq 12), which we term the
quasi-static population Fermi Golden Rule (qspFGR) in which
the nuclear propagation is treated semiclassically to obtain the
time-dependence of the parameters (energies, dipoles, and
populations).
Arriving at eq 9 entails no loss of generality. The key

approximation, which is reflected in eqs 35−36 and 38−40, is
that the molecule interacts with the ionizing X-ray pulse faster
than the nuclei can appreciably move (the quasistatic
approximation) and that the time scale of nuclear motion is
much longer than the coherent electronic oscillation period.
This breaks down in the vicinity of a CoIn where the electronic
energy gap vanishes. We have thus arrived at four versions of
the FGR: (1) The exact FGR in the nuclear+electronic space
(eq 8), which does not mix populations (specifically, |ψ0⟩ =
|i⟩⇒|ψ(t)⟩ ∝ |i⟩) since it is written in the eigenbasis. (2) The
“quasistatic” FGR, which approximates the correlation function
(from which the eFGR was obtained) by assuming frozen
nuclei during the ionizing pulse in order to obtain an intuitive
formula similar to the eFGR but in a more numerically tractable
basis. (3) The “quasistatic population” FGR (qspFGR), which
neglects the electronic coherences in the qsFGR. (4) The
“semiclassical” FGR (eq 5) which approximates the qspFGR.
Equation 12 still contains expectation values of the electronic
energies taken over the exact nuclear wave function. Although
this is an improvement over eq 8 (since the nuclear wave
function can be numerically propagated without obtaining the
exact eigenstates), eq 12 is still commonly approximated as in
eq 5 by taking the nuclei as classical objects moving
stochastically and then averaging over the resulting trajectories.
In this hierarchy of golden rules, the latter two (eqs 12 and

5) appear nearly identical, and very similar to the exact (eq 8).
However, as we remarked earlier, the latter two are written in a
product adiabatic basis rather than the exact nuclear+electronic
eigenbasis. While this make simulations easier due to the
smaller number of terms in the summation, it also means that
the states can couple and will generally mix. This mixing will
transfer electronic population between states while generating
electronic coherences (eq 13). While the quasi-static
assumption of frozen nuclei during the ionization process
may be well-justified for ultrashort pulses, dropping the
electronic coherence terms is not justified when coherences
are internally generated by the propagation due to the

breakdown of the BOA and the coupling of electronic states
through the nuclei. We have thus shown that the FGR
approach can easily be extended by the inclusion of coherence
terms (eq 13) to obtain the more general qsFGR (eq 11). This
allows the effects of electronic coherence on the TRPES signal
to be calculated at a similar computational cost to the
commonly employed scFGR. In section 5, we will explore the
consequences of these internally generated coherences and
what information may be obtained from their contribution to
the signal.
We now examine more closely eq 13, which encodes the

coherence contributions to TRPES within the quasistatic
approximation. It is apparent that, while the population terms
depended on the power spectrum ω| ̃ |E ( )x

2, the coherence
terms depend on the frequency-dependent phase of the

ionizing pulse via ω ω̃* ̃ ′E E( ) ( )x x , opening up another avenue
of control for these signals. Also of note is the nuclear
coherence factor ⟨ϕαb(td)|ϕαa(td)⟩ (missing from the popula-
tions since the nuclear wave packets are normalized). This
factor represents the overlap of the nuclear wave packet on
state a at time td with that on state b. Since the two potential
surfaces are typically different, the two wave packets will
generally not overlap appreciably after some time. This factor
therefore adds a decay that complicates the observation of the
coherence terms and can justify their exclusion, as in the
scFGR, when the decay is sufficiently fast relative the delay
times td. This is ordinarily the case, for example, in slow
picosecond TRPES but is not generally true in the ultrafast
regime. In a more comprehensive treatment, nuclear movement
during ionization, as well as spectator modes, would further
decohere these terms. While these effects are important, they
are not the primary interests of this paper.
As will be illustrated in the next section, the most visible

signature of the coherence terms in TRPES is a characteristic
oscillatory pattern in the td-dependence of the electronic
coherence ρab(td). The frequency of this beating pattern allows
one to determine the separation between states a, b without
direct spectral resolution. In principle, the actual oscillation
period is related to the eigenenergies, which complicates the
interpretation of the beating pattern in the region of the CoIn.
Once the nuclear wave packet is sufficiently far from the CoIn
for the intersurface coupling to be small relative to the
electronic energy separation, the frequency can safely be
interpreted as corresponding to the gap. In our models, we find
that the onset of this regime is relatively rapid (within a few fs
of the wave packets arrival at the CoIn). In this sense, the CoIn
acts as a scatterer that transfers population between the two
electronic states but also sets in motion a coherent oscillation.
Finally, we note that, if one simply invokes the reasonable

approximation that ρab(td) ∼ ρabe
−iωabtd, we can transform a↔b

and combine terms to get

∑ε ω∼S t t( , ) cos( )d
ab

ab dpqs
coh

(14)

where we have dropped all other factors inside the summation.
This term is clearly not positive-definite, and the coherence
term can therefore both enhance or suppress the population
term in the photoelectron signal. Thus, the presence of
coherence can suppress or enhance the “primary” photo-
ionization process from populations. This can be understood as
the presence of the coherence opening up new pathways that
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interfere destructively or constructively with the population
ionization pathways.

5. COMPARISON OF THE FGR EXPRESSIONS
In this section, we will simulate the TRPES signal for a model
involving a single nuclear coordinate with the various FGR
expressions as well as with eq 6. The correlation function
expression implicitly includes both population and coherence
contributions, as can be seen from its expanded form in eq 9,
and, combined with a state propagation scheme, offers an exact
way to simulate the full TRPES signal. Rather than specifying
the adiabatic potential surfaces, we will work from the outset in
the diabatic basis. This simplification to a scalar coupling retains
the essential physics of an intersurface coupling in the region of
a degeneracy and the population transfer and coherence
creation that follows from such coupling. We assume three
relevant electronic states, two un-ionized (labeled |1⟩ and |2⟩)
and one ionized (|3⟩). The two un-ionized states intersect and
are coupled near the intersection point, and all three surfaces
are taken to be harmonic with the same shape. This is the
simplest model that can illustrate the effect of electronic
coherences on TRPES signals and will serve as a readily
comprehensible test case. The Hamiltonian in the diabatic basis
reads

∑̂ = | ⟩ ̂ + ̂ ⟨ | + | ⟩ ̂ ⟨ | + | ⟩ ̂ ⟨ |
=

H j T V j V V( ) 1 2 2 1
j

j jM
1

3

12 21
(15)

where T̂j ≡ −
m

d
dx

1
2

2

2 , the nuclear kinetic energy operator, is now

diagonal in the electronic space (see Appendix A for
parameters). We give all three diabatic surfaces the same
curvature to maximize the coherence time which is limited by
the nuclear wave function overlap.
The initial wavepacket (assumed to be on surface 1 initially)

as well as all potential surfaces and the intersurface coupling are
displayed in Figure 2(top). We then propagate this initial
wavepacket using a Short Iterative Lanczos (SIL) scheme34 and
calculate the two-time dipole correlation function, working in
the Condon approximation and taking all dipole elements to be
unity for simplicity. More rigorous treatment of μ can be
approximated for example by Dyson orbitals,35 which introduce
weight factors for different ion states as well as angular
distributions. The time-dependent populations of the neutral
electronic states and the magnitude of their coherence are
plotted in Figure 2(Bottom). Taking the ionizing pulse to be a
Gaussian with central time td, standard deviation σT, and carrier

frequency ωx(Ex(t) = σ ω− − −e et t i t(( ) /(2 ))td
2 2

x ), we calculate eq 6
and compare to the qspFGR result (eq 12) in Figure 3. This
comparison immediately reveals the presence of coherent
oscillations in the directly propagated signal that are absent in
the approximate FGR result. This failure of the qspFGR is due
to the fact that the electronic states (whether adiabatic or
diabatic) are not eigenstates of the molecular Hamiltonian. The
coupling V̂12 couples un-ionized electronic states, and the
propagator therefore mixes them. This renders the coherence
term in eq 9 finite, and we must go beyond the qspFGR/
scFGR.
Although the restricted time window used to capture the

ultrafast dynamics has left us with insufficient spectral
resolution to directly resolve the two un-ionized surfaces, the
beating pattern reveals their splitting. A visual inspection of the
coherent oscillations reveals a period of roughly 10 fs. The

average separation between un-ionized electronic surfaces from
td = 45 fs to td = 65 fs (roughly the time from first peak to last
peak in the oscillation pattern) corresponds to a beating period
of 9.74 fs, a relative error of only 2.6%.
In deriving eq 12, we have made the quasistatic

approximation, where we neglected the kinetic energy for the
duration of the ionizing pulse as well as the contribution from
electronic coherences. To investigate the relative importance of
these two approximations, we also have computed separately
the first term in eq 9, which neglects coherences but makes no
assumption of frozen nuclei, and eq 13, which is the
contribution from electronic coherences but assumes frozen
nuclei during the ionization. Although it is clear that the origin
of the oscillatory pattern is the coherence terms, we would like
to determine how good the quasistatic approximation is. In
particular, if the qsFGR (eq 11) is a good approximation to eq
6, then this simple patch-up can account for the coherent
oscillations, and we could avoid the extra propagation that
comes with violations of the quasistatic approximation. The
qsFGR therefore offers a simple extension of the scFGR that
captures the effects of electronic coherences generated
internally by the propagation through a region of nonadiabatic
dynamics. It is important to note, however, that correctly
reproducing these oscillations will require accurate propagation
of the magnitude and phase of the coherence ρab(td) .

6. ELECTRONIC COHERENCES CREATED AT CONICAL
INTERSECTIONS

We now present simulations of the TRPES signal for a
molecular model system representing the branching space of a
Conical Intersection (CoIn)36 by using the exact expression in
combination with a fully quantum propagation. We take into
account two excited electronic states S1 and S2 and the two

Figure 2. (Top) Nuclear dependence of the diabatic electronic
energies including the potential coupling the two un-ionized surfaces.
The initial nuclear wavepacket (rescaled for visualization) on the V1
surface. (Bottom) The populations and coherence magnitude for the
un-ionized adiabatic states for the first 96 fs. It is noteworthy that the
coherence remains appreciable relative to the populations for some
time after its creation.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00824
J. Chem. Theory Comput. 2016, 12, 740−752

744

http://dx.doi.org/10.1021/acs.jctc.5b00824
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jctc.5b00824&iName=master.img-002.jpg&w=206&h=238


nuclear coordinates x = (xg,xh) that resemble the gradient
difference and the derivative coupling vector, respectively. This
is the minimal model for a CoIn. The cation states D0 and D1
are used as target states to probe the electron dynamics near
the CoIn. The cationic potential energy surfaces (PES) are in
the same nuclear coordinates but do not possess a CoIn in the
space used for the simulations. The ionization energies for D0
and D1 at the CoIn point are 6.9 and 7.5 eV, respectively. The
molecular Hamiltonian is composed of a Cartesian-type kinetic-
energy operator and the corresponding neutral and cation
diabatic PESs

∑= | ⟩ ̂ + ̂ ⟨ | + | ⟩ ̂ ⟨ | + | ⟩ ̂ ⟨ |
=

H j T V j V V( ) 1 2 2 1
j

j j
1

4

12 21
(16)

where V1 and V2 are PESs of the neutral states S1 and S2, V12 is
the diabatic coupling, V3 and V4 are the PESs of the cation

states D0 and D1, and T̂j ≡ ∑ ∈
−

i h g m
d

dx,
1

2 i

2

2 is the nuclear kinetic

energy operator acting on electronic state j (we use a reduced
mass m of 30000 au or ≈16 amu). The transition dipole
moments between the neutral cation states are assumed to be
constant with respect to the nuclear coordinate. The time
evolution is simulated by wave packet dynamics on a numerical
grid using a time stepping scheme (see Appendix B.4). The
initial wave function is created by assuming impulsive excitation
from the electronic ground state S0 to the S2 state.
The time evolution of the populations and the electronic

coherence of the neutral states S1 and S2 is shown in Figure 4.
The wave packet reaches the CoIn within ≈8−15 fs, resulting
in an overall population transfer of ≈30%. The electronic
coherence build up is maximal at 13.5 fs, when the main
fraction of the wave packet has passed the CoIn, followed by a
decay of the coherence caused by the different gradients in S1
and S2. At 20 fs, the wave packet returns and the coherence
rebuilds until the second passage through the CoIn at ≈30 fs.
Between 15 and 25 fs the system the systems moves through a
region, where coupling V12 is negligible and the nuclear wave
packets propagate freely on the potential energy surfaces. Note
that the term electronic coherence is not clearly defined around

the CoIn (i.e., around 10 and 30 fs) since the nuclear and
electronic wave functions are strongly mixed.
The corresponding TRPES signals calculated for the exact

correlation function expression (eq 6) are shown in Figure 5

and Figure 6 for two ionization pulse lengths. The signal in
Figure 5 is calculated for an ionization pulse, which is long
compared to the time scale of the electron dynamics (4 fs
fwhm). The splitting of both states is spectrally resolved at
around 20 fs (the faint signal at 7 eV stems from the S1 state).
However, the fast oscillations which are expected from the
coherence contribution cannot be resolved with the chosen
pulse length. The signal in Figure 6 is calculated for an
ionization pulse short compared to the time scale of the
electron dynamics (0.2 fs fwhm). Here, the spectral features can

Figure 3. Time-resolved photoelectron spectrum for our model simulated using the qspFGR (eq 12) (far left), the full correlation function and a
direct propagation scheme (eq 6) (middle left). Note the prominent oscillations in the latter simulation that reflect the generation of electronic
coherence at the CoIn. This beating pattern is clearly absent from the scFGR simulation on the left. To assess the relative importance of (1) the
quasistatic approximation and (2) neglecting electronic coherences, we also present the population-only contribution to the correlation-function
expression for TRPES (first term in eq 9 (middle left) and compare to the qsFGR (eq 11) (far right). Note the similarity of the exact and quasi-static
results. This indicates that the quasistatic approximation is good enough for qualitative purposes provided electronic coherence terms are included.

Figure 4. Time evolution of the electronic states populations (S2 red,
S1 blue) and the coherence magnitude (black, dashed) for the CoIn
model.

Figure 5. TRPES signal for CoIn with 4 fs FHWM and 20 eV central
frequency.
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not be resolved anymore. The coherent oscillation pattern in
the time domain is now fully resolved and visible between 15
and 20 fs. The two ion states are separated by ≈0.6 eV, and
they can not be distinguished for the chosen pulse parameters.
However, the coherent oscillation pattern is not affected by
presence of two ion states. The coherent features of the TRPES
signal can be matched in an approximate way against the time
evolution of the real part of the coherence ρℜ( )ab (see
Appendix B.4 for details) shown in Figure 7(a). The adiabatic

and diabatic coherence are identical, while the wave packet
leaves the coupling region (Figure 7(b)), and the oscillations in
the signal stem solely from the electronic states. This can be
understood qualitatively by the inspection of eq 9, which
separates the contributions to signal into electronic populations
and coherences. Assuming the Condon approximation and the
limit of short ionization pulses (i.e., the nuclei do not move in
the ion states) the second term in eq 9 is proportional to the
real part of the coherence ρℜ( )ab . Note that a negative ρℜ( )ab
depletes the signal contribution from the populations due to
destructive interference (as for example at 14.5 fs in Figure 7
and Figure 6).
From the comparison of the signals in Figure 5 and Figure 6,

it becomes clear that, in the exact expression, the signal is fully
subject to the Fourier uncertainty − time and frequency have to
be traded off against each other like in an experiment. However,
this is not the case for the qsFGR, where a change in pulse
length only affects the spectral but not the temporal resolution.

7. CONCLUSIONS

In this paper we have presented and analyzed a hierarchy of
expressions for the calculation of TRPES signals. The main
results of the paper are the exact correlation function expression
(eq 6) and the qsFGR (eq 11), which extends the widely used
scFGR (eq 5) via the inclusion of electronic coherences,
accounting for the nuclear overlap between the electronic
states. In contrast to the pure population contribution, this
term is sensitive to the phase of the ionizing electric field and
leads to a beating pattern in the photo electron yield. In model
calculations, we have shown that these oscillations can be
resolved by the use of attosecond pulses. While the exact
correlation function method is mainly intended for use with
wave packet propagation protocols on small systems and can be
computationally demanding, the qsFGR can be used along with
semiclassical molecular dynamics protocols to simulate larger
molecular systems. The presented formalism can be applied in
an analogous way for the description of photodetachment
signals in anions (A− → A rather than A → A+).29

In previous studies,24,25 exact wave function propagations
were used that are formally identical to our eq 6. Those studies
focused on coherent vibrational dynamics and slower electronic
population dynamics. Moreover, a common model to consider
is one in which each neutral state ionizes to a separate cationic
state. In the absence of intersurface coupling in the cationic
manifold, the coherence terms for such models vanish
identically. Although such coupling had been considered,25

we can see by eq 9 that the influence of such terms will be
limited by the temporal duration of the ionizing pulse. When
only electronic population dynamics and coherent vibrational
dynamics are important, the qspFGR (which may be
approximated by the scFGR) is sufficient to simulate the signal
in the quasistatic limit. This approximation is intuitive and
frequently employed.15,16,26 It is only when the two neutral
states can both ionize to the same cationic state and the pulses
employed are sufficiently short to capture the electronic
oscillations that the coherence terms are revealed.
The strategies presented to calculate the signal can readily be

interfaced with existing nonadiabatic molecular (quantum)
dynamics simulation protocols. The most straightforward way
is to evaluate the correlation function eq 6 directly from a time
propagation of a wave function in the combined electronic
+nuclear space. For example, the molecular system can be
propagated in a wave packet approach with the Fourier
method34 in a reduced space of nuclear coordinates37 including
the nonadiabatic couplings.38,39 The numerical evaluation of
the correlation function is then straightforward.10 Alternatively
approximate wave function methods like Multi Configuration
Time-Dependent Hartree (MCTDH)40 can be used to include
more vibrational modes and also to evaluate the correlation
function. Semiclassical wave packet propagation protocols like
Ab Initio Multiple Spawning (AIMS)31 or Hagendorn wave
packets41 provide access to the nuclear wave function and are
thus also suitable for the correlation function method.
However, the numerical effort to calculate the signal grows
quadratically with the number of time steps, since the
correlation function is a function of two variables (t and t′).
Moreover, it requires a propagation on the potential energy
surface of the ionized molecule. This is in contrast to the
various derived FGR expressions, where the numerical effort of
the signal calculation only grows linearly with the number of
steps. The exact FGR expression (eq 8) requires the eigenstates

Figure 6. TRPES signal for CoIn using an ionizing pulse with 200 as
FWHM and 20 eV central frequency.

Figure 7. (a) Time evolution of the real part of the electronic
coherence in the diabatic basis (blue) and the adiabtic basis (black).
(b) Time evolution of the Expectation value of the diabatic coupling
(V12).
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in the full electronic+nuclear subspace and is thus limited in its
applicability. It may however be advantageous in special cases
where a diagonalization of an approximate Hamiltonian is
feasible (for example in combination with a vibronic coupling
Hamiltonian42). The linear scaling with respect to the number
of time steps might outperform the cost of diagonalization in
some cases.
The different types of the FGR presented here neglect the

propagation in the ionized states and only require a single time
propagation, making them suitable for combination with
semiclassical protocols and the description of larger systems.
The scFGR, which neglects the contributions of the electronic
coherences, has been successfully used in combination with
AIMS.16 An extension to use it with the qsFGR (eq 11) seems
straightforward, since AIMS properly includes the necessary
nuclear overlap term (eq 13). In principle, the qsFGR
expression can also easily be applied to all wave function
based methods mentioned above, as long as the nuclear overlap
term is accessible. In contrast to the correlation function, the
qsFGR does not require time propagation in the ionized
molecular states, significantly simplifying its calculation.
Simulation protocols like Tully’s fewest switch surface hopping
(FSSH) method,32 which treat the nuclei classically, are easy to
combine with the scFGR.28,43 However, the basic version of the
FSSH algorithm does not account for the decay of electronic
coherences. The result would be an overestimation of
coherence contributions to the TRPES signal. Extensions of
FSSH, which allow corrections for coherence decay,44−47 may
be used to approximate the nuclear overlap term in eq 13 and
combine the class of FSSH methods with the qsFGR. TRPES
could provide an experimental test for the various simulation
algorithms.
Our model system simulations clearly indicate that a fast

buildup of electronic coherences results in an ultrafast
oscillation pattern in the time domain of the TRPES signal.
Its oscillation period is connected to the energy splitting
between the neutral electronic states. A comparison of the
different signals yields the conclusion that the qsFGR is a good
approximation for the inclusion of electronic coherences
beyond the scFGR. However, the quasistatic approximation
introduces an unrealistic resolution in the time domain by
ignoring the time evolution of the system within the pulse
duration. The qsFGR is thus valid for pulses which are short
compared to the time scale of the internal dynamics with the
scFGR making the additional assumption of neglecting
electronic coherences. We have simulated a model system of
a CoIn between excited molecular states to demonstrate that
the coherent oscillation pattern can be observed in a realistic
setting. To obtain an observable coherence, a system with a
CoIn in the vincinity of the Franck−Condon point is required
to retain a compact wave packet (for example48−51). The
oscillation pattern is revealed if appropriate subfemtosecond
pulses are chosen. The information about the potential energy
surface splitting can then be detected through the oscillation
period in the time domain instead of the frequency domain.
Note that this method accesses information similarly to the
resonant linear absorption signal.22,33

Finally we note that wave functions at CoIns are known to
have a geometric Berry phase52 that depends on the topology
and is independent of the details of the potential surfaces. The
Berry phase so far has eluded detection in chemical systems.
Spectroscopic signals like TRPES and TRUECARS,23 which are
sensitive to the phase of the pulse and the phase of the

electronic coherences, might also provide a new strategy for the
experimental observation of geometric phases.

A. PARAMETERS FOR THE ONE-DIMENSIONAL
MODEL

The model used in section 5 is defined by the following
quantities and parameters (see Table 1).

Diabatic potential surfaces and couplings are given by

λ

̂ = ∓

̂ = +

̂ = −

V k x d

V kx D

V e

1
2

( )

1
2

x

1/2
2

3
2

12
2

(17)

with k, d, and D parameters determining the shape and
locations of the harmonic potential surfaces, and λ the coupling
strength between the two neutral diabatic states. For our initial
state (which is assumed to be the result of some well-timed
pumping process), we take a Gaussian nuclear wavepacket on
electronic surface 1

ϕ

ϕ

=

|Ψ ⟩ = | ⟩ ⊗ | ⟩

σ
− +

x e( )

1

x

0

( 4)

0 0

2

0
2

(18)

B. SIMULATION PROTOCOLS FOR TRPES
In section 5 and Figure 3, we used two different simulation
protocols for TRPES with the same model and initial
conditions. These protocols, based on eq 6 and eq 12,
respectively, both propagate the full nuclear+electronic wave
function quantum mechanically. In this Appendix, we will
explain in greater detail these two simulation procedures.

B.1. Correlation Function Expression. The photoelectron
signal is defined as the energy-resolved, integrated rate of
change of the number of photoelectrons which gives the total
energy-resolved photoelectron yield

∫ε = ⟨ ̂ ⟩S t dt
d
dt

n t( , ) ( )dp p (19)

It depends on photoelectron energy εp and the delay time td of
the X-ray pulse relative to state preparation. The signal that we
derive generally depends on all parameters describing the
ionizing pulse and can be manipulated by pulse shaping, but for
simplicity we only explicitly state the td dependence. Assuming
that the photoelectrons are generated only by interaction with
the X-ray pulse (that is, [n ̂p, ĤM] = 0 where np̂ = cp̂

†cp̂ is the
occupation number of the photoelectron state |p⟩), we have,
from the Heisenberg equation of motion

μ μ̂ ̇ = − ̂ = − ̂ − †̂n i n H iE t[ , ] ( )( )p p p px (20)

where the operator

∑μ μ α̂ ≡ ̂ ̂ | ⟩⟨ |
α

α
† c a

a
ap p

(21)

Table 1. Parameters Used in the Hamiltonian

m k d D λ σ0 σT

5100 au 0.01 Ha 0.2 a0 0.05 Ha 0.01 Ha 0.6 a0 2.5 fs
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annihilates a photoelectron and returns the molecule to an un-
ionized state.
We will carry out the calculation in Hilbert space since we

have an eye toward numerical propagation of the nuclear
+electronic wavefunction. We note however that a Liouville
space treatment would facilitate the incorporation of environ-
mental degrees of freedom (spectator nuclear modes can also
be treated at this level).28 For simplicity, we will not explicitly
incorporate the pumping process but rather take the system to
be prepared in a known nonstationary state at time t0. Since the
initial state of the photoelectron is the vacuum |0⟩, the
expectation values in eq 20 vanish to first order in Ex. Under the
assumption that the ionizing X-ray pulse is well-separated
temporally from the preparation process, we may expand the
signal to second order in the interaction Hamiltonian to obtain

∫ ∫ε θ

μ μ μ μ

= ′ − ′ ′

× ⟨ ̂ ̂ ′ ⟩ + ⟨ ̂ ′ ̂ ⟩† †

S t dt dt t t E t E t

t t t t

( , ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ) )

dp

p p p p

e x x

0 0 (22)

which may also be read directly from the diagrams in Figure 1.
Switching t → t′ in the second term then yields

∫ ∫ε μ μ= ′ ′ ⟨ ̂ ̂ ′ ⟩†S t dt dt E t E t t t( , ) ( ) ( ) ( ) ( )dp p pe x x 0 (23)

Since the photoelectron and the molecular Hamiltonians
commute, we may factor the expectation value and evaluate
the photoelectron part yielding eq 6, which may also be written
in the frequency domain as

∫ ∫ε ω ω
π

ω ω

μ ω ω ε μ ω ω ε

= ′ ̃* ̃ ′

× ⟨ ̂ + − ̂ ′ + − ⟩†

S t
d d

E E( , )
4

( ) ( )

( ) ( )

d

x x

p

p p

e 2 x x

0

(24)

where we have substituted the temporal field envelopes for
their Fourier transforms

∫ ω
π

ω̃ = ̃ ω−E t
d

E( )
2

( )e i t
x x (25)

and the conjugate relation for Ẽx*(t). The first simulation
protocol is based on eq 6 and directly propagates the total
nuclear+electronic wavefunction. Thus, we begin with the
initial state |Ψ0⟩ = |ϕ0⟩ ⊗ |1⟩ and propagate to some tmax in
units of δt (we used δt = 6th ≈ 120as) via the Lanczos
algorithm. This therefore generates a list of wavefunctions

|Ψ ⟩ ≡ |Ψ ⟩ < <− ̂t t t( ) e 0iH t
12 0 max

M (26)

where the “12” subscript emphasizes that, since the system
begins in state |1⟩ and ĤM does not couple neutral and ionized
electronic states, the propagation is entirely in the manifold of
nuclear electronic states. For time t, 0 < t < tmax, we apply the
dipole operator, thus generating a list

μ ̂ |Ψ ⟩ < <† t t t( ) 012 max (27)

of the total wavefunction following dipole excitation at time t.
In our simulations, we take the dipole operator to be merely
map the wavepackets on the neutral surfaces directly to the
ionic surface. Thus,

∑μ μ ϕ̂ = | ⟩⟨ | ⇒ ̂ |Ψ ⟩ = | ⟩ ⊗ | ⟩†

=

†a t t3 ( ) ( ) 3
a 1,2

12 12
(28)

in our model. The correlation function relevant for the TRPES
signal is

μ μ ϕ ϕ⟨ ̂ ̂ ′ ⟩ = ⟨ | ′ | ′ ⟩† − ̂ −t t t t( ) ( ) ( ) e ( )iE t t
12

( )
12

3 (29)

Since the action of the μ̂’s ionizes the system, the remaining
exponential propagates the nuclear wavepacket along the
ionized surface for time t − t′. For every time t′, 0 < t′ <
tmax − δT, we therefore generate a matrix of propagated
wavepackets

ϕ ϕ δ δ| ′ ⟩ = ′ | ′ ⟩ ′ − < < ′ +− ̂ −t t t t T t t T( , ) e ( )iE t t
3

( )
12

3

(30)

representing propagation in the un-ionized manifold up to time
t′ and then in the ionized manifold from t′ to t (with no
restriction on the relative order of t, t′). The restriction |t−t′| <
δT speeds up the calculation and is valid because the electric
field factors Ex(t(′)) restrict t to be near t′ for temporally
limited pulses. In our propagation, we used δT = 30 fs for a
Gaussian field envelope of σx = 2.5 fs. We now obtain the
original correlation function by taking the inner product

μ μ ϕ ϕ⟨ ̂ ̂ ′ ⟩ = ⟨ | ′ ⟩†t t t t t( ) ( ) ( ) ( , )12 3 (31)

Multiplying this quantity by the field factors defines a two-time
function

ϕ ϕ′ ≡ ′ ⟨ | ′ ⟩K t t E t E t t t t( , ) ( ) ( ) ( ) ( , )x x 12 3 (32)

and the evaluation of the TRPES signal (eq 6) amounts to a 2D
Fourier Transform of this function (actually, a “diagonal” subset
of the transformed function K̃(Ω,Ω′) in which Ω = −Ω′). We
thus have

ε ε ω ω ε= − −S t K( , ) ( , )d x xp p p (33)

which depends on time parametrically through the transformed
electric field factors. It is this result that is displayed as the Se in
Figure 3. This same basic procedure was also used to generate
the Se

pop of Figure 3 except that coherences were projected out.
B.2. Semiclassical and Quasistatic FGR. From eq 9, we

make the variable substitutions τ = t −t′, ̅ = + ′t t t( )1
2

to

obtain
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(34)

In order to simplify the exact transition amplitudes introduced
above, we will take the nuclei to be static and neglect the
nuclear kinetic energy during the interaction with the ionizing
pulse. We term this the quasistatic approximation. For the
middle propagators in eq 34, the implications are clear, and we
may write

τ̂ →αα
τ− α̂M ( ) e iE

(35)
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To handle the remaining transition amplitudes, we propagate
under the full Hamiltonian up to the delay time td and then
under the quasistatic approximation. We thus shift the
integration t¯ → t¯ + td and write

τ τ̂ + ̅ ± = ̂ ̅ ± ̂ = ̂τ− ̂ ̅±⎜ ⎟ ⎜ ⎟
⎛
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2
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2

( ) e ( )a d aa a d
iE t

a d0 0
( 1

2 )
0

a

(36)

where the first equality follows from neglecting the adiabatic
coupling after propagation to td and the second equality comes
directly from neglecting the T̂ terms in ĤM. Inserting this into
eq 34, we obtain

∫ ∫ ∫ ∫
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To carry out the t¯ and τ integrations, we now formally act with
the transition amplitudes on the initial nuclear wavepacket.
This propagates the nuclear wavepacket to time td. We then
take the nuclear wavepacket as frozen for the integrations,
allowing us to replace the ’s with their expectation values over
the frozen wavepacket

ϕ ϕ̂ | ⟩ = | ⟩M t c t t( ) ( ) ( )a d a d a d0 0 (38)

with ca(t) the time-dependent propability amplitude associated
with electronic state |a⟩ and ϕa(td) the nuclear wavepacket on
electronic surface a at time td and replace the adiabatic
potentials with

ϕ ϕ

ϕ ϕ

≡ ⟨ | ̂ | ⟩

≡ ⟨ | ̂ | ⟩α α α α

t t E t

t t E t

( ) ( ) ( )

( ) ( ) ( )

a d a d a a d

d a d a d (39)

The second equation follows upon defining the nuclear
wavepacket after dipolar excitation

μ ϕ μ ϕ̂ | ⟩ ≡ * | ⟩α α α
† t t t( ) ( ) ( )a a d a d a d (40)

Such an expression is possible to write because the dipole
operator μ̂αa

† simply maps the original nuclear wavefunction |
ϕa(td)⟩ to a new wavefunction |ϕαa(td)⟩, the details of which
reflect the dependence of the dipole on the nuclear coordinates.
The time-dependence of the resulting c-number μαa* is necessary
since the dipole is not unitary and the transformed nuclear
wavefunction has a time-dependent normalization which is
absorbed into the μαa* . Thus, in this approximation, the vibronic
states can be altered by the dipole operator but not by the time
propagators. Note that if, as in the Condon approximation, the
nuclear wavefunction is unaffected by the electronic dipole
operator, we have |ϕαa(td)⟩ = |ϕa(td)⟩ and μαa* (td) = μαa* and
things simplify somewhat. Inserting eqs 38−40 into 37, we may
now carry out the time integrations since all operators have
been replaced by their expectation values yielding eq 11.

The second simulation protocol used is based on eq 12. We
first note that our uniform dipole operator in the Condon
approximation allows us to drop the μαa factor. Using the same
list

|Ψ ⟩ ≡ |Ψ ⟩ < <− ̂t t t( ) e 0iH t
12 0 max

M (41)

generated in the first protocol, we project onto a neutral state |
a⟩, defining

ϕ⟨ |Ψ ⟩ = | ⟩a t c t t( ) ( ) ( )a a12 (42)

in accordance with eq 38. We now take expectation values of
the electronic energies over this nuclear wavepacket

ϕ ϕ

ϕ ϕ

⟨ | ̂ | ⟩ ≡

⟨ | ̂ | ⟩ ≡α α

t t t

t t t

( ) ( ) ( )

( ) ( ) ( )

a a a a

a a (43)

Combined with the populations |ca(t)|
2, these expectation

values are then all the ingredients to eqs 12, 13, and therefore
11. For the ionizing field amplitude profile Ex(ω), we use a
Gaussian spectral field envelope of width σω

−1 ≈ 2.5 fs for
comparison to the temporal field envelope used in the previous
section. We thereby generate the qspFGR of Figure 3. Note
that both simulation protocols begin with the same wave
function propagated in the neutral manifold. This propagation
is what generates the coherences that lead to the oscillations in
the photoelectron signal. The correlation-function protocol also
requires propagation in the ionized manifold as well as
including electronic coherences which are omitted in the
qsFGR (the quasistatic assumption).

B.3. Parameters for CoIn model (Figures 4−7). We use a
two-dimensional model system inspired by the S2−S1 CoIn in
acrolein.10,28,53 The system has been chosen as a role model to
obtain realistic parameters for the energy splittings between the
PESs and the couplings. The adiabatic and diabatic states were
calculated in the vinicinty of the CoIn with the program
package MOLPRO54 at the CASSCF(6/5)/6-31+G*level of
theory. The two coordinates of the system, xh and xg,
correspond to the orthonormal versions of the derivative
coupling vector and the gradient difference vector, respectively.
The diabatic potential energy surfaces and the diabatic
couplings have been calculated on a 9 × 9 grid with maximum
displacements of ±0.4. The CoIn is in the origin of the
coordinate system. The resulting data is fitted to a third order
polynomial:

= + + + + +

+ + + +

f x x c c x c x c x c x x c x

c x c x x c x x c x

( , )h g h g h h g g

h h g h g g

1 00 10 01 20
2

11 02
2

30
3

21
2

12
2

03
3

(44)

The cation states D0 and D1 are in the same nuclear coordinate
system and determined at the CASSCF(5/5)/6-31+G*level of
theory. The PES for the D0 state is fitted with eq 44. The ion
state D1 (V4) is fitted by a fourth order polynomial:

= + + + + +f x x f x x c x c x x c x x c x x c x( , ) ( , )h g h g h h g h g h g g2 1 40
4

31
3

22
2 2

13
3

04
4

(45)

Table 2. Parameters for the Polynomial Expansions of the Diabatic States of the Two Dimensional Model and Couplingsa

surf. c00 c10 c01 c20 c11 c02 c30 c21 c12 c03

V3 0.260 0.02054 −0.0402 0.3953 −0.03684 0.1665 0.3105 0.1293 −0.2761 0.1213
V4 0.2862 0.0007407 −0.07507 0.1504 −0.232 0.1897 0.2963 0.2851 −0.3168 0.09636

aGiven in atomic units.
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The respective parameter sets cij for the ion states Vs are given
in Table 2. The additional fourth order parameters for V4 are
given in Table 3. The parameters for the two neutral states as

well as a graphical representation are given in ref 23. The
polynomial allows for extrapolation of the data to a wider
parameter range, necessary to run the wave packet simulations.
The potential energy surfaces of the cation states are shown in

Figure 8. The diabatic coupling V12 is created by eq 44 and
shaped by Gaussian functions

=
−⎛
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⎜⎜

⎞
⎠
⎟⎟V f x x h x

x
( , ) ( ) exp

0.08h g h
g

12 1

2

(46)

where h(xh) is

=
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(47)

The Gaussian envelope lets the diabatic coupling term vanish in
areas far from the CoIn and diabatic states become identical to
the adiabatic states. The coefficients can be found in ref 23.
B.4. Wave Packet Propagation. The wave packet

propagation is calculated by time stepping

ψ ψ+ Δ = − Δx t t iH t x t( , ) exp( ) ( , ) (48)

with the Short Iterative Lanczos (SIL) method34 and a step size
of Δt = 2 au (≈50 as). The corresponding diabatic wave
function is expressed in terms of the electronic states

ψ ϕ ϕ ϕ ϕ=x t x t x t x t x t( , ) ( ( , ) ( , ) ( , ) ( , ))T
1 2 3 4 (49)

with the normalization ⟨ψ| ψ⟩ = 1. The resulting time series
ψ(x,t) is used subsequently in the signal calculation. The dipole
operator used to create ion states is assumed to be within in the
Condon approximations and reads

μ ̂ = | ⟩ + | ⟩ ⟨ | + ⟨ |† ( 3 4 )( 1 2 ) (50)

The reduced electronic density matrix of the neutral states is
obtained by integrating over the nuclear degrees of freedom

ρ ρ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
= =

⟨ | ⟩ ⟨ | ⟩

⟨ | ⟩ ⟨ | ⟩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Tr ( )el n

1 1 1 2

2 1 2 2 (51)

where ρii = ⟨ϕi|ϕi⟩ is the population of the ith electronic state,
and ρ12 = ⟨ϕ1|ϕ2⟩ the coherence between the two states.
The adiabatic wave function is obtained by the unitary

transformation U(x) that diagonalizes the diabatic PESs

θ θ

θ θ

ϕ

ϕ

Ψ

Ψ
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2 (52)

with the mixing angle θ

θ =
−

x
V x

V x V x
tan 2 ( )

1
2

( )
( ) ( )

12

1 2 (53)
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