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ABSTRACT: Dissipative forces are ubiquitous and thus constitute an essential part of realistic
physical theories. However, quantization of dissipation has remained an open challenge for nearly
a century. We construct a quantum counterpart of classical friction, a velocity-dependent force
acting against the direction of motion. In particular, a translationary invariant Lindblad equation is
derived satisfying the appropriate dynamical relations for the coordinate and momentum (i.e., the
Ehrenfest equations). Numerical simulations establish that the model approximately equilibrates.
These findings significantly advance a long search for a universally valid Lindblad model of
quantum friction and open opportunities for exploring novel dissipation phenomena.

Realistic models of quantum systems must include
dissipative interactions with an environment, which may

vary from a vacuum to a generic thermal bath. Nevertheless,
construction of physically consistent quantum models of
dissipative forces has been a long-standing problem since the
birth of quantum mechanics (see, e.g., refs 1−4). A common
framework for describing open quantum systems is to represent
the state of the system by a density matrix, whose evolution is
governed by the Lindblad equation.5,6 In this Letter, we
construct a model of quantum friction, whose classical
counterpart is a velocity-dependent force acting against the
particle’s motion.
By employing the phase space representation of quantum

mechanics,7−9 where an observable O = O(x,p) is assumed to
be a real-valued function of coordinate x and momentum p and
the system’s state is represented by the Wigner function W =
W(x,p), we derive the Lindblad−Wigner equation
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which guarantees completely positive dynamics of the density
matrix underlying the Wigner function W for an arbitrary
operator A. In standard derivations, one finds a family of
relaxation operators A by assuming a weak coupling to a bath
and expanding the dynamics perturbatively. Here we adopt a
different strategy: We require that the first moments of W
satisfy the Ehrenfest equations
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characterizing motion of a particle of mass m interacting with
an environment-induced velocity-dependent friction. The
conventional derivations of master equations (see Figure 1)
do not guarantee satisfaction of these relations. Using the
operational dynamical modeling (ODM) algorithm to be
described below, we construct an operator A that satisfies
constraints 6 and 7
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The classical limit of the Lindblad−Wigner equation (eq 1)
with eq 8 recovers the appropriate Fokker−Planck equation10
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The Ehrenfest relations for the second moments may also be
obtained from eq 1:
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To employ eq 1, the following free parameters must be
specified: (i) f(p) ≥ 0, the velocity dependence of the
dissipative force; (ii) γ ≥ 0, a friction coefficient; (iii) L > 0,
a length-scale constant defining the dynamics of second-order
moments (eqs 10−12); and (iv) ≥ 0, a dephasing constant
chosen such that dynamics equilibrates to the Boltzmann state
with some temperature.
Equation 5 defines the Moyal product,7−9 which is a result of

mapping the noncommutative matrix product in the Hilbert
space into the phase space. As a result, dissipator 3 is obtained
by Wigner transforming the Lindblad equation for the density
matrix; thus, the Wigner function’s marginals stay positive
throughout the entire evolution. Dissipator 4 describes
dephasing, the loss of quantum coherence,1,11,12 whereas the
dissipator 3 causes amplitude damping. The usage of sign and
modulus functions in eqs 8 and 7 are necessary to ensure that
the friction force acts against the particle’s motion. Dissipator 3
is translationally invariant (more precisely, Galilei-covariant): a
spatial displacement W(x, p) → W(x + c, p) implies D[W](x,
p) → D[W](x + c, p). Numerical simulations establish that the
long-time dynamics governed by eq 1 rigorously does not
equilibrate; however, the dynamics can be said to approximately
equilibrate. Namely, one can find a value of the dephasing
constant in eq 4 such that the steady state closely resembles
the Boltzmann state with temperature T. In this sense, we
numerically define the temperature dependence of = T( ).
Comparison with Other Theories. Current quantum friction

models can be roughly divided into two categories: (i) Lindblad
models not obeying the Ehrenfest relations have been proposed
in refs 13−15. The fundamental reason for the Ehrenfest

equation violation is the ubiquitous usage of A (eq 3), which is
taken to be linear with respect to the coordinate and
momentum (see the comment after eq 14). (ii) Non-Lindblad
models obeying the Ehrenfest relations that preserve state’s
positivity for sufficiently high temperatures are discussed in refs
3 and 16−22. Contrary to the claims, the master equations in
refs 23−25 belong to the same category. In particular, the
model in ref 23 produces uncontrollable heating,26,27 greatly
spreading the wave packet. This state of the field is
unsatisfactory because non-Lindblad master equations are
known to lead to negative probabilities,26,27 whereas the
violation of the Ehrenfest equations lead to unphysical
artifacts.28

A comparative review29 of major quantum dissipation
theories further revealed that no existing model is simulta-
neously (i) complete positive, (ii) translationally invariant, and
(iii) asymptotically approaching thermal equilibrium. The
present model (eq 1) exactly obeys the first two properties,
whereas the latter can be satisfied approximately (this can be
achieved exactly in the free particle case). Furthermore, our
simulations confirm that the dynamics of our model does not
cause uncontrollable spreading of the wave packet even at zero
temperature and approaches thermal equilibrium at higher
temperatures, thereby overcoming computational and physical
inconsistencies plaguing other dissipative theories. Model 1 is
obtained as a unique consequence of the Ehrenfest constrains
(eqs 6 and 7) and the requirements for the dynamics to be
Lindblad, translationary invariant, and state-independent [i.e., A
= A(x, p) in eq 3 does not depend on the Wigner function].
A difficulty of constructing physical models of quantized

friction lies in fundamental limitations of the current paradigm
for modeling open system dynamics (see Figure 1). First, the
combined system and bath are assumed to evolve unitarily;
second, the environmental degrees of freedom are traced out by
making a number of approximations. This procedure neither
guarantees that the resultant master equation can reproduce the
observations characterizing phenomenon of interest nor that
the equations have a desired mathematical structure.
It is noteworthy that the limitations of the current paradigm

persist even if no approximation is necessary to trace the bath
out. For example, the Hu−Paz−Zhang master equation17−19

for a harmonic oscillator interacting with a linear passive heat
bath of oscillators is exact under the assumption that the bath is
initially at equilibrium and not coupled to the oscillator. The
obtained non-Lindblad master equation preserves the density
matrix’s positivity and satisfies the Ehrenfest relations.
However, the Hu−Paz−Zhang propagation of states initially
uncorrelated with the environment leads to instantaneous
infinite spreading of the wave packet,30 which could be fixed by
modulating the friction coefficient during the evolution.31

Further revealed problems have led to the conclusion that the
model is of very limited physical utility.32

To overcome these fundamental limitations, a new paradigm
of ODM33 has been recently put forth, enabling the generation
of models directly from observed data (see Figure 1). To derive
master equations, ODM needs two inputs: observed data recast
in the form of Ehrenfest relations and a specified mathematical
structure of the equation of motion. As an outcome, ODM
guarantees that the resulting equations of motion have the
desired physical structure to reproduce the supplied dynamical
observations. This formalism has provided new interpretation
of the Wigner function,34 unveiled conceptual inconstancies in
finite-dimensional quantum mechanics,35 formulated dynamical

Figure 1. Current paradigm for deriving master equations governing
open system dynamics versus proposed novel approach of operational
dynamic modeling (ODM).
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models in topologically nontrivial spaces,36 advanced the study
of quantum-classical hybrids,37 and led to development of
efficient numerical techniques.12,38

Derivation. We begin by identifying the amplitude dumping
dissipator D[W] (eq 3); thus, the dephasing coefficient is set
to zero to ignore D′[W] (eq 4). Substituting eq 1 into eqs 6
and 7 and then dropping the averaging, which is justified by A
being state-independent, we obtain equations for an unknown
function A = A(x, p), defining the Lindblad dissipator (eq 3)
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The Lindblad models for Omic friction, f(p) = |p|, have been
widely studied (see, e.g., refs 13, 14, 23, 24, 39, and 40), where
A was found to be a linear combination of x and p. However, as
we shall now establish, no Lindblad dynamics with an A linear in
x and p satisf ies the Ehrenfest equations (eqs 6 and 7). Indeed,
substituting A = ax + bp into eq 14 leads to

* − * = * − * =a b ab x a b ab p p( ) 0, ( ) 4i (15)

where a contradiction becomes evident. This conclusion holds
in the case of Lindblad models with several such A operators.
Our model (eq 8) circumvents this no-go result because of its
new nonlinear dependence on x and p.
The action of the dissipative force is expected to be

translationary invariant. One observes directly from the
definition of the Moyal product (eq 5) that if

= * =A x p g p Cx C C( , ) ( ) exp(i ), (16)

then the dissipator D[W] (eq 3) is translationary invariant.
Formally, the dissipator D[W] with A given by eq 16 obeys
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where ··· denotes higher-order derivatives, and the function F
explicitly does not depend on x. Additionally, eq 6 is satisfied
for any real valued g(p). Therefore, substituting the expansion
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into eqs 16 and 14, we recursively find all terms in expansion 18
(see the Supporting Information). Finally, the resultant series
can be then summed up, thereby leading to the exact solution
(eq 8) where L is a positive length-scale constant to balance the
dimensionality. The value of L dictates the time-dynamics of
second-order moments ([eqs 10−12).
A simple steady-state solution is found by additionally

requiring the spatial homogeneity
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Therefore, if f(p) is chosen to be inversely proportional to a
thermal equilibrium state, the free particle dynamics of model 8
equilibrates without the need for the dephasing dissipator
D′[W] (eq 4).

Both quantum corrections in eqs 10 and 12, i.e., the terms
proportional to ℏ, are position-independent, thereby reconfirm-
ing the translational invariance. According to eq 12, the
quantum correction to Ohmic dissipation (with f(p) = |p|) is
singular; therefore, the function f(p) should be regularized. For
example, we employ the following smoothing in numerical
simulations (see, e.g., Figures 2−5)

= + ϵ ϵ =f p p p( ) / , 0.52 2 2 2
(20)

The Ehrenfest relations (eqs 6, 7, and 10−12) have been
verified numerically for different values of parameters and initial
conditions.

Equation 12 establishes that the steady state need not
coincide with thermal equilibrium. As an example, consider a
harmonic oscillator. The equilibrium state is characterized by
the identity ⟨xp⟩ = 0, which contradicts the steady-state
condition d⟨x2⟩/dt = 0 because the quantum correction in eq
12 is strictly positive. Furthermore, if the steady state is positive,
then its Wigner function should be more pronounced in the
second and fourth quadrants of the phase space (where xp < 0)
to compensate for the quantum correction (this small
asymmetry can be noticed in Figures 2b and 3a).
Figure 2 shows the initial state with average momentum p =

3 au (arbitrary units, ℏ = m = 1, are employed in the
simulations) reaches the steady state with a circularly shaped

Figure 2. Initial (a) and final (b) Wigner functions for the harmonic
oscillator evolving according to the model (eq 1) governing the Ohmic
dissipation (with eq 20; γ = 0.07 au, L = 3 au, and = 0). The
circular solid lines depict the level set of the Hamiltonian H = (p2+
x2)/2 au. Panel a shows the Wigner function of the ground state
displaced along the momentum axis. The reached steady state (b) is
not a Gaussian distribution.

Figure 3. (a) Final Wigner function for the harmonic oscillator
evolving according to the model (eq 1) governing the Ohmic
dissipation (with eq 20; γ = 0.07 au, L = 3 au, and = 0.0143 au).
The circular solid lines depict the level set of the Hamiltonian H =
(p2+ x2)/2 au. The initial Wigner function is shown in Figure 2a. Note
that the steady state approaches the thermal Boltzmann state with kT
= 1.166 au depicted in panel b.
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Wigner function. The latter has a characteristic asymmetry, as
discussed above. The reached state does not resemble the
Boltzmann thermal equilibrium.
To allow the dynamics to equilibrate approximately, we

include the dephasing dissipator D′[W] (eq 4) with a
nonvanishing . In the case of a harmonic oscillator [U(x) =
mω2 x2/2], the fluctuation−dissipation theorem follows from
the second-order Ehrenfest relations (eqs 10−12):
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where ⟨···⟩st denotes averaging over a steady state.
The steady state for the model with = 0.0143 (au) is

shown in Figure 3. For a sufficiently high value of , the ring in
Figure 2b is washed out and the Wigner function of the steady
state looks like a Gaussian (Figure 3a), which well approximates
the Boltzmann equilibrium for some temperature (Figure 3b).
The larger the dephasing coefficient , the more accurate the
equilibration dynamics. Additionally, we have also verified that
the approximate equilibration dynamics occurs in the case of
anharmonic oscillators. Figure 4 establishes that the evolution
generated by model 1 washes out the quantum interference
initially present in the Schrödinger cat state, while the dynamics
equilibrates.
Despite a simple look of the Wigner functions in Figures 2

and 3, full time-dependent dynamics are rich in quantum
features. Figure 5 compares quantum dissipative dynamics,
governed by the Lindblad−Wigner equation (eq 1), with the
corresponding classical Fokker−Planck evolution (eq 9). Even
though both quantum and classical master equations satisfy the
same first-order Ehrenfest theorems (eqs 6 and 7), time
evolution of the expectation values of the coordinate (Figure
5a) and momentum (Figure 5b) exhibit quantitative differ-
ences. Because the optical polarizability is proportional to ⟨x⟩,
the predicted quantum corrections may be observed via
nonlinear spectroscopy.41 The correction to the second-order
Ehrenfest theorems (eqs 10−12), enforcing the Heisenberg
uncertainty priciple, qualitatively change open system dynamics
(Figure 5c,d). As a result, the expectation value of energy in
classical dissipative dynamics monotonically decreases, whereas
energy revives in the quantum case at short time scales (Figure
5e).
Outlook. To describe quantum dissipative dynamics emerging

in many areas of physics, there is a need for a Lindblad model
satisfying the Ehrenfest relations (eqs 6 and 7, with long-time

Figure 4. (a) Wigner function of the Schrödinger cat state at time t =
0. (b) Wigner function at later time t = 2 au after evolving according to
the model (eq 1) governing the Ohmic dissipation (system’s
parameters are defined in Figure 3). As time progresses, the Wigner
function’s negativity vanishes and the state approaches the Boltzmann
equilibrium shown in Figure 3b.

Figure 5. Quantum (solid red lines; eq 1) vs classical (dashed blue
lines; eq 9) dissipative dynamic of a harmonic oscillator. Parameters
for both systems are identical (parameters are specified in Figure 3).
Time-evolution of the first-order (a, b) and second-order (c, d)
moments; (e) total energy variation.
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dynamics converging to an equilibrium state. Currently, the
lack of such a model has been substituted by a multitude of
dissipative theories. Using ODM (Figure 1), we have found the
translationally invariant Wigner−Lindblad model (eq 1) exactly
obeying the Ehrenfest equations (eqs 6 and 7). Furthermore,
according to numerical simulations, our model not only shows
that a state with nonvanishing mean velocity (Figure 2a)
approximately approaches the Boltzmann equilibrium (Figure
3) but also exhibits pronounced quantum corrections (Figure
5) even in the case of a harmonic oscillator.
The following Ehrenfest relation ubiquitously arises in

molecular dynamics41

∫ω τ γ τ τ⟨ ⟩ = − ⟨ ⟩ − − ⟨ ⟩
−∞t

p t m x t t p
d
d

( ) ( ) d ( ) ( )
t

2
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where the time-dependent dissipation coefficient, γ(t), is
connected with the spectral density of the bath, which
characterizes the nature of dissipative dynamics. Such a
generalization of the developed model requires the application
of ODM to non-Markovian dynamics. In this case, the
Lindblad−Wigner equation (eq 1) will have to be replaced
by a corresponding time-convolutionless master equation (see,
e.g., ref 42), thus leading to a time-dependent extension of the
relaxation operator (eq 8).
The presented derivation of the master equation directly

from time evolution of expectation values embodied in
Ehrenfest relations is a long-sought alternative to the current
cumbersome paradigm for obtaining equations of motions (see
Figure 1). A master equation is typically obtained by
performing a number of approximations after the bath is
traced out of a combined system−bath model. Such a
derivation usually leads to either a non-Lindblad master
equation or a model incapable of reproducing observations.
The presented ODM-based derivation overcomes all these
fundamental weaknesses by deriving Lindblad equations
enforced to be compatible with the Ehrenfest equations. This
formalism opens new horizons in quantum nonequilibrium
statistical mechanics.
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In deriving the main results of the paper, we have found very convenient the symbolic computational software
MapleTM [1]. Thus, we provide below our full Maple codes used to derive and verify equations listed in the main
text. The utility of the code lies beyond the discussed application and serves as a basis for symbolic derivations for
quantum mechanics in phase space.

# Finding Lindblad friction force obeying Ehrenfest relations
restart;

# Sign of the momentum (p). Below p denotes abs(p).
# The whole code should be run twice: First time with sign_p := 1, second with sign_p := -1.
sign_p := 1;

# Number of quantum (hbar) corrections. The value of N is only limited by computer’s performance
N := 5;

# Moyal product of two function A and B
MoyalStar := (A, B) -> add( (I*sign_p*hbar/2)^n /n! * add(

binomial(n,k)*(-1)^k *diff(A,[p$k,x$(n-k)]) * diff(B,[x$k,p$(n-k)])
, k=0..n), n=0..N+1):

# Define the unknown dissipator (G must be real)
A := G*exp(-I*sign_p*x/L):
A_dagger := G*exp(+I*sign_p*x/L):

# Function generating LHS of the Ehrenfest relation for observable O
LHS := (O) -> taylor( 2*gamma/hbar*( MoyalStar(A_dagger,MoyalStar(O,A))
- MoyalStar(MoyalStar(O,A_dagger),A)/2 - MoyalStar(A_dagger,MoyalStar(A,O))/2 ), hbar, N+2):

print("Verify the first Ehrenfest relation: ", simplify(LHS(x)));

# Find g[n] to satisfy the second Ehrenfest relation
G := add( g[n](p)*hbar^n, n=0..N):
Eq := LHS(p*sign_p) + 2*gamma*sign_p*f(p):

# Find the leading term
g[0](p) := solve(simplify(coeff(Eq, hbar, 0)), g[0](p))[1]:

# Find all quantum corrections iteratively
for n from 1 to N do

g[n](p) := solve(simplify(coeff(Eq, hbar, n)), g[n](p)):
end do:
n := ’n’:

# Compare the obtained result with the exact solution provided in the paper
A_exact := sqrt(L*f(p + hbar/(2*L)))*exp(-I*sign_p*x/L):
A_exact_dagger := sqrt(L*f(p + hbar/(2*L)))*exp(+I*sign_p*x/L):

∗Electronic address: dbondar@princeton.edu
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print("Verify the exact solution ",
simplify(taylor( A_exact - A, hbar, N+1)),
simplify(taylor( A_exact_dagger - A_dagger, hbar, N+1))

);

print("Classical limit of Linblandian");
simplify(taylor(

2*gamma/hbar*( MoyalStar(A_exact, MoyalStar(W(x,p),A_exact_dagger))
-MoyalStar(W(x,p), MoyalStar(A_exact_dagger, A_exact))/2
-MoyalStar(A_exact_dagger, MoyalStar(A_exact, W(x,p)))/2 ),

hbar, 2));

print("Second order Ehrenfest relations");
print("d<p^2>/dt = ", simplify(LHS(p^2))) ;
print("d<xp>/dt = ", simplify(LHS(x*p*sign_p))) ;
print("d<x^2>/dt = ", simplify(LHS(x^2))) ;

[1] http://www.maplesoft.com/products/maple/
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