
J. Chem. Phys. 154, 104116 (2021); https://doi.org/10.1063/5.0039759 154, 104116

© 2021 Author(s).

Detection of photon statistics and
multimode field correlations by Raman
processes
Cite as: J. Chem. Phys. 154, 104116 (2021); https://doi.org/10.1063/5.0039759
Submitted: 06 December 2020 . Accepted: 16 February 2021 . Published Online: 10 March 2021

 Frank Schlawin,  Konstantin E. Dorfman, and  Shaul Mukamel

COLLECTIONS

Paper published as part of the special topic on Quantum Light

https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/5.0039759
https://doi.org/10.1063/5.0039759
http://orcid.org/0000-0001-6977-5881
https://aip.scitation.org/author/Schlawin%2C+Frank
http://orcid.org/0000-0001-9963-0878
https://aip.scitation.org/author/Dorfman%2C+Konstantin+E
http://orcid.org/0000-0002-6015-3135
https://aip.scitation.org/author/Mukamel%2C+Shaul
/topic/special-collections/qual2020?SeriesKey=jcp
https://doi.org/10.1063/5.0039759
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0039759
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0039759&domain=aip.scitation.org&date_stamp=2021-03-10


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Detection of photon statistics and multimode
field correlations by Raman processes

Cite as: J. Chem. Phys. 154, 104116 (2021); doi: 10.1063/5.0039759
Submitted: 6 December 2020 • Accepted: 16 February 2021 •
Published Online: 10 March 2021

Frank Schlawin,1,2,a) Konstantin E. Dorfman,3,b) and Shaul Mukamel4,c)

AFFILIATIONS
1The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
2Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
3State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
4Department of Chemistry and Physics & Astronomy, University of California, Irvine, California 92697-2025, USA

Note: This paper is part of the JCP Special Topic on Quantum Light.
a)Author to whom correspondence should be addressed: frank.schlawin@mpsd.mpg.de
b)Electronic mail: dorfmank@lps.ecnu.edu.cn
c)Electronic mail: smukamel@uci.edu

ABSTRACT

Glauber’s g(2)-function provides a common measure of quantum field statistics through two-photon coincidence counting in Hanbury
Brown–Twiss measurements. Here, we propose to use nonlinear optical signals as a tool for the characterization of quantum light. In partic-
ular, we show that Raman measurements provide an alternative direct probe for a different component of the four-point correlation function
underlying the g(2)-function. We illustrate this capacity for a specific quantum state obtained from a frequency conversion process. Our work
points out how the analysis of controlled optical nonlinear processes can provide an alternative window toward the analysis of quantum light
sources.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0039759., s

The photon counting formalism developed by Glauber1 lies
at the very heart of quantum optics. It has been instrumental in
the characterization of light—whether it is quantum fluctuations
of light fields,2 the particle nature of Fock states,3 or the viola-
tion of Bell’s inequality for photons.4–6 On a formal level, pho-
ton correlation measurements characterize quantum fields in terms
of normally ordered multipoint correlation functions, while pho-
ton fluctuations are described by non-normally ordered correlation
functions.

The standard theory of photon counting2 treats the detector as
an ideal two-level system. As pointed out in Ref. 7, any spectroscopic
measurement may be interpreted as a photon counting experiment,
provided that the two-level systems are replaced by more complex
quantum systems. Given the great interest in exploiting quantum
correlations of light for quantum sensing or spectroscopy,8–12 this
paper extends this idea and demonstrates that nonlinear optical
signals—and, in particular, Raman measurements—may also offer

an avenue for the characterization of multimode quantum fields. We
show, in particular, how Raman measurements can provide infor-
mation about a quantum state of light, which cannot be extracted in
photon counting.

A QED formulation of nonlinear optical signals depends on
time-ordered multi-point field correlation functions of the form13,14

∼ ⟨T E†
1(τ1)E†

2(τ2)E3(τ3)E4(τ4)⟩, where T denotes the time-
ordering operator and E1. . .E4 are the various light fields in the
signal, which are convoluted with the sample’s nonlinear response
function.15 The time ordering—in combination with “filter” of
the matter system—yields different types of correlation functions,
depending on the chosen experimental setup. These include the
normally ordered correlation functions of Glauber’s theory, which
give rise to the g(2)-measurement, for instance, in two-photon
absorption measurements.7,16 Consequently, such measurements
may equally reveal information on the incident photonic state,
such as time-energy entanglement,17,18 provided that the sample
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response function is known. Moreover, as will be shown below,
response functions associated with Raman transitions reveal infor-
mation, which is not accessible in the standard photon counting
experiments.

To set the stage, let us first briefly outline the photon count-
ing formalism. We shall be concerned with the characterization of
broadband, ultrafast fields. We thus write the dimensionless field
operator as a sum over pulsed modes, EA(t) = ∑k ψ

(k)
A (t)Ak, where

the time amplitudes ψ(k)A (t) form an orthonormal set.19,20 Clearly,
this representation is not unique and will be specified later in the
paper.

Detector response times are typically much slower than pulse
durations; therefore, the measured observables are time-integrated.
In our formalism, the photon number operator then reads

nA = ∫ dt E†
A(t)EA(t) = ∑

k
A†
kAk, (1)

which is independent of the choice of the basis ψ(k)A . The correlation
between the field A and a second field B, which we write analogously
as EB(t) = ∑k ψ

(k)
B (t)Bk, may then be recast in terms of correlation

functions of the number operator by the g(2)-function,

g(2)PC =
⟨nAnB⟩
⟨nA⟩⟨nB⟩

=
⟨∑k,k′ A

†
kB

†
k′AkBk′⟩

⟨∑k A
†
kAk⟩⟨∑k B

†
kBk⟩

, (2)

where we introduced the subscript “PC” (=photon counting) to
distinguish it from the Raman correlation function to be defined
below. This correlation function can be detected in coincidence
measurements, as sketched in Fig. 1(a), where the two fields are
separated with a beam splitter, and then measured in the coin-
cidence experiment. This setup implies that the fields EA and EB

commute, [Ak,B†
k] = 0. The correlation function g(2)PC can be

used to, e.g., measure the cooperativity parameter, i.e., the effec-
tive number of entangled modes, or the optical gain in parametric
downconversion.21

We now demonstrate how Raman transitions give rise to corre-
lation functions different from Eq. (2). To this end, we consider the
two-photon process depicted in Fig. 1(b): A high-energy vibrational
state g′ (in the sense that it is unoccupied in thermal equilibrium)
is coupled to the system’s ground state g via an off-resonant Raman
process. The population in g′ is read out through some other pro-
cess, such as the fluorescence or transient absorption of an additional
probe, in which case our observable is given by the population in
g′ after the interaction with the pulses. This requires the lifetime of
g′ to be long enough to enable an optical readout of its population.
Due to selection rules, g′ cannot be dipole-coupled to the ground
state g. Hence, it can only decay through slow, nonradiative decay
channels.

We write the dipolar light–matter interaction Hamiltonian in
the interaction picture with respect to the material and light field
Hamiltonians as

Hint(t) = V(t)E†
(t) + h.c., (3)

FIG. 1. (a) Measurement of the photon coincidence signal (2): The two fields
EA and EB are separated at a beam splitter (BS) and detected in coincidence.
(b) Measurement of the Raman correlation function (14) via off-resonant Raman
scattering: The two fields EA and EB drive a Raman transition in a molecule.
The created excited state |g′⟩ is then detected by other means, e.g., transient
absorption, fluorescence detection, and so on.

where V denotes the positive-frequency component of the mate-
rial dipole operator, describing the annihilation of excitations in the
material, and E† denotes the negative-frequency component of the
electric field operator, corresponding to the creation of photons. In
writing Eq. (3), we have also employed the rotating wave approx-
imation. To leading order perturbation theory in the light–matter
interaction, the population in g′ is given by (see, e.g., Ref. 22)

pg′(t; Γ) = (−
i
h̵
)

4

∫

t

t0
dτ2 ∫

τ2

t0
dτ1 ∫

t

t0
dτ′2 ∫

τ′2

t0
dτ′1

× ⟨V(τ′1)V
†
(τ′2)Pg′(t)V(τ2)V†

(τ1)⟩ (4)

× ⟨E†
A(τ

′

1)EB(τ
′

2)E
†
B(τ2)EA(τ1)⟩,

where Pg ′ = |g′⟩⟨g′| is the projector onto state g′. We consider off-
resonant Raman transitions,23 in which case we may express the
transition probabilities in terms of polarizabilities,24

J. Chem. Phys. 154, 104116 (2021); doi: 10.1063/5.0039759 154, 104116-2

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

pg′(t; Γ) = (−
i
h̵
)

2

∫

t

t0
dτ∫

t

t0
dτ′⟨α†

(τ′)Pg′(t)α(τ)⟩

× ⟨E†
B(τ
′
)EA(τ′)E†

A(τ)EB(τ)⟩ (5)

= (−
i
h̵
)

2
∣αgg′ ∣2 ∫

t

t0
dτ∫

t

t0
dτ′eiωg′ (t−τ

′
)e−iωg′ (t−τ)

× ⟨E†
B(τ
′
)EA(τ′)E†

A(τ)EB(τ)⟩. (6)

The population in pg ′ may be expressed as the modulus square
of transition amplitude operators acting on the field Hilbert space,
pg′(t; Γ) = ⟨∣Tg′g(t)∣2⟩, with the transition amplitude operator

Tg′g(t) = −
iαg′g
h̵ ∫

t

t0
dτ eiωg′ τE†

A(τ)EB(τ), (7)

where αg ′ g denotes the polarizability of the g − g′ transition and ωg ′

denotes its transition frequency. We only consider times t long after
the pulses have passed through the sample. In this case, the popula-
tions are constant, and we can extend the time integration in Eq. (7)
to infinity.25,26 Decomposing the two fields in the Schmidt modes
introduced above, the transition amplitude simplifies to

Tg′g(t) = ∑
k,k′

dkk′A
†
kBk′ (8)

with

dkk′ = −
iαg′g
h̵ ∫

∞

−∞

dτ eiωg′ τψ(k)A (τ)ψ
∗(k′)
B (τ). (9)

It follows from Eq. (9) that Raman scattering mixes different modes
in beams A and B. This can be simplified by making further assump-
tions: by choosing a basis in B, which is shifted by ωg ′ with respect
to A,

ψ(k)A (t) = ψ
(k)
B (t)e

−iωg′ t , (10)

the time integration simply yields a delta-function, dkk′ = −
iαg′g
̵h δkk′ .

Hence, apart from an irrelevant prefactor, the Raman transition may
be described by the two-photon field operator

T = ∑
k
A†
kBk. (11)

In addition, we require the phonon frequency ωg ′ to be larger than
the bandwidth of the pulses such that the field operators commute,
[Ak,B†

k] = 0. The basis ψ(k)A may still be chosen such as to simplify
the description of a particular quantum state. Yet once we pick this
basis, it also fixes the corresponding basis for field B. The anti-Stokes
process, in which a phonon is destroyed, ∼ AkB

†
k can be neglected

since the vibrational state is not excited thermally.
In contrast to intensity measurements, Eq. (1), Raman

signals correlate the corresponding high-energy destruction of a
photon in mode B (i.e., the positive frequency component of
mode B) with a photon creation in mode A (with its negative

frequency component). To appreciate the difference, let us first
calculate the expectation value of the Raman transition operator
T when both fields A and B are in coherent states and temporal
amplitudes αA/B(t). By expanding these amplitudes in terms of the
eigenmodes ψ(k)A/B, we find

⟨T⟩coh = ∫ dt α∗A(t)αB(t). (12)

Hence, the Raman transition operator quantifies the overlap
between two fields’ modes. In contrast to Eq. (1), it is inherently
phase-dependent. The introduction of a time delay between the two
fields will quickly erode this overlap. In the following, we turn to
question of how this phase-dependence is reflected in Raman-based
photon correlation measurements.

The vibrational population created by the Raman transition is
described by the modulus square of the Raman operator (11), which
is normalized by the two fields’ mean photon numbers,

g(2)RC ≡
⟨T†T⟩

⟨∑k A
†
kAk⟩⟨∑k B

†
kBk⟩

(13)

=
1

⟨∑k A
†
kAk⟩

+
∑k,k′⟨A

†
kB

†
k′Ak′Bk⟩

⟨∑k A
†
kAk⟩⟨∑k B

†
kBk⟩

. (14)

In the second line, Eq. (14), we have normally ordered the numer-
ator of Eq. (13). Consequently, the first term stems from the field
commutator, and the second term stems from the normally ordered
contribution. We find that the off-resonant Raman detection (11)
yields a different pairing of operatorsAk and Bk in the second term of
Eq. (14) compared to two-photon counting (2). This unusual pairing
correlates positive frequency contributions from one field with neg-
ative frequency parts of the other field, which in turn has important
consequences for the information about the quantum state of light
that can be obtained with this type of measurement.

To illustrate the information provided by Raman signals com-
pared to conventional photon counting, we now construct input
states, which will then be analyzed with either photon counting or
Raman measurements. In particular, we consider two fields created
by frequency conversion (FC):27 An initial state |ϕ⟩A in beam A
interacts with a (narrowband) pump pulse via a χ(2)-nonlinearity
to populate a new field C, which is shifted by the pump fre-
quency with respect to the initial state, to create the output state
|ϕout⟩ = exp(−iHFC)|ϕ⟩A. The FC Hamiltonian reads21,27

HFC = ∫ dωa ∫ dωb fFC(ωa,ωb)a
†
ωabωb + H.c. (15)

Here, a†
ω (bω) denotes the photon (annihilation) creation operator in

field A (B), respectively, and f PDC is the phase-matching function of
the FC process that depends on the crystal properties and the pump
field (see, e.g., the discussion in Ref. 27). The discussion of its proper-
ties becomes most transparent by using the Schmidt decomposition
of the phase-matching function19
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fFC(ωa,ωb) = ∑
k
r̃kψ
(k)
A (ωa)ψ∗(k)B (ωb), (16)

where r̃k > 0 gives the weight, with which mode k participates in
the FC process, and the functions {ψ(k)A } and {ψ(k)B } are sets of
orthonormal functions, which depend on the phase-matching con-
ditions inside the nonlinear crystal.28–30 These define the basis set,
for which the Raman correlation function (14) can be evaluated most
easily.

With the initial state |ϕ⟩A ⊗ |0⟩B, the output state in the weak
conversion limit, when only one photon is exchanged between the
two fields, may be written as

∣ϕout⟩ = ∑
k
rkAk∣ϕ⟩A ⊗ B†

k ∣0⟩B, (17)

where we introduce renormalized mode weights rk, satisfying
⟨ϕout∣ϕout⟩ = ∑k r

2
k⟨ϕ∣A

†
kAk∣ϕ⟩ = 1. Note that due to the normal-

ization, the factors rk depend on the input state coefficients ck [see,
for example, Eq. (19) below]. This state cannot generally be factor-
ized. However, when we calculate the conventional cross correlation
function (2), we obtain

g(2)PC = 1, (18)

regardless of the input state |ϕ⟩ or the structure of the FC process.
Hence, photon counting does not provide information on the prop-
erties of state (17). In contrast, the Raman correlation function does.
In the following, we will consider several states of light, where the
Raman correlation provides new information. Our first example will
be a coherent state of the form

∣ϕ⟩A =∏
k

exp(ckA
†
k − c

∗

kAk)∣0⟩A, (19)

with∑k|ck|2 = 1, such that ⟨∑k A
†
kAk⟩ = ⟨∑k B

†
kBk⟩ = 1; we arrive at

g(2)RC = 1 + (∑
k
rk∣ck∣

2
)

2

, (20)

which depends on both initial states as well as the FC process. Hence,
while photon counting cannot reveal any properties of the frequency
conversion process, Raman measurements do. Let us first assume
that the input state (19) has a large bandwidth with ck = 1/

√
M for k

≤M. If the FC only affects a single mode k0, i.e., rk0 = const, and = 0
otherwise, we obtain the limiting value for the correlation function
g(2)FC → 1+1/M. If, on the other hand, many modes participate in the
FC process, rk = const for k ≤M, we obtain g(2)FC → 2.

This behavior is illustrated in Fig. 2, where we simu-
late the Raman correlation function g(2)RC using a bi-Gaussian
phase-matching function fFC(ωa,ωb) = α exp[−ω2

/(2σ2
p)]exp

[−γ(Δk(ωa,ωb)L/2)2
]/
√

2πσ2
p , whereΔk(ωa,ωb)L=−(ωa −ω1 −ωp)

T1 + (ωb − ω1)T2 describes the phase-matching in the crystal by
the two inverse bandwidths T1 and T2, and σp describes the pump
bandwidth. In this case, the Schmidt decomposition (16) can be

FIG. 2. Variation of the Raman correlation function g(2)
RC , Eq. (20), with the pump

bandwidth σp measured in units of the inverse characteristic time scale T1 of the
FC process. The parameter M denotes the number of Schmidt modes involved in
the Raman process [see the discussion following Eq. (20)].

carried out analytically, and the eigenmodes are simply given by
Hermite functions.25,26

We depict the dependence of the Raman correlation function
g(2)RC on the number of modes in the FC process (16) for different
coherent input states. The FC process is controlled by the band-
width σp of the pump pulse facilitating the FC, and the input state
is described by ck = 1/

√
M for k ≤ M. For M = 100, g(2)RC is close

to two only for σp × T1 ≪ 1, i.e., when the pump bandwidth is
much smaller than that of the frequency converted pulse ∼1/T1.
In this case, many modes contribute to the FC process. As soon
as the bandwidths are comparable, σp × T1 ∼ 1, the correlation
function drops to ∼1.1 and σp/T ∼ 3 and then slowly rises again.
For M = 10, the Raman correlation function g(2)RC shows a very
similar behavior, yet less pronounced. It drops to 1.4 since only
the behavior of the ten largest eigenvalues contributes to the sig-
nal. This may be explained by the close analogy between the FC
Hamiltonian and the well studied Hamiltonian for parametric down
conversion. If the pump bandwidth is much smaller than the pulse
bandwidth, σp≪ 1/T1, the outgoing light is strongly anti-correlated,
while for σp ≫ 1/T1, it shows strong positive correlations.31 For
intermediate values of σp, the correlations naturally move through
zero.

In our discussion so far, state (17) is separable and hence shows
no quantum correlations. This is no longer the case when the input
state to Eq. (17) is entangled. In this situation, we may write the input
state, e.g., for the case of a type-I downconverted photon pair as

∣ϕ⟩A =
1
√

2
∑
k1 ,k2

dk1 ,k2A
†
k1
A†
k2
∣0⟩, (21)

where the symmetric coefficient matrix dk1k2 stems from the decom-
position of the two-photon wavefunction in the eigenbasis of the FC
process [Eq. (16)]. A similar calculation to before yields

g(2)RC = 1 + 2 ∑
k1 ,k2

rk1 rk2 ∣dk1 ,k2 ∣
2. (22)
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Hence, the Raman correlation function in this case is again con-
trolled by the FC process as described by the coefficients rk.
However, it further depends on the two-photon wavefunction and
hence on the entanglement of the two photons. The Raman mea-
surement contains information on the nonseparability of state (17),
which is missed by the two-photon counting measurements [see
Eq. (18)].

To conclude, we have proposed that Raman measurements
provide a tool for the characterization of the quantum state of mul-
timode light and demonstrated that it offers complementary infor-
mation content to the well-established photon counting formalism.
As an example, we demonstrated how the multimode structure in
a quantum state of light created by a frequency conversion process
may be detected. We envision that such measurements might be
particularly interesting for multimode, broadband fields considered
here, where direct quantum state tomography becomes prohibitively
expensive.

Our results point out the potential of nonlinear optical sig-
nals in the quantum regime as photon detectors: By replacing the
two-level atoms of Glauber’s theory with more complex level detec-
tors, additional information on the quantum state of the light may
be extracted. The full extent to this approach to the characteriza-
tion of multimode light fields has yet to be explored. The present
formalism based on a quantum state that is generated as the result
of χ(2) nonlinear frequency conversion. For optical wavelengths of
the fields A and B, the pump must be in the IR regime to facilitate
the phase-matching. This, in principle, is limiting the spectral res-
olution and the degree of frequency correlations that are governed
by σp. An alternative approach can utilize the χ(3) nonlinearity in
the four-wave-mixing conversion process.38 This way all four fields
are in the optical regime and the corresponding degree of corre-
lations can be maintained with higher precision than in the χ(2)

case.
Conversely, the discussion of quantum properties of light in

Raman transitions opens the possibility of exploiting quantum cor-
relations in Raman spectroscopy. A connection should be estab-
lished to older investigations into the role of photon fluctuations
in stimulated Raman processes.32–34 The output state (17) obtained
from an entangled input state (21) could be understood as an entan-
gled state of a photon with a photon hole,35,36 and our result shows
that such entanglement is reflected in Raman measurements. Future
work will explore how these correlations may be tailored to control
spectroscopic signals.37
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