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ABSTRACT: Molecular potential energy surfaces can be actively manipulated by light.
This is usually done by strong classical laser light but was recently demonstrated for the
quantum field in an optical cavity. The photonic vacuum state of a localized cavity mode can
be strongly mixed with the molecular degrees of freedom to create hybrid field-matter states
known as polaritons. We simulate the avoided crossing of sodium iodide in a cavity by
incorporating the quantized cavity field into the nuclear wave packet dynamics calculation.
The quantized field is represented on a numerical grid in quadrature space, thus avoiding
the limitations set by the rotating wave approximation (RWA) when the field is expanded in
Fock space. This approach allows the investigation of cavity couplings in the vicinity of
naturally occurring avoided crossings and conical intersections, which is too expensive in the
fock space expansion when the RWA does not apply. Numerical results show how the
branching ratio between the covalent and ionic dissociation channels can be strongly
manipulated by the optical cavity.

The photochemistry of molecules can be significantly
influenced by specially tailored electromagnetic fields.1−7

While control is usually achieved with classical laser fields, a
strong coupling with the vacuum state of a cavity utilizes the
quantum nature of the electromagnetic mode. The underlying
theoretical framework, cavity quantum electrodynamics, has
been well developed in theory and experiment for atoms8−11

and has been applied to atomic trapping and cooling.12 Its
potential applications to molecular cooling,13,14 as a tool to
probe larger molecules,15,16 to enhance vibrational spectra,17−20

for use with electromagnetically induced transparency,21 and to
expedite cavity-modified photochemistry22,23 have been objects
of intensive studies. Strong cavity coupling in molecular
systems has been demonstrated recently for electronic
transitions24 and for vibrational transitions.18,25 In this regime,
the dynamics is described using joint photon-matter states
called polaritons. The inclusion of the internal nuclear degrees
of freedom, not present in atoms, gives rise to nonadiabatic
dynamics.23,26 The light field can strongly mix the nuclear and
electronic degrees of freedom, creating avoided curve crossings
and conical intersections (CIs) between the polariton potential
energy surfaces. Virtually all photochemical and photophysical
processes are controlled by the presence of naturally occurring
CIs in the bare electronic energy landscape, opening up fast,
nonradiative relaxation pathways by which the molecule is
funneled back to the ground state.
In this contribution, we theoretically investigate how a

molecule that already possesses a curve crossing is affected by
strong coupling to a nanoscale cavity. To set the stage, we first
neglect the nuclear degrees of freedom and only introduce
them at a later point. This will allow us to introduce the basic
structure of the Hamiltonian and the cavity coupling. The
Hamiltonian describing the light-matter interaction of a two-

level system linearly coupled to a quantized radiation field is
given by the quantum Rabi model27

ω
σ σ ω σ σ

̂ = + +

=
ℏ

̂ ̂ − + ℏ ̂ ̂ + ℏ ̂ + ̂ ̂ + ̂† † † †

H H H H

a a g a a
2

(2 1) ( )( )

ec e c I

0
c

(1)

where ℏω0 = ℏ(ωe − ωg) is the energy difference between the
exited state |e⟩ and the ground state |g⟩, σ̂ = |g⟩⟨e| is the
annihilation operator for the bare electronic excitation, and a ̂(†)
annihilates (creates) a cavity photon of mode frequency ωc.
The vacuum Rabi-frequency μ ε= ℏg n /eg c , the coupling

between the photon mode and the electronic degrees of
freedom, depends on the electronic transition dipole moment
μeg and the vacuum field amplitude
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This amplitude is determined by the active volume V of the
cavity mode. Nanoscale cavities can thus induce very strong
coupling. The cavity coupling is further enhanced by a factor of
√n if an ensemble of n molecules contributes in a coherent
fashion in a cavity smaller than the optical wavelength 2πc/ωc.
Different approximations can be used to find the eigenvalues

of eq 1 depending on the magnitude of g. Perturbative solutions
are possible when g is much smaller than all other system
frequencies. If the time scale g−1 is faster than possible decay
processes, we enter the strong coupling regime though the
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counter rotating terms (aσ and a†σ†) in the Hamiltonian can be
neglected. This is known as the Jaynes-Cummings (JC) model9

and approximates solutions to the Hamiltonian (eq 1) in the
form of dressed states, which are then expressed in the basis of
the photon number states:
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Here nc is the number of photons in the cavity mode, and M is
total number of photon number states. The JC model keeps
only the aσ† and a†σ terms in the cavity-molecule coupling. The
total matter+field excitation number, N̂ ≡ nĉ + σ̂†σ̂, is a
conserved quantity ([N̂, Ĥ] = 0), reducing the Hamiltonian to
a 2-by-2 block-diagonal form (see Figure 1). Assuming that the

cavity is initially in the vacuum state (no photons), the wave
function in the JC model can thus be expressed by the two
dressed states |g, 1⟩, |e, 0⟩ and the ground state |g, 0⟩, i.e., the
bare ground state with 1 photon and the excited state with 0
photons. An extension of the JC model to include the nuclear
degrees of freedom within the RWA has been presented
recently.23 However, when the RWA is violated, the expansion
(eq 3) requires a large number of Fock states to converge,
becoming intractable for quantum dynamics time propagation
(scaling with M( )2 ).
To overcome this difficulty we employ an efficient

computational scheme obtained by the direct treatment of
the cavity mode as a quantum harmonic oscillator in quadrature
space. We first express the annihilation and creation operators
of the cavity mode in terms of their quadrature coordinates x
and p:27
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with p = −iℏ∂x. The extension of the Hamiltonian to the
molecular case is now straightforward: The nuclear degrees of
freedom q ≡ (q1,.., qN) are accounted for by treating ω0 and g as
functions of q (i.e., the potential energy curves Vg ≡ Vg (q), Vg
≡Ve(q), and the transition dipole curves μeg ≡ μeg(q)
respectively). The coupled light-molecule Hamiltonian eq 1
then reads:
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The total wave function expanded in the adiabatic electronic
states |ϕg⟩ and |ϕe⟩ becomes

ψ ϕ ψ ϕΨ = | ⟩ + | ⟩x q x q( , ) ( , )g g e e (6)

Note that the wave function of the cavity mode and the nuclear
degrees of freedom are generally nonseparable (ψk(x, q)). The
matrix elements of the cavity-molecule Hamiltonian in the basis
of the bare adiabatic states are then
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is the nuclear kinetic energy operator, mi the reduced mass of
the vibrational mode qi, and δkl = 1 if k = l and zero otherwise.
The indices k and l run over the bare electronic states g and e.
The coordinate x is expanded in a numerical grid, putting the
nuclear coordinates and the cavity mode on an equal footing in
a numerical simulation. The second derivative with respect to x
can be conveniently calculated by a discrete Fourier trans-
form.28 For a diatomic molecule, this results in two-dimensional
potential energy surfaces for the electronic ground and excited
state, each depending on q and x. This yields a more favorable
scaling of the computational effort of n n( log ) rather than

n( )2 in the basis of photon number states. For the case of
large cavity coupling, the number of grid points in x necessary
is in practice even smaller than the number of Fock states.29

The effect of ultrastrong cavity coupling on nonadiabatic
dynamics is demonstrated on the excited state dynamics of
sodium iodide, which has been an important landmark in
femtochemistry.31 The adiabatic electronic states of the bare
sodium iodide experience an avoided crossing near q ∼ 8 Å
(Figure 2a), which leads to dissociation into the neutral
products through the 1X state. Upon photoexcitation, a nuclear
wave packet is launched in the 1A state and then oscillates back
and forth.32 Part of the wave packet couples to the 1X state via
the avoided crossing into the covalent dissociation channel. The
corresponding nonadiabatic coupling matrix element, respon-
sible for the population transfer between the 1A and the 1X
state, is shown in Figure 2b (red curve). The branching ratio,
i.e., the population transferred to the 1X state, is determined by
the momentum of the wave packet, which in turn depends on
the wavelength of the pump laser. Zewail had measured a
stepwise increase in the covalent state population of ≈11% at
each passage through the avoided crossing.32 To influence the
dynamics at the avoided crossing, the cavity needs to be set in
resonance with the 1X and the 1A state in a region where the
transition dipole moment is significantly large (≈ 2−9 Å; see
Figure 2b, blue curve). We will investigate the scenario where
the cavity is set in resonance at ≈6 Å, i.e., before the wave
packet in the 1A state reaches the avoided crossing (ℏωc = 815
meV).
Wave packet calculations were carried out to reveal the

possible modifications of the dynamics under the influence of
the cavity coupling. This was done by propagating the
photonic-nuclear wave packet with a Chebychev propagation
scheme33 on the potential energy curves of NaI (1X and 1A)
using the Hamiltonian from eq 7 and an additional coupling
term34,35 to account for the nonadiabatic coupling at the bare
state avoided crossing:

Figure 1. Atom-field Hamiltonian for quantum Rabi problem. The
resonant coupling terms σ†a and σa† act within each block N1, ...,NM.
The non-RWA terms aσ and a†σ† couple different blocks.
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where f kl is the nonadiabatic coupling matrix element shown in
Figure 2b. The wave function, as well as the potential energy
surfaces, are represented by a numerical grid with 95 points for
x and 1200 points for q. The initial condition is a product state
formed by the vacuum state of the cavity |0⟩ and the vibrational
ground state of the 1X state |1X, v = 0⟩ shifted by 0.63 Å.
Figure 3a shows the time-dependent population of the

covalent state of the free molecule (no cavity), mimicking the
original experimental setup.32 The dynamics of the system is
presented by inspecting the time evolution of the population of
the 1X state, ⟨ψ1

X|ψ1
X⟩, rather than the pump−probe signal,

which probes the excited state wave packet within a certain
window of internuclear distance. The stepwise decay observed
in the pump−probe experiment (e.g., ref 32, Figure 8) is less
clear for the total population but it better illustrates the overall
effect of the cavity. In Figure 3b, the time evolution in a cavity
is shown for moderate coupling strength (g = (0.05, 0.13)ωc).
The time traces are still similar to the uncoupled case but
already show the influence of the cavity coupling. At coupling
strengths of g ≈ 0.19 ωc (Figure 3c), the behavior of the time
traces begins to change. The dissociation is suppressed, and the
oscillation period increases. The wave packet becomes trapped
in a more tight effective potential, and its recurrence time
becomes shorter. The dynamics is mainly influenced by two
modifications of the potential energy surfaces: the new avoided
crossing created by the cavity and the modified avoided
crossing already present in the bare molecule. With increased
cavity coupling, the cavity-created crossing generates well-
separated states such that a nuclear wave packet is trapped, and

a much smaller fraction reaches the original crossing. This
partially coincides with the effect described by Galego et al.:26

for higher coupling strengths, the states become well separated
and the Born−Oppenheimer approximation regains validity.
For larger splittings, the upper polariton state is well separated
from the lower lying states, effectively suppressing the
nonadiabatic population transfer. Moreover, the nonadiabatic
coupling at the original intersection is affected by the off-
resonant interaction with the cavity allowing for further
suppression of the population transfer into the covalent
channel. For higher coupling strengths, the dissociation is
strongly suppressed.
The scaling of the dynamics with g can be displayed in terms

of the population in the 1X state after the wave packet has
reached the crossing point for the first time (≈ 480 fs). Figure
4a depicts the population in the covalent channel for varying
coupling strengths. While an intermediate coupling strength (g
< 0.1ωc) can slightly increase the dissociation probability, the
transfer to the 1X state is suppressed for larger values of g.
We have employed an efficient computational protocol for

cavity nonadiabatic dynamics, which allows for a seamless
integration of quantized field modes into existing schemes at a
cost comparable to adding another vibrational mode to the
system. The Hamiltonian used to calculate the dynamics (eq 7)
is in a very general form and can be used for a wide range of
cavity couplings. It only relies on the dipole approximation,
making it robust and reliable. We have demonstrated the
method for an avoided crossing and one vibrational mode, but
it can be applied to more than one vibrational mode, which will
allow addressing conical intersections. Including additional
cavity modes is also straightforward and only limited by its
computational cost. While a partially analytic solution of the
non-RWA problem based on tunable coherent states is
possible36 and might give insight into the resulting structure
of the diagonalized potential energy surfaces, it might become
intractable for a quantum dynamics time propagation.
Our wave packet simulations show that the photochemistry

of NaI can be significantly manipulated by the cavity. This is
caused by two mechanisms: in the strong coupling regime, the

Figure 2. (a) Bare ground (1X) and excited (1A) electronic potential
energy surfaces of NaI. Dissociation on the 1X potential leads to the
neutral reaction products. (b) Transition dipole moment μeg (blue)
and the derivative coupling matrix element feg (red). The potential
energy curves, the nonadiabatic coupling matrix element, and the
transition dipole moment were calculated with the program package
MOLPRO30 at the MRCI/CAS(6/7)/aug-cc-VQZ level of theory with
an effective core potential for Iodine (ECP46MWB).

Figure 3. Selected time traces of the 1X state population following
impulsive excitation. (a) No cavity. (b) g = 0.050 ωc (red), g = 0.13 ωc
(blue). (c) g = 0.19 ωc (black), g = 0.25 ωc (green), g = 0.38 ωc
(magenta).
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modification of the 1A state becomes significant and a new
avoided crossing is created, introducing a new turning point for
the wave packet motion. When the coupling strength enters the
ultrastrong coupling regime, the 1X ground state is strongly
modified in the region of the bare state avoided crossing. To
reach this regime, effective cavity volumes (eq 2) on the order
of the optical wavelength or less are necessary along with a
collective enhancement. For the example shown in Figure 3,
and under the assumption of typical particle numbers37 of 105,
the effective cavity volume range from 0.002 λc

3 to 0.04 λc
3,

where λc is the wavelength of the cavity mode. Such small
volumes could potentially be realized by, e.g., nano cavities,38,39

nano plasmon antennas,40 or nano guides.41 The collective
enhancement of the coupling in molecular systems, however, is
subject to dephasing and needs further investigation.
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