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Violations of the Born-Oppenheimer approximation (BOA) and the consequent

nonadiabatic dynamics have long been an object of intense study. Recently, such

dynamics have been induced via strong coupling of the molecule to a high-amplitude

(spatially confined) mode of the electromagnetic field in optical cavities. However, the

effects of a cavity on a pre-existing avoided crossing or conical intersection are

relatively unexplored. The dynamics of molecules dressed by cavity modes are usually

calculated by invoking the rotating wave approximation (RWA), which greatly simplifies

the calculation but breaks down when the cavity mode frequency is higher than the

relevant material frequencies. We develop a protocol for computing curve crossing

dynamics in an optical cavity by exploiting a recently-developed method of solving the

quantum Rabi model without invoking the RWA. The method is demonstrated for

sodium iodide.
I. Introduction

The photochemistry of molecules can be signicantly inuenced by specially-
tailored electromagnetic elds.1–7 While control is usually described in terms of
classical laser elds, coupling with the vacuum state of a cavity mode requires
a quantum eld description. The underlying theoretical framework, cavity
quantum electrodynamics, has been well studied in theory and experiment with
atoms.8–10 Its application to molecular systems has been demonstrated recently
with great success,11,12 the dynamics being described using joint photon–matter
states called polaritons. However, the inclusion of the internal nuclear degrees of
freedom, not present in atomic systems, complicates the problem and leads to
nonadiabatic dynamics.13,14 The electric eld mode alters the nuclear dynamics
through its interaction with the electronic degrees of freedom, creating avoided
curve crossings and conical intersections between the molecular potential energy
surfaces. This can in principle be achieved by a strong laser eld.2,3 By placing the
molecule in a localized cavity mode, a laser system is not necessary and the eld
can even be in the vacuum state. The former scenario can be described in terms of
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a classical eld, while the latter requires a quantum eld description. A major
difference between the two scenarios is the number of photons available: a strong
laser eld may give rise to multi-photon pathways that may interfere with the
intended control scheme.

A broad variety of photochemical and photophysical dynamics are controlled
by naturally-occurring conical intersections (CIs) in the bare electronic-energy
landscape, opening up fast, non-radiative relaxation pathways by which the
molecule is funneled back to the ground state. In this contribution, we theoret-
ically investigate how a molecule which already possesses a curve crossing is
affected by coupling to a nano-scale cavity.

The Hamiltonian describing a two-level system linearly coupled to a quantized
radiation eld is given by the quantum Rabi model:

Ĥ ¼ u0

2

�
2ŝ†ŝ� 1

�þ ucâ
†âþ ~g

�
â† þ â

��
ŝ† þ ŝ

�
(1)

where u0 is the energy difference between the exited state |ei and the ground state
|gi, ŝ ¼ |gihe| is the annihilation operator for bare molecular excitations, and â(†)

annihilates (creates) cavity-mode photons. The vacuum Rabi-frequency
~g ¼ meg3c

ffiffiffi
n

p
determines the coupling strength between the photon mode and the

molecular degrees of freedom. The vacuum eld amplitude

3c ¼
ffiffiffiffiffiffiffiffi
uc

V30

r
(2)

is determined by the active mode volume V of the cavity mode, making nano-scale
cavities favorable candidates to achieve strong coupling. The cavity coupling is
further enhanced by a factor of

ffiffiffi
n

p
if an ensemble of n molecules contributes in

a coherent fashion.
The approximations which can be used to nd the eigenvalues of eqn (1)

depend on the magnitude of ~g. Perturbative solutions are only possible for very
small values of ~g, i.e., much smaller than all other system frequencies. If the time
scale of ~g�1 is faster than the possible decay processes, we enter the strong
coupling regime where the Jaynes–Cummings (JC) model9 provides approximate
solutions to the Hamiltonian (eqn (1)) in the form of dressed states. Formally, the
JC model neglects the counter rotating terms (ŝ†â† and ŝâ) in the Hamiltonian,
a simplication called the Rotating Wave Approximation (RWA) which thus keeps
only the ŝ†â + ŝâ† term in the cavity–molecule coupling. In this case, the total
excitation number N̂ h n̂c + ŝ†ŝ is a conserved quantity ([N̂, Ĥ] ¼ 0), reducing the
Hamiltonian to a 2-by-2 block-diagonal structure (see Fig. 1 upper panel). The
bare states contributing to the dressed state basis are the ground state with nc and
nc + 1 photons and the excited state with nc photons. An extension to the JC model
to include the nuclear degrees of freedom within the RWA has been reported
recently.13

The RWA is justied in the regime of a weakly-driven system (~g � uc) and
a reasonably-large transition frequency (u0/uc > 0). Both conditions are violated if
we consider ultrastrong coupling to a molecule with a bare avoided crossing or CI.
This case is the main focus of the present paper. As a result of this new parameter
regime, the Hamiltonian acquires a band-diagonal structure as compared to
a block diagonal structure (Fig. 1 upper panel). This Hamiltonian has been well-
studied. Analytic expressions in terms of continued fractions were found by Judd
260 | Faraday Discuss., 2016, 194, 259–282 This journal is © The Royal Society of Chemistry 2016



Fig. 1 (Upper) Schematic depiction of the Hamiltonian. Under the RWA, Ĥ has a block-
diagonal structure. Each block with a nonzero total excitation number is 2-by-2 and
composed, in this basis, of |e, nci, |g, nc + 1i. Adding back in the counter rotating terms
couples states that differ by 2 in the total excitation number N̂. (Lower) The simultaneous
eigenstates of parity and excitation number. States with an even (odd) excitation number
have even (odd) parity.
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for an isolated set of eigenstates and the approach was further explicated in terms
of the Bargmann representation and extended.15–17 While a purely analytic,
complete solution without the RWA is not possible, the problem has been treated
in Fock space to allow for a numerically exact solution.18,19 Operator methods have
been discussed as well.20,21

The paper is organized as follows. In section B, we describe a semi-analytic
method for solving the Schrödinger equation in the ultrastrong coupling regime.
This method yields the potential energy surfaces of the coupled light-matter
system and the nonadiabatic couplings between them. These will be used for the
qualitative interpretation of the wavepacket simulations which are carried out
using a numerical grid representation of the cavity mode as described recently.22

In section IV, we discuss wavepacket simulation for sodium iodide in a cavity and
show how the time-dependent branching ratio of the ionic and covalent cong-
urations is manipulated in the presence of the cavity mode.

II. Nuclear motion through a nonadiabatic
coupling region

We have recently discussed nuclear motion through a CI or avoided crossing (a
region of nonadiabatic coupling) and the ways one may track this motion using
spectroscopic signals.13 We shall explore what occurs when such an experiment is
performed in an electromagnetic cavity resonant with a material frequency (for
some value of the nuclear coordinates). The system Hamiltonian is given by the
sum of the nuclear kinetic energy operator T̂ and the electronic Hamiltonian,

Ĥ ¼ T̂ þ Ĥel ¼ �1

2

X
i¼1

3N 1

mi

Vi
2 þ

X
l¼1

lM

3lðqÞj3lðqÞih3lðqÞj: (3)
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The rst term is the nuclear kinetic energy, where mi is the mass of the i-th

nuclear coordinate qi, Vi ¼ v

vqi
is the derivative with respect to qi, and we have

explicitly notated the dependence of the electronic energies 3l and corresponding
eigenstates |3li on the nuclear coordinates, collectively denoted q. Taking the
electronic matrix elements gives23,24

Ĥkl ¼ dkl
�
T̂ þ 3lðqÞ

�þX
i

1

mi

�
fkliðqÞVi þ 1

2
hkliðqÞ

�
(4)

with

fkliðqÞ ¼ h3kðqÞjVij3lðqÞi
hkliðqÞ ¼ h3kðqÞjVi

2j3lðqÞi: (5)

Given the electronic energies 3l(q), and the nonadiabatic couplings (NAC) fkli(q)
and hkli(q), the total wavefunction may be written as a product of nuclear and
electronic wavefunctions jJi ¼ jfijji ¼ P

l
cljflij3li where |fli is the nuclear

wavepacket on the |3li electronic surface and we have expanded the electronic
wavefunction as a sum over eigenstates weighted by coefficients cl. Any given
initial state |J(t0)i can be propagated using the Hamiltonian eqn (4) to obtain the
expectation values and correlation functions of material operators that are related
to spectroscopic observables.

III. The quantum Rabi Hamiltonian

In Section II, we introduced the ingredients to the general Hamiltonian (eqn (4))
that we will use to propagate the nuclei. We now examine the quantum Rabi
Hamiltonian (eqn (1)) in more detail. Takingmatrix elements in the {|ei, |gi} basis
gives

H ¼

0
B@ucâ

†â� u0
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Switching to the basis
�
jþih 1ffiffiffi

2
p ðjgi þ jeiÞ; j�ih 1ffiffiffi

2
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�
and

dividing through by the cavity frequency (re-dening the unit of energy to be uc)
gives

H ¼

0
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CCCA (7)

which is a special (zero-bias) case of the model studied by25 with parameters

g ¼ ~g
uc

, D ¼ u0

uc
. This eigenvalue problem can be solved in a variety of ways.

Numerical diagonalization using cavity eld Fock states is possible but, for high
values of g, requires that many states be taken into account (up to 105 at
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ultrastrong coupling depending on the convergence criteria25). Since our goal is to
do non-BOA dynamics simulations, it is benecial to use as few states as possible
(this is particularly true for the calculation of the NAC). Using a Bargmann
transformation and analyticity, Braak obtained a transcendental equation, the
roots of which yield the energies, and this solution was later re-derived using
extended coherent states.21,26 The eigenstates and energies had also been derived
earlier using tunable coherent states.25 Both of these representations have an
advantage over the Fock-space representations in that they automatically include
many-body correlations amongst innitely-many photons in the cavity mode. This
is particularly useful in the strong coupling regime. Both of these representations
have numerical difficulties when g� 1 but this regime is solvable within the RWA
and can be smoothly connected provided we choose an appropriate separation
point. More importantly, the former representation (extended coherent states)
involves expressions that have periodic divergences, complicating numerical
evaluation. For this reason, we choose to work in the basis of tunable, photon-
added coherent states (i.e., the basis of photon-added coherent states with
a tunable coherence parameter) and make the ansatz

j3il ¼ j þ i5
X
n¼0

M

cnl
�
â†
�n
eal â

† j0i þ pl j � i5
X
n¼0

M

cnl
��â†
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† j0i

¼

X
n¼0

M

cnlðâ†Þneal â† j0i

pl

XM
n¼0

cnlð�â†Þne�al â
† j0i

0
BBBB@

1
CCCCA (8)

where the cnl coefficients represent the l-th eigenstate in the basis of n-photon-
added tunable coherent states, al is the tunable coherent state parameter corre-
sponding to the l-th eigenvalue, andpl¼�1 is the parity of the l-th eigenstate. Since
the Hamiltonian conserves the parity, we can separately consider the even and odd
parity manifolds and write pl explicitly rather than simply � because we will later
need to keep track of the two parities in the matrix elements h3k

		Ô 		3li succinctly. In
order that the pl not be functions of the nuclear coordinates, we do not simply order
the eigenstates by energy but rather list rst the even and then the odd in ascending
order of energy. In this ansatz, M is the truncation number. In practice, we must
makeM large enough to ensure convergence. This will be addressed in more detail
later. Following the analysis of ref. 25 and inserting this wavefunction into the
Schrödinger equation yields a connection between the energy and al

3l ¼ alg � pl

D

2
(9)

and a recurrence relation for the coefficients

cnþ1 ¼ �c0

ðnþ 1Þg

"�
nþ pl

D

2

�
cn þ ðal þ gÞcn�1 � plð�1ÞnD

2

X
j¼0

n ð2alÞj
j!

cn�j

#
: (10)

Note that we have used c1¼ 0 (permitted since al can completely determine the
1-photon contribution to |3li) and that c0 remains an arbitrary constant that can
be used to normalize the states. This normalization and its consequences are
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discussed in detail in Appendix C but we will otherwise formally work with the
normalized coefficients cnl. Setting cM+1 ¼ 0 (required for convergence) gives
a degree M polynomial equation for al�

M þ pl

D

2

�
cM þ ðal þ gÞcM�1 � plð�1ÞMD

2

X
j¼0

M ð2alÞj
j!

cM�j ¼ 0: (11)

Chen et al.25 had examined this recurrence relation for various regimes of the
parameters D and g and we now briey summarize their ndings. For 0.1 < g < 0.5
and 0.5 <D < 1.5,M¼ 60 is sufficient to ensure convergence (in the sense of a relative
difference of 10�8 or less on increasingM further) for the rst 20 or more eigenstates
and the energies match those obtained via Fock state diagonalization (at a much
higher truncation order). Moreover, the coefficients are found to die down by around
n¼ 40 forD¼ 1, g¼ 0.1 and this improves to n¼ 10 forD¼ 1, g¼ 1. This shows the
strength of this representation for handling the strong coupling regime. In the
simulation section, we will discuss the parameters we used and the truncation.

Given a pair g, D, we can solve eqn (11) for the rst N roots such that 3N is
sufficiently large to account for the system energetics. The details of this trun-
cation will depend on the way in which the system is probed and the signal being
examined.

It is worth repeating the ndings of Braak26 regarding the distribution of the
zeroes of his G-function (not shown here for brevity) and thus, the energies. The
zeroes of G�(x) are distributed relatively regularly, with the property that the
number of eigenenergies in the range [nuc, (n + 1)uc] is restricted to be 0, 1, or 2.
Additionally, two intervals each containing two eigenenergies will never be
adjacent to each other (nor will two intervals each containing no eigenenergies).
Since the G-function gives the exact energies as well, we are guaranteed that, for
reasonably large uc, we will not have to include too many states |3li to obtain
converged calculations. This is trivially true for weak coupling at resonance (g �
1, D ¼ 1) but is good to conrm it for all parameter regimes.

In order to propagate an initial wavefunction so as to simulate spectra, we
must obtain all the ingredients to compute Hkl(q) in eqn (4). Besides the energies,
we also need the nonadiabatic couplings fkli(q), and hkli(q). Computing these
quantities is tedious but it is fairly straightforward. We outline the, rather lengthy,
derivation in Appendix B andmake frequent use of auxilliary quantities dened in
Appendix A to arrive at

fkli ¼ fegi(pl � pk)B
(1)
kl + (1 + pkpl)[A

(2)
kl + A(3)

kl Vial] (12)

for the rst-derivative couplings and
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�
(13)

for the second (we have suppressed the explicit q-dependence for brevity).
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IV. Application to avoided crossing in sodium
iodide

The inuence of ultrastrong cavity coupling is demonstrated on the nonadiabatic
dynamics of photoexcited sodium iodide, a well known example for femto-
chemistry.27 The adiabatic electronic states of the bare sodium iodide experience
an avoided crossing near q�8 Å (Fig. 2(a)), leading to dissociation into the neutral
products through the 1X state upon photoexcitation. The bare nonadiabatic
coupling matrix element feg is shown in Fig. 2(b). The branching ratio, i.e., the
amount of population transferred to the 1X state, is determined by the acquired
momentum of the wavepacket, which depends on the excitation laser frequency.
We will investigate two scenarios: the cavity is set in resonance at z 6 Å (case 1),
i.e., before the wavepacket in the A state reaches the bare avoided crossing, (uc ¼
815 meV) and a low frequency cavity (uc ¼ 52.6 meV) resonant directly at the
crossing (case 2). Both cases are illustrated in Fig. 3 by plotting the 1X-state curve
shied by the photon energy of the cavity.

For case 1, eqn (8) is used to calculate the resulting potential energy curves in
the basis of the photon-added, tunable coherent states. Fig. 4 shows the lowest
ten potential energy curves for four values of the coupling strength g. For small g,
Fig. 2 (a) Bare ground (1X) and excited (1A) electronic potential energy surfaces of NaI.
Dissociation on the 1X potential leads to the neutral reaction products. (b) Transition dipole
moment meg (blue) and the derivative coupling matrix element feg (red).
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Fig. 3 Potential curve crossings for two different cavity detunings: ground state potential
wavefunction shifted by the cavity frequency (Vg + uc), for uc ¼ 815 meV (blue, dashed)
and uc ¼ 52.6 meV (red, dashed).
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the result converges to curves which coincide with a molecular Jaynes–Cummings
model13 (Fig. 4(a)). New avoided crossings are created in the region at 6 Å, where
the cavity mode is in resonance with the bare electronic states of NaI (D¼ 1). New
Fig. 4 Positive (red solid) and negative (black solid) parity electronic potential energy
surfaces of NaI dressed with a uc ¼ 815 meV cavity mode obtained from eqn (9) and the
first five solutions to eqn (11) with pl ¼ +1 and pl ¼ �1 respectively. Vertical gray lines
indicate points where the bare states are resonant with integer multiples of the cavity
frequency (u0 ¼ nuc for n an integer, n ¼ 1 for the rightmost line and counts up going to
the left). (a) Peak coupling of 200 meV. (b) Peak coupling of 300 meV. (c) Peak coupling of
600 meV. (d) Peak coupling of 1240 meV.

266 | Faraday Discuss., 2016, 194, 259–282 This journal is © The Royal Society of Chemistry 2016



Fig. 5 (a) Potential curves for the lowest energy positive-parity eigenstate (black) and the
4 lowest energy negative-parity eigenstates (upper) and their corresponding NACs (lower)
(all couplings are between the “black” state and one of the others and therefore labeled by
the color of the latter state). (b) Potential curves for the second-lowest positive-parity state
(black) and the 4 lowest energy negative-parity eigenstates (upper) and their corre-
sponding NACs (lower).

Fig. 6 (a) Potential curves (upper) and corresponding NACs (lower) for 3 different pairs of
opposite-parity eigenstates. (b) Potential curves for 3 different pairs of same-parity
eigenstates. Corresponding NACs are sharply peaked at the avoided crossings near the
gray line and are otherwise negligible.
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Fig. 7 Cavity coupling with uc¼ 815meV. (a) Population of the covalent states after 480 fs
for a cavity with initially zero photons (black) and one photon (blue) vs. the coupling
strength. (b) Average photon number 480 fs.
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crossings are also created at higher-order resonances D ¼ n between states of the
same- (n odd) and opposite-parity (n even) states. As the coupling strength
increases, the splitting between dressed states at the resonance points increases
but it is much faster for lower-photon resonances. The splitting thus seems to
depend inversely on n and directly on the absolute energy of the two states in
question (with larger gaps for higher-energy pairs). Another notable feature is
a ground-state modication14,28 which becomes clearly visible with increasing
coupling (Fig. 4). The dip is a clear signature of the ultrastrong coupling regime
(g z 1). Fig. 5(a) shows the NACs (evaluated from eqn (12)) between the lowest
positive-parity state (black) and the rst 4 negative-parity states (energy surfaces
in the upper panel and NACs in the lower panel). Fig. 5(b) shows the same but
with the second-lowest positive-parity state). From this gure, it is clear that the
NACs in the region of the original avoided crossing are strengthened relative to
their bare values (Fig. 2 lower panel). Moreover, the coupling strength remains of
the same order even for states separated by a large distance in energy. Fig. 6(a)
shows the NACs between 3 pairs of opposite-parity states. Note that no NAC is
induced in the region of crossing between such pairs (only the coupling in the
268 | Faraday Discuss., 2016, 194, 259–282 This journal is © The Royal Society of Chemistry 2016



Fig. 8 Selected time traces of the 1X state population (uc ¼ 815 meV). No cavity (black
line), g ¼ (0.0502, 0.1256, 0.1884, 0.02512, 0.3793) red, blue, black, green, and magenta
respectively.
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region of the original avoided crossing remains). We can see that crossings
between states of opposite parity do not generate any NACs. In contrast, the
avoided crossings between states of the same parity correspond to peaks in the
NAC curves. For a given resonance point (e.g., u0 ¼ 3uc), these peaks become
smaller as one considers dressed states of higher energy (corresponding to larger
separations at the avoided crossings).

To quantify the possible modications of the dynamics under the inuence of
the cavity coupling, wavepacket calculations were carried out (for details see
Appendix E). The amount of population in the dissociative part of the 1X state
aer the wavepacket has reached the crossing point for the rst time (z480 fs)
serves as an indicator of the effect on the dynamics. Fig. 7(a) depicts the pop-
ulation in the covalent channel for varying coupling strengths. While an inter-
mediate coupling strength (g < 0.3) can increase the dissociation probability, the
transfer to the 1X state is suppressed for larger values of g. This behavior can be
explained by the increased splitting between the dressed states: for larger split-
tings, the state which corresponds to the 1A state is well-separated from the lower-
lying state, effectively suppressing the population transfer.13,14 The dynamics is
mainly inuenced by two modications of the potential energy surfaces: the new
avoided crossings created by the cavity and the modied avoided crossing already
present in the bare molecule. With increasing cavity coupling, the cavity-created
crossing at the 1-photon resonance point generates well-separated states such
that a nuclear wavepacket is trapped and a much smaller fraction even reaches
the original crossing. This partially coincides with the effect described by Galego
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 194, 259–282 | 269



Fig. 9 (a) Population of the covalent states after 480 fs for a cavity with initially zero
photons (black) and one photon (blue) vs. the coupling strength (uc ¼ 52.6 meV). (b)
Average photon number after 480 fs.
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et al.14 where for higher coupling strengths the states become well separated and
the Born–Oppenheimer approximation is valid again. An alternative view is
provided by the time evolution of the population of the 1A state (Fig. 8). With
increasing coupling strength, the wavepacket becomes trapped in a tighter
effective potential and its recurrence time becomes shorter.

Additionally, both the NAC and the shape of the potential surface at the bare
state avoided crossing is affected by the counter-rotating terms, creating a barrier
for the nuclear wavepacket from which it reects and allowing for further
suppression of population transfer into the 1X dissociation channel. The disso-
ciation is strongly suppressed for large coupling strengths. The average photon
number shown in Fig. 7 is a clear indicator that the system can not be represented
by only two Fock states, but requires the present approach.

Case 2 is presented in Fig. 9. This case lacks an articially-created avoided
crossing at the 1-photon resonance point, thus simplifying the dynamics. The
population in the X state aer one round trip is shown in Fig. 9(a). The branching
into the covalent state is slightly suppressed for small coupling strengths (g < 0.6)
but increases for larger g. The increase in population transfer is accompanied by
270 | Faraday Discuss., 2016, 194, 259–282 This journal is © The Royal Society of Chemistry 2016
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an increased number of photons (Fig. 9(b)) in the cavity mode, leading to the
conclusion that stimulated emission into the cavity is the main mechanism for
the control.
V. Discussion

Molecular cavity QED offers many exciting possibilities from enhanced probing
techniques12,29–33 to molecular cooling34 and cavity-modied photochemistry.13,35

The underlying Quantum Rabi model Hamiltonian is well-studied in the atomic
context and has been solved in a number of ways.9,15–18,20,21,25,26,36 In this work, we
apply the solution in terms of tunable coherent states provided by Chen et al.25 to
the case of a molecular Hamiltonian with electronic parameters dependent on the
nuclear conguration. We derive transformation formulas for electronic opera-
tors as well as expressions for the nonadiabatic coupling due to the nuclear
kinetic-energy operator. Combined with the eigenstates, this is all the informa-
tion necessary to carry-out and interpret dynamical simulations. By reducing the
problem to familiar adiabatic energy surfaces and corresponding NACs, the
dynamics can be understood even in non-intuitive parameter regimes. In
particular, when amolecule possessing a CI or avoided crossing is dressed with an
ultrastrong cavity eld, the potential surfaces and NACs can be strongly modied
from their bare or Jaynes–Cummings (RWA) shape.

Although the dynamics of a molecule interacting with a quantum eld can be
numerically solved in other ways, they possess limitations or do not provide the
intuitive picture in terms of potential surfaces and NACs accessible here. Expan-
sion in Fock-states (or the JC-polaritons) is the most straightforward approach but
convergence is slow in the ultrastrong coupling regime (g � 1) and physical
interpretation of the dynamics is complicated by the strong-mixing induced by the
non-rotating terms in the Hamiltonian. Dynamical quantities can also be evalu-
ated via discretization of the photon space as demonstrated recently22 but the
physical quantities that determine the evolution, the potential energy surfaces and
NACs are never calculated in such a procedure and are thus inaccessible.

The method has been used to evaluate the photodissociation dynamics of
sodium iodide as reproduced in Fig. 8. An analysis of the dynamics shows that, for
small coupling, the population of the 1X state increases in a step-wise fashion
with time. Upon increasing the coupling, oscillations between the states are
induced. These oscillations eventually die down to a nearly-even population.
Examining the potential energy surfaces for increasing g (Fig. 4) reveals the
opening of a gap at the 1-photon resonance (D� 1) and the creation of a dip in the
potential surface at the original avoided crossing while the NACs (Fig. 5) connect
all pairs of opposite-parity states, providing decay paths to lower-energy pairs. For
a nuclear wavepacket prepared in the 1A state, these effects combine to create
oscillations in the electronic populations, suppressing the nal dissociation of
the molecule.

The single-molecule coupling g is proportional to the vacuum eld strength of
the cavity mode given by

3c ¼
ffiffiffiffiffiffiffiffi
ħuc

V30

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2ħpc
lcV30

s
(14)
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where V is the mode volume of the cavity. The effective mode volumes used for
the sodium iodide simulations range from 0.002lc

3 to for 0.04lc
3 for uc ¼

815 meV and from 10�7lc
3 to for 10�5lc

3 for uc ¼ 52.6 meV for couplings
present in Fig. 7 and 9 under the assumption that z105 particles contribute
collectively.37 Nano-cavities,38,39 nano-plasmon antennas,40 or nano-guides41

may provide a solution for the realization of such small effective mode
volumes. Additionally, the collective enhancement effects must be leveraged
to reach the ultrastrong coupling regime. In molecular systems however, these
effects are subject to vibrational dephasing. Collective enhancement effects in
molecules is a subject that needs further study and will be part of future
investigations.
Appendix A
Working formulas for the tunable coherent-state basis

It is a known fact that eigenvectors corresponding to distinct eigenvalues are
orthogonal. Thus, working with the normalized coefficients cnl

h3kj3li ¼ dklh3l j3li ¼
X
mn¼0

M

cmkcnl



hak;mjal ; ni þ ð�1Þnþm

pkplh�ak;mj�al ; ni
�

(A1)

where

|al, ni h (â†)nealâ
†

|0i (A2)

is the (un-normalized) n-photon-added coherent state with parameter al. For this
orthogonality relation and for other purposes, we will need the quantity

hak;mjal ; ni ¼
X
pq¼0

N �
qþm

				ak
qal

p
ffiffiffiffiffiffiffiffiffiffiffiffi
qþm

p ffiffiffiffiffiffiffiffiffiffiffi
pþ n

p
q!p!

				pþ n



¼

X
p¼0

N
al

pak
pþn�mðpþ nÞ!

p!ðpþ n�mÞ!
(A3)

This last formula is only valid for n > m but, since all quantities in this overlap
are real, it is symmetric with respect to the simultaneous exchange k4 l and n4

m so that this presents no difficulty. This form is convenient for seeing symme-
tries such as

h�ak;mj�al ; ni ¼ ð�1Þnþmhak;mjal ; ni
hak;mj�al ; ni ¼ ð�1Þnþmh�ak;mjal ; ni (A4)

and others that arise later in calculating the non-BOA couplings. For now, we use
these relations to reduce the orthonormality condition to

dkl ¼ ð1þ pkplÞ
X
mn¼0

M

cmkcnlhak;mjal ; ni ¼ ð1þ pkplÞAð1Þ
kl ðqÞ (A5)

where the last equality denes A(1)kl which depends on q indirectly via the g andD.
It is clear from the pre-factor that this condition is automatically satised for
pkpl ¼�1, corresponding to states of opposite parity, while considering states of
the same parity restricts A(1)kl to vanish for k s l. The orthonormality condition
also directly determines the initial coefficients c0l. From eqn (10), (11), (A3) and
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(A5), it is clear that it is not practical to solve it directly for the normalized
coefficients cnl. In practice, one must rst solve it for a set of un-normalized
coefficients using some other initial coefficient ~c0l (which we take to be 1 for all
states) and then normalize aer the fact. This will be discussed further in
section C.

In calculating signals, we will be interested in evaluating expectation values or
correlation functions of electronic operators such as the dipole or polarizability.
The propagators in such an expression are easily evaluated via diagonalizing the
truncated non-BOA Hamiltonian or a real-time propagation scheme. However, we
will also need the operator matrix elements in the eigenbasis

Ô klðqÞ ¼
�
3k
		Ô ðqÞ		3l�

¼ Ô þþðqÞ
X
mn¼0

M

cmkcnlhak;mjal ; ni þ Ô ��ðqÞpkpl

X
mn¼0

M

cmkcnlhak;mjal ; ni

þ Ôþ�ðqÞpl

X
mn¼0

M

ð�1Þncmkcnlhak;mj�al ; ni

þ Ô�þðqÞpk

X
mn¼0

M

ð�1Þmcmkcnlh�ak;mjal ; ni (A6)

where we have written the q-dependence for Ô explicitly while omitting this
dependence from the other variables (g and D and through them, the coefficients
cn as well as the a) for brevity. Dening the following summation

B
ð1Þ
kl ðqÞh

X
mn¼0

M

ð�1Þncmkcnlhak;mj�al ; ni; (A7)

we obtain

Ô kl ¼ Ô gg þ Ô ee

2
ð1þ pkplÞAð1Þ

kl þ Ô gg � Ô ee

2
ðpk þ plÞBð1Þ

kl þ R
�
Ô
�
eg
ð1� pkplÞAð1Þ

kl

þ iJ
�
Ô eg

�ðpl � pkÞBð1Þ
kl (A8)

where we have suppressed the q-dependence for brevity. The B(1)kl are comple-
mentary to the A(1)kl , differing only by the placement of the minus signs, and arise
from cross terms between |+i and |�i. Two particular operators are relevant for
our purposes. The ionic state projection operator |eihe| h P̂e is given by

�
P̂e

�
kl
¼ dkl � ðpk þ plÞBð1Þ

kl ðqÞ
2

(A9)

and the transition dipole operator (or any operator with vanishing diagonal
elements in the bare space) is given by

m̂kl(q) ¼ R{m̂}eg(q)(1 � pkpl)A
(1)
kl (q) + iJ{m̂}eg(q)(pl � pk)B

(1)
kl (q) / m̂eg(q)

(1 � pkpl)A
(1)
kl (A10)

where the last relation is on the assumption of real transition dipole moments.
We notice that this expression, whether real or complex, clearly vanishes for states
of the same parity (as would be expected by the symmetry of the dipole operator).
These two special cases correspond to the observables considered in the main
text.
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Appendix B
Derivation of the non-BOA couplings

To propagate nuclear wavepackets along the energy surfaces will require the non-
BOA couplings fkli, hkli, which we obtain in this section. Since we will have
frequent occasion to consider the derivative by the i-th nuclear coordinate, we
notate such derivatives by a prime for brevity (i.e., Vi[.] h [.]0 and there is no
ambiguity since no terms mix nuclear derivatives) in the appendix. Using the
expansion for the eigenstates (eqn (8)) and the product rules, we have

fkli ¼ h3kjVij3li
¼ hþjVijþiAð1Þ

kl þ h�jVij�ipkplA
ð1Þ
kl þ hþjVij�iplB

ð1Þ
kl þ h�jVijþipkB

ð1Þ
kl

þ ð1þ pkplÞ
X
mn¼0

M

cmkc
0
nlhak;mjal ; ni þ a0

lð1þ pkplÞ
X
mn¼0

M

cmkcnlhak;mjal ; nþ 1i

(B1)

where we have used Vi|�a, ni ¼ �a0|�a, n + 1i and h�ak, m|�al, n + 1i ¼
(�1)n+m+1hak, m|al, n + 1i, easily obtained from eqn (A2) and (A3). From basic
considerations, he|Vi|gi ¼ �hg|Vi|ei so that h+|vq|+i ¼ 0 ¼ h�|vq|�i and the rst
two terms in the above vanish. The derivative coupling can then be easily written as

fkli ¼ he|Vi|gi(pl � pk)B
(1)
kl + (1 + pkpl)[A

(2)
kl + a0

lA
(3)
kl ] (B2)

where, for brevity, we have dened shorthand for two additional summations

A
ð2Þ
kl ðqÞh

X
mn¼0

M

cmkc
0
nlhak;mjal ; ni

A
ð3Þ
kl ðqÞh

X
mn¼0

M

cmkcnlhak;mjal ; nþ 1i: (B3)

The rst term in eqn (B2) is simply the result of transforming a purely
molecular-electronic operator with the appropriate symmetries and is thus
proportional to the derivative coupling in the bare basis. The second term
contains the two summations A(2) and A(3) which originate from the q-derivative
acting on the coefficients cnl and the photonic state |al, ni respectively.

To calculate the second-derivative coupling is somewhat more difficult but we
can use the separation

hkli ¼ h3k|Vi
2|3li ¼ Vih3k|Vi|3li � hVi3k|Vi|3li ¼ Vifkli � Fkli (B4)

where the last equality denes Fkli and the rst term can be calculated numerically
from the fkli already obtained above. From

Vij3li ¼
X
n¼0

M h
Vij þ i5cnl jal ; ni þ plVij � i5ð�1Þncnl j�al ; ni þ j þ i5c0nl jal ; ni

þ a0
l j þ i5cnl jal ; nþ 1i þ pl j � i5ð�1Þnc0nl j�al ; ni

� a0
lpl j � i5ð�1Þncnl j�al ; nþ 1i

i
(B5)
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it is straightforward, if somewhat tedious, to calculate the Fkli. It is convenient to
separate the result into three terms

Fkli ¼
X
j¼1

3

F
ðjÞ
kli (B6)

based on where the q-derivatives (the Vi) act. The rst term arises from trans-
forming F from the |ei, |gi basis as though it were an ordinary electronic operator

F
ð1Þ
kli ¼ Fgg þ Fee

2
ð1þ pkplÞAð1Þ

kl þ Fgg � Fee

2
ðpl þ pkÞBð1Þ

kl þ R
�
Feg

�ð1� pkplÞAð1Þ
kl

þiJ
�
Feg

�ðpl � pkÞBð1Þ
kl : (B7)

This is an unsurprising result and easily calculated from the bare F and the
already-obtained A(1), B(1). The F(1) contribution can be thought of as collecting the
terms in which both (of the two available) q-derivatives act on the bare molecule
states |+i, |�i (due exclusively to the rst two terms in eqn (B5)). The second term
contributing to Fkl arises when only one q-derivative acts on the bare molecular
states, while the other acts on the coefficients cnl or the photonic state |al, ni (i.e.,
cross terms between the rst two and latter four elements of eqn (B5)). These
contributions come as

F(2)
kli ¼ {fegi(pk � pl)[B

(2)
kl � a0

lB
(3)
kl ]} + k 4 l, (B8)

where we have dened two more associated summations

B
ð2Þ
kl ðqÞh

X
mn¼0

M

ð�1Þncmkc
0
nlhak;mj�al ; ni

B
ð3Þ
kl ðqÞh

X
mn¼0

M

ð�1Þncmkcnlhak;mj�al ; nþ 1i
(B9)

that again differ from their respective A summations only by the minus signs.
These again arise as cross terms between |+i and |�i states with derivative
operators intervening (directly leading to the matrix element fegi). The nal
contribution to Fkli arises when both q-derivatives act on coefficients or photonic
states. There are several ways to distribute the derivative operations leading to

F(3)
kli ¼ (1 � dkl)(1 + pkpl)(a

0
lA

(4)
kl + a0

kA
(4)
lk

+ a0
ka

0
lA

(5)
kl + A(6)

kl ) (B10)

where

A
ð4Þ
kl ðqÞh

X
mn¼0

M

c0mkcnlhak;mjal ; nþ 1i

A
ð5Þ
kl ðqÞh

X
mn¼0

M

cmkcnlhak;mþ 1jal ; nþ 1i

A
ð6Þ
kl ðqÞh

X
mn¼0

M

c0mkc
0
nlhak;mjal ; ni (B11)
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are the three relevant ways to distribute the two q-derivatives between the coef-
cients and photon modes (the remaining conceivable combination does not
contribute due to orthogonality) and the factor (1 � dkl) is introduced to make
clear that F(3) vanishes for diagonal elements (this can be shown analytically using
the results of the following section).

Appendix C
Normalization

As mentioned briey in Appendix A above, it is not practical to solve directly for
the normalized coefficients cnl. Instead, we recursively determine un-normalized
coefficients ~cnl using the initial condition ~c0l ¼ 1 and then normalize aerwards.
Thus, the normalization constant is

c0l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~A

ð1Þ
ll ðqÞ

q (C1)

where the “tilde” indicates that the un-normalized coefficients ~cnl were used
rather than the normalized cnl as implied by eqn (A5) and we can clearly obtain

A
ð1Þ
kl ¼

~A
ð1Þ
kl

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A
ð1Þ
kk

~A
ð1Þ
ll

q hA
ð1Þ
kl : (C2)

This last denition is superuous for the A(1) summation but the consequences
of a q-dependent normalization will not always be quite so straightforward and
dening the quantities

A
ðjÞ
kl ¼

~A
ðjÞ
kl

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A
ð1Þ
kk

~A
ð1Þ
ll

q B
ðjÞ
kl ¼

~B
ðjÞ
kl

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A
ð1Þ
kk

~A
ð1Þ
ll

q (C3)

facilitates compact expression of the correction terms. This straightforward
normalization procedure only runs into difficulties when the q-derivative of the
coefficients cnl are called for. As will become apparent from numerical imple-
mentation, the relative size of these coefficients spans many orders of magnitude,
complicating numerical differentiation of the normalized coefficients. However,
as we will show below, they can be obtained via a recurrence relation. We thus
summarize the connections between normalized and un-normalized quantities

A
ðjÞ
kl ¼ A

ðjÞ
kl ; j ¼ 1; 3; 5

B
ðjÞ
kl ¼ B

ðjÞ
kl ; j ¼ 1; 3

A
ð2Þ
kl ¼ A

ð2Þ
kl �



A

ð2Þ
ll þ a0

lA
ð3Þ
ll

�
A

ð1Þ
kl

B
ð2Þ
kl ¼ B

ð2Þ
kl �



A

ð2Þ
ll þ a0

lA
ð3Þ
ll

�
B

ð1Þ
kl

A
ð4Þ
kl ¼ A

ð4Þ
kl �



A

ð2Þ
kk þ a0

kA
ð3Þ
kk

�
A

ð3Þ
kl

A
ð6Þ
kl ¼ A

ð6Þ
kl �

h

A

ð2Þ
ll þ a0

lA
ð3Þ
ll

�
A

ð2Þ
lk þ k4l

i
þ


A

ð2Þ
kk þ a0

kA
ð3Þ
kk

�

A

ð2Þ
ll þ a0

lA
ð3Þ
ll

�
A

ð1Þ
kl

(C4)
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where we have used the readily-conrmed identity

ViÃ
(1)
ll ¼ 2(Ã(2)

ll + a0
lÃ

(3)
ll ) (C5)

One can thus begin with the un-normalized coefficients ~cnl obtained from the
initial condition~c0l¼ 1 and eqn (10) and (11). One can then normalize the coefficients
cnl via eqn (C1) and the amplitudes Ã(1)ll before calculating all auxilliary summations
directly from the cnl. Alternatively, one can work with the un-normalized coefficients
~cnl and the un-normalized summations Ã and ~B can then be easily calculated and
normalized aerwards via eqn (C4). However, to do this requires the nuclear derivative
of the un-normalized coefficients, ~c0nl. These can of course be obtained numerically
but the better way is to take the derivative of the original recurrence relation to obtain

�gðnþ 1Þ~c0nþ1 ¼ �
"
ðnþ plÞD

2
~c0n þ ðal þ gÞ~c0n�1 � plð�1ÞnD

2

X
j¼0

n ð2alÞj
j!

~c0n�j

#

þ ðnþ 1Þ~cnþ1

�
g
0 � g

D
0

D

�
þ n~cn

�
2ga0

l � D

D

�
þ ~cn�1

�
�
g
0 þ a0

lð2n� 1þ DplÞ � D
0

D
ðal þ gÞ

�
þ 2al~cn�2ðal þ gÞ

(C6)

where we have used the original recursion relation to simplify the result. The
derivatives of coefficients then depend only on the g, D, a, which are already
available, and their derivatives g0, D0, a0, the former two of which can be obtained
numerically while the latter can be obtained self-consistently from the truncation
relation (i.e., setting ~c0M ¼ 0). In this paper, we take this latter approach to avoid
numerically differentiating the coefficients.
Appendix D
Summary of formulas

In this section, we summarize the nal formulas obtained for all key quantities.
Namely, the following table summarizes the various summations necessary for
the transformation of electronic operators and the calculation of the derivative

couplings. For brevity, we have omitted the summation symbol
XM
mn

from the
Table 1 Summary of direct (A(j)
kl) and complementary cross term (B(j)

kl) summations used as
auxilliary quantities to obtain operator matrix elements O kl and non-BOA coupling fkli and
Fkli coming from first- and second-derivative couplings respectively

i A(i)kl B(i)kl Type of terms

1 cmkcnlhak, m|al, ni (�1)ncmkcnlhak, m|�al, ni Zero-derivative direct
and cross terms

2 cmkc0nlhak, m|al, ni (�1)ncmkc0nlhak, m|�al, ni One-derivative direct
and cross terms3 cmkcnlhak, m|al, n + 1i (�1)ncmkcnlhak, m|�al, n + 1i

4 c0mkcnlhak, m|al, n + 1i Two-derivative
direct terms5 cmkcnlhak, m + 1|al, n + 1i

6 c0mkc0nlhak, m|al, ni
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entries of columns two and three. The photon-added coherent state overlaps are
given by eqn (A3) which may be recast as

hak, m|al, ni ¼ 1F1(1 + n, 1 + n � m, akal)al
n�m(n)m (D1)

where (n)m ¼ n(n � 1)(n � (m � 1)) is the falling factorial and 1F1(a, b, c) is the
Kummer conuent hypergeometric function. This form is particularly useful for
numeric implementation. The un-normalized coefficients ~cnl are given as poly-
nomials in a by the recurrence relation eqn (10) with ~c0l¼ 1. Aer solving eqn (11),
we obtain the al, and thus the ~cnl, numerically. The sums given in Table 1 can then
be calculated and used to evaluate the three key quantities necessary for evalua-
tion of signals (transformed electronic operators, and rst and second derivative
couplings), which we write here in terms of the easily calculated “tilde” and “bar”
quantities for completion

Ô kl ¼ Ô gg þ Ô ee

2
ð1þ pkplÞAð1Þ

kl þ Ô gg � Ô ee

2
ðpk þ plÞBð1Þ

kl þ R
�
Ô eg

�ð1� pkplÞAð1Þ
kl

þ iJ
�
Ô eg

�ðpl � pkÞBð1Þ
kl

fkli ¼ fegiðpl � pkÞBð1Þ
kl þ ð1þ pkplÞ

h
A

ð2Þ
kl � A

ð2Þ
ll A

ð1Þ
kl þ a0

l



A

ð3Þ
kl � A

ð3Þ
ll A

ð1Þ
kl

�i
Fkli ¼ Fgg þ Fee

2
dkl þ Fgg � Fee

2
ðpl þ pkÞBð1Þ

kl þ F 0
egð1� pkplÞAð1Þ

kl þ fegiðpk � plÞ

�
hnh

B
ð2Þ
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lB
ð3Þ
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i
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ð2Þ
ll þ a0

lA
ð3Þ
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ð1Þ
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þ k4l

i
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�
�
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ð4Þ
kl þ a0

kA
ð4Þ
lk þ a0
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0
lA

ð5Þ
kl þ A

ð6Þ
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�

þ




A
ð2Þ
kk þ a0
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kk

�

A

ð2Þ
kl þ A

ð3Þ
kl

�
þ k4l

�
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ð2Þ
ll þ a0

lA
ð3Þ
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�2
�

(D2)

Appendix E
Direct space quantization of the photonic degrees of freedom

The analytical diagonalization of the matter-eld Hamiltonian as described in
this paper yields a set of new potential energy surfaces and nonadiabatic
couplings. This representation provides an intuitive picture and insight into
the modied structure of the coupled Hamiltonian but might become intrac-
table for a quantum dynamics time propagation. An alternative efficient
computational scheme is obtained by the direct treatment of the cavity mode22

in analogy to the quantum harmonic oscillator. The annihilation and creation
operators of the cavity mode can be expressed in terms their quadrature coor-
dinates x and p:

a ¼
ffiffiffiffiffi
uc

2ħ

r �
x̂þ i

uc

p̂

�
(E1)

The coupled light-molecule Hamiltonian from eqn (1) then reads:

H ¼ u0

2

�
2ŝ†

ŝ� 1
�� ħ

2

v2

vx2
þ 1

2
uc

2x̂2 þ ~g
ffiffiffiffiffiffiffiffiffiffi
2ħuc

p
x̂
�
ŝ
† þ ŝ

�
(E2)
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The coordinate X is treated as a spatial coordinate, putting the nuclear
coordinates and the cavity mode on an equal footing in a numerical simulation.
Here x is discretized on a numerical grid and the second derivative with respect
to x can then be conveniently calculated by a discrete Fourier transform.42

The nuclear degrees of freedom q are accounted for by treating u0 and ~g as
functions of q (i.e. the potential energy curves and transition dipole curves
respectively).

The wavepacket simulations have been carried out by propagating the
photonic-nuclear wave packet on the potential energy curves of NaI (1X and 1A)
using the Hamiltonian from eqn (E2). The time stepping was done with a Che-
bychev propagation scheme.43 The potential energy curves NaI, as well as the
nonadiabatic coupling matrix element and the transition dipole moment has
been calculated with the program package MOLPRO44 at the MRCI/CAS(6/7)/
aug-cc-VQZ level of theory with an effective core potential for iodine
(ECP46MWB).
Appendix F
Simulation protocol

Below, we outline the necessary steps to implementing the calculation of a time-
dependent signal that tracks the evolving nuclear wavepacket on the multitude of
electronic energy surfaces.

1. Obtain eigenenergies 3l of the electronic Hamiltonian
(a) Obtain g(q), D(q) from quantum chemistry and denitions.
(b) Discretize q-space on a multidimensional grid.
(c) For each point in q-space, obtain the rst N solutions, a1 / aN, of eqn (11)

with 3 ¼ ag � p
D

2
sufficiently large for the problem (this depends on the type of

signal being discussed).
2. Transform electronic operators to eigenbasis
(a) For each 3l(q), use eqn (10) to obtain the coefficients cnl(q) of the eigenstate

expansions.
(b) For each q-point, use eqn (A2) and the al from step 1(c) above to obtain the

photon-state overlaps hak,m|al, ni and hak,m|�al, ni for all choices of k, l ˛ {1,.,
N} and m, n ˛ {1,., M}. This is two sets of (NM)2 quantities.

(c) Use the coefficients cnl and the photon-state overlaps hak,m|al, ni and h�ak,
m|al, ni to calculate the summations A(1)kl (q), B

(1)
kl (q) via eqn (A7)

(d) Use eqn (A8) to transform any electronic operator. Special cases include the
ionic-state population operator (eqn (A9)) and the transition dipole operator (eqn
(A10)).

3. Obtain the derivative couplings fkli(q)
(a) Obtain the derivative couplings for the bare molecule, fegi(q), from quantum

chemistry calculations.
(b) Take numeric derivatives of the al(q) and cnl(q) obtained above with respect

to the nuclear coordinates to obtain the quantities a0
l(q) and c0nl(q).

(c) Using c0nl(q) and eqn (B3), calculate the summations A(2,3)kl (q).
(d) Using a0

l(q), fegi(q) and the auxiliary summations, calculate fkli(q) via eqn
(12).

4. Obtain second-derivative couplings hkli(q)
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(a) Use eqn (B4) to recast the problem into nding Fkli(q) h hVi3k|Vi3li(q).
(b) Obtain matrix elements of F for the bare molecule (Fgg, Fee, Feg) from

quantum chemistry calculations.
(c) Calculate auxiliary summations A(j)kl , j ˛ {4, 5, 6}.
(d) Assemble Fkli via eqn (13).
5. Calculate desired signals
(a) Write the desired signal in terms of expectation values or correlation

functions of electronic operators.
(b) Write the Hamiltonian in the form of eqn (4) with 3l(q), fkli(q) and hkli(q) are

given by steps 1, 3, and 4 above.
(c) Using this Hamiltonian and some time propagation scheme (such as the

Short-Iterative Lanczos time-stepping procedure), any initial state can be propa-
gated in time.

(d) The action of electronic operators in this basis can be computed using the
results of step 2 above.

(e) Combining these two ingredients, we can calculate any expectation value or
correlation function of electronic operators.

(f) Convolutions of these expectation values or correlation functions with
external eld envelopes then give the observable signal of interest.
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