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ABSTRACT: Stimulated (coherent) and spontaneous (incoherent) non-
linear X-ray signals are expressed using a spatially nonlocal response tensor
which directly connects them to the time evolving current j and charge σ
densities rather than to electric and magnetic multipoles. The relative
contributions of the σA2 and j · A minimal coupling terms, where A is the
vector potential, are demonstrated. The two dominate off-resonant and
resonant scattering, respectively, and make comparable contributions at near
resonant detunings.

1. INTRODUCTION
Recent development of bright ultrafast coherent X-ray sources,
such as free electron lasers (XFEL)1 or high harmonic generation
(HHG),2 has triggered intense research activity aimed at the
experimental realization of all-X-ray nonlinear spectroscopy.3−5

Combined with other advances in single molecule spectroscopy6

and ultrafocusing of beams,7,8 this opens up new opportunities to
create real time movies of chemical reactions.
This article applies a nonlocal response formalism based on the

minimal coupling Hamiltonian of light-matter interaction to the
X-ray regime. Extending the standard response function
theories9−11 using the minimal coupling Hamiltonian permits
one to include the spatial variation of the exciting electric and
magnetic fields. The nonlocal response approach has several
merits. First, in the hard X-ray regime, the dipole (long
wavelength) approximation may fail for certain material
transitions. Deviation from the dipole approximation may also
be observed at longer wavelengths when the current densities are
highly delocalized. A nonlocal description that implicitly
accounts for all higher multipoles is then called for. Expansion
of the current into electric and magnetic multipole moments is
possible but becomes tedious when higher multipoles are
needed, while the nonlocal description leads to expressions that
are only marginally more complicated than the dipole case.
Second, the nonlocal response tensors are expressed in terms of
physically intuitive elementary quantities: time dependent
current and charge densities. Third, nonlocal response tensors
encompass both the contribution of current j and charge σ
densities, while the σ term is neglected in the dipole
approximation. This allows us to describe pure σ interaction
pathways, usually used in off-resonance diffraction applications
or pure resonant j pathways that when integrated over space
correspond to the standard resonant nonlinear optical pathways
in the dipole approximation. Pathways that depend on both j and
σ, and are relevant at intermediate detunings, can be accounted
for. In near resonant diffraction, these mixed charge/current
contributions are known as anomalous diffraction.12

The outline of this paper is as follow. First, we review the
nonlocal response description of nonlinear spectroscopy. Formal

expressions are derived for heterodyne detected (coherent,
stimulated) signals as well as for spontaneous emission
(incoherent) signals. In section 3, we use this formalism to
simulate various heterodyne (stimulated) signals for thiophene at
the sulfur K-edge. These include X-ray absorption (XAS) and
stimulated X-ray Raman spectroscopy (SXRS). Spontaneous
scattering signals are then discussed and formally linked to two-
photon absorption in section 4.

2. NONLOCAL DESCRIPTION OF X-RAY
SPECTROSCOPY

The nonlocal response formalism13,14 starts with the minimal
coupling field-matter interaction Hamiltonian:15

∫ σ= − · −H t d t
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is the current density operator, and

σ ψ ψ= †er r r( ) ( ) ( ) (3)

is the charge density operator. Here, ψ†(r) and ψ(r) are the
electron field Fermion creation and annihilation operators at
position r. Also, p is the momentum operator. Note that the
required molecular poperties, namely, the charge and the current
densities are independent of the choice of origin.
We consider signals given by the rate of change of the photon

occupation number Ns in the detected field mode s:
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∫α ρ= ⟨⟨ ̇ | ⟩⟩S dt N tk( , { }) ( )s i s T (4)

Here, Ns is the number operator for photon in the mode s. Also,
|O⟩⟩ denotes Liouville space vectors, and ⟨⟨A|B ⟩⟩ =̂ Tr(A†B) is
the scalar product in Liouville space.9 Here, ρT(t) denotes the
total (field and matter) density matrix, and ρ(t) is the matter
density matrix. The set αi represents the parameters used in a
specific signal (time delays, incoming wave vectors, etc.). These
are specified in the following applications.
In Appendix A, we employ a quantum description of the

detected field modes to obtain

∫α ρ=
ℏ

⟨⟨ · | ⟩⟩S
i

d dt tk r J r A r( , { }) ( ) ( ) ( )s i T (5)

The physical matter quantity that determines this signal is the
gauge invariant electron current density13

σ= − e
mc

J r j r A r r( ) ( ) ( ) ( )
(6)

Assuming a classical optical field, we can recast eq 5 as
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ℏ

⟨⟨ | ⟩⟩·S
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Here, exp+ is the time ordered exponential, ρeq is the stationary
dens i t y mat r i x , and the in te rac t ion L iouv i l l i an
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The tilde denotes the commutation superoperator associated
with a Hilbert space operator O, ÕX ≡ [O,X]. Equation 7 is
known as the heterodyne detected signal, which represents the
change of transmission of an incoming probe field.
Specific signals can be obtained by expanding the exponent in

eq 8 pertubatively in t( )int . We refer to the nth-order term as
n

int
( ). We should then collect terms in powers of A. Since t( )int

(eq 9) is both linear and quadratic in A, n
int
( ) will contain

contributions to all orders between An to A2n. The common
practice is to use the σÃ2 coupling for off-resonant processes and
the j ̃·A coupling for resonant processes.16 Hereafter, we examine

the relative contributions of both terms, discuss the validity of the
above approximations, and present some four-wave mixing
signals that involve both resonant and off resonant contributions.
To first order inA, the gauge invariant current density (eq 8) is
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A sum-overstates expression for J(1)(r,ω) for an incoming
Gaussian pulse is given in Appendix B. By displaying the total
current density J(r,t) that generates the detected field, we can
visualize the contribution of different regions in the molecule to
the response. In Figure 1, the first-order current density J(1)(r,ω)
given in eq 10 is displayed for various excitation wavelengths.
The total current density is delocalized for optical transitions and
becomes more localized for deeper core transitions. This is
connected to the localization of the molecular orbitals of the
states involved in the transition: The j term in eq 10 has a spatial
extent comparable to the underlying core orbital, while the σ
term, negligible at resonance, has a contribution that extends
over the molecule.
Higher-order nonlinear current densities J(2), J(3), etc., which

depend on various interaction delays between pulses, can provide
a real space visualization of multidimensional signals.

2.1. Stimulated (Heterodyne-Detected) Third-Order
Signals. Below, we give the expressions for time- and wave
vector-resolved signals for impulsive pulses based on the results
of references 13 and 14. Indices i, ii, and iii are used to denote the
first-, second-, and third-order contribution in int, respectively.
The third-order nonlocal response function is given by

= + +S t t t S S Sk k k k( , , )s
i ii iii(3)
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Figure 1.Current densities calculated using eq 10 for different typical wavelengths. (a) Valence excitation (5.96 eV) in biphenyl. (b) CK-edge excitation
(282 eV) in cysteine (top figure is on an expanded scale). (c) S K-edge excitation (2.47 keV) in thiophene. The valence excitations for biphenyl have
been calculated at the CIS/6-31G* level of theory, while the core excitations in cysteine and thiophene have been calculated using RASSCF (restricted
active space self-consistent field) described in more detail in Section 3.
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where Ii,j denotes the identity matrix in the i ⊗ j direct product
space and is used to indicate the scalar product with the vector
potential of the associated space.
For classical optical fields, the heterodyne signal is given by
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where {αi} stands for all pulse parameters. Assuming that the
incoming pulses are temporally well separated, the interactions
with the various pulses have a controlled time ordering. In this
case, there are 22 possible interaction pathways (8 from Siii, 12
from Sii, and 2 from Si) that can be represented by ladder
diagrams. Adding the possibility to interact with either the
positive or the negative frequency component of the vector
potential for each interaction yields 22× 16 ladder diagrams. The
rules for calculating these diagrams in the dipole approximation
are given in ref 9. Some additional rules are needed to extend
them to the minimal coupling Hamiltonian and allow the
possibility to interact either with σ or j (eq 1).

1. Each interaction with the current density brings a factor of
−i/ℏ; each interaction with the charge density brings a
factor of −e/2mc (−e/mc if this interaction is the last).

2. Each interaction with the charge density σ(ri) is
accompanied by δ(ri+1−ri)δ(t1).

Depending on the level scheme and field frequencies, some
diagrams may be neglected by invoking the rotating wave
approximation (RWA), which simplifies the calculation. More-
over, the position of the detector will select only a subset of
diagrams for a given phase matching direction. In the dipole
approximation, the signal is generated along the directions ± k1
± k2 ± k3. In the nonlocal formalism, the pulses can come with a
finite k space envelope (ultrafocused fields), and each diagram
represents an emission in a cone. It is then necessary to sum over
all the modes that the detector receives taking into account its
position and spatial extent. For plane wave fields, one can
eliminate the k space integrals in eq 16 but the signal will still
depend on the incoming wave vector. This applies for example to
diffraction.
2.2. Incoherent Scattering Signals. Fluorescence and

diffraction are spontaneously emitted (scattering) signals. We
assume that the detected field mode is initially in the vacuum
state, and the field+matter density matrix prior to detection is
|ρT(t)⟩⟩ = |ρM(t)⟩⟩⊗ |0s⟩⟩. If the matter is initially in its ground
state, only the J(r)as contribution in eq 31 (Appendix A) survives
the RWA. A zero-order expansion of the density matrix in eq 5
gives a vanishing signal. The density matrix must be expanded at

least to first order in the interaction with the spontaneous mode s.
The second interaction with the detected mode yields a
nonvanishing field density matrix element and the trace over
the field degrees of freedom no longer vanishes.
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where js(r) = j(r) · As(r) and σs(r) = σ(r) · As(r). Here, A with no
subscript stands for externally applied field modes.
We have calculated all elements of this expansion using the

matrix elements given in Appendix A. By tracing out the detected
mode, the signal is finally recast in terms of purely matter
correlation functions:
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The density matrix may be expanded further in the incoming
classical fields as it was done in the previous section. The signal is
finally obtained by replacing the discrete sum over field modes by
its mode density ∑i → L3∫ dωs (ωs

2/π2c3):
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Here, ϵs is the polarization vector of the detected photon. In the
absence of a polarized detection, one has to sum over
polarizations.
Equations 19−22 may be used as a starting point for a

pertubative expansion of the matter density matrix |ρ(t−t1)⟩⟩ in
the incoming fields thus yielding various types of multidimen-
sional signals. The system may be excited by an arbitrary
sequence of pulses and then evolves freely until the time t−t1
where the measurement process starts as given by eq 22.
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3. NONLINEAR SPECTROSCOPY AT THE SULFUR
K-EDGE OF THIOPHENE

Core hole states in molecules can be calculated with, for example,
the ΔSCF method, time-dependent density functional theory
(TDDFT), and complete active space self-consistent field
(CASSCF)-based method (for a broader overview see ref 5
and references therein). While TDDFT is very efficient for larger
molecules, CASSCF-based methods can be readily applied to
smaller molecules, providing a good balance between accuracy,
flexibility, and calculation time. As a multiconfiguration method,
it allows us to capture the involved valence states properly.
Moreover a CASSCF calculation can be augmented with a
multireference pertubative expansion to obtain highly accurate
X-ray spectra.17

The low lying core states of the sulfur atom of thiophene make
it a good marker for hard X-ray spectroscopy. The valence states
are calculated with the package MOLPRO18 at the CASSCF(6/
5)/cc-pVTZ level of theory. To take into account the necessary
relativistic corrections for the sulfur 1s electrons a second-order
Douglas−Kroll−Hess Hamiltonian19,20 is employed. The sulfur
1s core excited states are then obtained in a subsequent restricted
active space calculation (RASSCF): The S(1s) orbital is rotated
into the active space resulting in a RASSCF(8/6)/cc-pVTZ
calculation, where the S(1s) orbital is restricted to single
occupancy. The S(1s) molecular orbital coefficients are frozen in
the wave function optimization to guarantee convergence to a
core hole state rather than a valence state. The resulting lowest
lying core hole transition is 2485 eV (compared to the
experiment,21 2471 eV), which corresponds to an error <1%.
All relevant quantities necessary to compute the nonlocal
response are directly obtained from the MCSCF wave functions
as described in Appendix C.
3.1. X-ray Absorption of Oriented Thiophene. We have

simulated the transmission from an oriented thiophene at the
sulfur K-edge (2.48 keV):

∫

∫
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The ks dependence comes from the vector potential of a plane
wave with wave vector ks: A1(k) = A1δ(k − ks). From this
expression, one can readily see that σ only contributes a
frequency-independent background. However, its variation with
ks can still provide information about the molecular structure in
the off-resonance regime where the current densities can be
neglected.
Figure 2 depicts the signal (eq 23) versus the frequency and

the direction of an incoming Gaussian beam. The beam central
frequency is tuned at the sulfur K-edge, 2.48 keV, and is assumed
to be ultrabroadband (tens of eV are achievable22). In the
impulsive limit, the signal is given in eq 23. We used the sum-
overstate expression given in Appendix D, eq 45. The transition
at 2488 eV possesses a strong maximum when the incoming x
polarized beam is incident with an angle of π/4. The symmetry of
the angular dependence is due to the σν symmetry plane. The
signal depends on the molecular orientation.

3.2. Stimulated X-ray Raman Signals. Stimulated X-ray
Raman spectroscopy (SXRS)23,24 is a technique that probes the
electronic manifold through core excitation, making use of the
ultrafast and broadband nature of X-ray pulses.
The technique uses a pump−probe configuration where each

pulse interacts twice with the sample. It first creates a core
excitation that can evolve for a short time before a second
interaction with the same pulse destroys the core hole and
generates a valence excitation. During the delay τ between the
two pulses, the system is prepared in a superposition of valence
states and the signal is recorded as a function of this delay. The
beam geometry is displayed in Figure 3(a) (we assume two
Gaussian pulses), and the level scheme is given is Figure 3(b).
Both pulses are tuned at the sulfur K-edge (2.47 keV).

Figure 2.Wave vector-dependent X-ray absorption spectroscopy (XAS) signal (eq 23) at the sulfur K-edge of an oriented thiophenemolecule versus the
frequency and direction of the incoming linearly polarized Gaussian beam along the unit vector ex. On the right, XAS signals are displayed for some
selected directions of the incoming pulse.
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All pulses are modeled as impulsive Gaussian beams
propagating along the z axis and linearly polarized along y as
given in Appendix E. Various beam configurations may be
employed to monitor the spatial behavior of the current and
charge densities. The diagrams describing the SXRS signal are

given in Figure 4 Diagram (a) is a int
(3) process that is dominant

near resonance. In the impulsive limit, the time integrals are
eliminated, and the signal is simply proportional to the response
function defined in eq 16. Using the diagrams in Figure 4, the
SXRS signals is23

∫ ∫τ

τ τ τ τ

= −ℜ

× + + +σ σ σσ

S dtdt dt dt d d d d

S S S S

r r r r( )

( ( ) ( ) ( ) ( ))jjjj jj jj

SXRS 1 2 3 1 2 3

SXRS SXRS SXRS SXRS
(24)

∫ω
π

τ τ= ωτ−S d S( )
1

(2 )
( )e i

SXRS 1/2 SXRS
(25)

The final sum-overstates expressions used to calculate the signals
are given in Appendix D, eqs 52−55. The time integrations
appearing in eq 24 calculated for Gaussian pulses yield the final
signal given in Appendix F, eq 60 The laser frequencies are tuned
at the S K-edge and detuned by a value ofΔω. The SXRS signals
calculated for three values ofΔω (0, 15, and 40 eV) are displayed
in Figure 5.
Figure 5 depicts contributions i, ii, and iii to the signal. The ii

contribution contains two terms (eq 53 and 54) that are referred
to as jjσ and σjj. The jσj term does not contribute in SXRS
because we assume that the two pulses do not overlap. By
analogy, contribution iii may be referred as jjjj and the i one by
σσ. The relative contributions of the jjjj, σσj, jσσ, and σσ terms as
a function of the detuning are given in Figure 6. One can observe

that the contributions of i and ii are small compared to iii when
the pulses are resonant but dominate off-resonance. The relative
strength of each contribution and its variation with frequency
detuning is plotted for the valence excitation at 11 eV. Similar
behavior is observed at other frequencies.

3.3. Time-Resolved Two-Photon Induced Fluores-
cence. Recently, Takamasu and co-workers22 have reported
two-photon absorption of a 5.6 keV XFEL beam in germanium
detected by X-ray fluorescence and discussed the relative

Figure 3. (a) Beam geometry used to measure the SXRS signal
corresponding to the diagrams in Figure . (b) Energy levels of thiophene
excited in SXRS.

Figure 4.Diagrams used to calculate the SXRS signal defined in eq 24. In the nonlocal picture, one has to include interactions with the charge density (a),
(b), and (c) on top of the contribution with only current density interaction (a). Diagram (a) corresponds to the standard SXRS signal in the local
limit.23 The full signal contains four more diagrams corresponding to the first two interactions acting on the bra on the density matrix.

Figure 5. SXRS signals defined in eq 25 for different detuning value of
the X-ray beam. One can observe that, when the exciting beams are not
fully resonant, several terms must be considered to compute the total
signals.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00279
J. Chem. Theory Comput. 2016, 12, 3959−3968

3963

http://dx.doi.org/10.1021/acs.jctc.6b00279
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jctc.6b00279&iName=master.img-003.jpg&w=239&h=106
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jctc.6b00279&iName=master.img-004.jpg&w=329&h=115
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jctc.6b00279&iName=master.img-005.jpg&w=178&h=356


contribution of the j · A and σA2 terms. We now apply the
nonlocal description to study these relative contributions. The
analysis is very similar to the scattering discussed above: both are
two-photon processes (up/down vs up/up).
Fluorescence25 is a spontaneous incoherent signal, and we

thus use eq 19 as a starting point. Diagrams representing different
contributions to the signal are given in Figure 7(a) and (b), and a
schematic of the pulses geometry is given in Figure 7(c).
Two photons (one visible, one X-ray) are first absorbed by the

molecule, and the process is repeated after a delay τ. The jjjj
contribution to the signal is represented in diagram (a):
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In a similar way, the contributions of diagrams involving the
charge density (Figure 7 (b)) are
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However, the general spontaneous signals presented in eq 22
can be used to calculate other spontaneous signals. For example,
homodyne detected signals for samples much larger than the
wavelength of the incoming beams can be considered. Diffraction
type measurements when one focuses on the k space distribution
of the emission can also be calculated.

4. DISCUSSION
We have implemented a nonlocal response formulation of
nonlinear X-ray signals based on the minimal coupling
Hamiltonian for the light−matter interaction. The matter enters
through the charge and current densities thus offering a real-
space picture of the electron dynamics in the molecule. The focus
has been put on X-ray spectroscopies because the dipole
approximation is more likely to fail when the wavelength is
comparable to the molecular size. In this article, we have
demonstrated that the extension of the transition current
densities scales with the incoming wavelength. However, the
dipole approximation fails to consider nontrivial beam spatial
variation and the charge densities contributions.
The nonlocal formalism, that avoids the multipolar expansion,

may be used to describe both stimulated heterodyne-detected or
spontaneous incoherent signals. In this paper, we have calculated
X-ray absorption, stimulated X-ray Raman spectroscopy, and
two-photon induced fluorescence signals. The standard resonant
and off-resonant treatments that only retain the current densities
or the charge density, respectively, are recovered. In anomalous
X-ray scattering,12 both quantities must be retained and are
naturally included in the nonlocal formalism. Both current and
charge densities then contribute substantially to the signals.
The nonlocal description of light−matter interaction offers

many future possibilities. An obvious application would be the
design of interactions of matter with a strongly spatially varying
field. Such fields could be achieved experimentally at short
wavelength, using the progresses of beam ultrafocusing or of
nontrivial polarization state (such as radial or azimuthal
polarization). The important progress in near-field optics can
also lead to new exciting signals, using the near-field at the
vicinity of a nanoparticle for example. We note that nonlocal
effects already occur in spectroscopies that depend on the

Figure 6. Different contributions to the SXRS signal (eq 24) as a
function of the detuning. Near resonance, the jjjj process is strongly
dominating the other ones. One can observe that other contributions
than jjjj dominate off-resonance and that there exists an intermediate
regime in which several terms must be considered.

Figure 7. Ladder diagrams for two-photon fluorescence. As in Section 3.2, light−matter interaction is described by current densities (a) and charge
densities (b). (c) Beam geometry used to model the measurement of time-resolved two-photon absorption fluorescence.
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magnetic dipole, for example, circular dichroism. Additionally,
joint current and charge density interactions that can occur in
nonlinear optical experiments can be accounted for in the
nonlocal description.

■ APPENDIX A: DERIVATION OF EQ 5

Using the Liouville−Von Neumann equation, the rate of change
of the occupation number is readily expressed as

̇ = ℏ †N i r a a/ ( )s s sint . Here, r( )int is defined in eq 9 with
classical vector potential that are now replaced by their quantum
operators:

∑= + * †a aA r A A( )
i

i i i i
(29)

ε
ω

= ℏ
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·
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eA r( )

2i
i

i
ik r

0
3

i

(30)

We detect the field s mode, and εi is the polarization of this
mode. We then define j+ = jas

†, j− = jas, σ
2+ = σas

†as
†, σ0 = σ, σ2− =

σasas, and the corresponding Liouville space operators. Using
these definitions, the photon rate of change becomes

∫
σ σ σ
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These operator products can be simplified using

̃ · * = − · *+ † +j r a aA r j A r( ) ( ) ( )s s s s (32)

σ σ̃ = −+ † +a ar( ) 2s s
2 2

(33)

and the following matrix elements:

⟨⟨ | ̃ | ⟩⟩ = −a a 0 1s s s (34)

⟨⟨ | ̃ | ⟩⟩ =† †a a 0 1s s s (35)

σ σ⟨⟨ | ̃ | ⟩⟩ = −−a a 0 2s s s
2

(36)

σ σ⟨⟨ | ̃ | ⟩⟩ =† † +a a 0 2s s s
2

(37)

Inserting these expressions in eq 4 leads to the signal given in eq
5.

■ APPENDIX B: EXPRESSIONS FOR J(R,T) AND J(R,ω)

In this appendix, we provide a sum-overstate expression for
J(r,ω) defined in eq 10. At the linear order, the time-dependent
current density given in eq 8 is

∫ ρ
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If we assume an ultrashort pulse (Dirac δ function in time), the
integral over t1 is simplified and the current density becomes
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This is the formula used to compute the current densities
displayed in Figure 1. Alternatively, we can consider a temporal
Gaussian profile for the incoming pulse A(r1,t−t1) = A(r1)

e−(t−t1)
2/2σ2e−iωLt1 + c.c. The current density is given by
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■ APPENDIX C: ELECTRON CURRENTS FROM MCSCF
WAVE FUNCTIONS

In this section, we briefly review how the electron currents from
eq 2 necessary for the spectra calculation can be obtained from a
configuration interaction (CI) type wave function. The electron
current j(r) can be expressed in terms of the full real valued
electronic eigenstates Ψi ≡ Ψi(r,r2,...,rN):

∫∑ ∑ρ ρ= = Ψ∇Ψ − Ψ∇Ψ
≠ ≠

j r j r r r( )
1
2

( )
1
2

d ... d ( )
i j i
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ij N i j j i
, ,

2

(41)

where the sum runs over all electronic states involved. Note that
the diagonal elements (i = j) do not contribute as the current for
any real valued, nondegenerate eigenstate vanishes. Here, ρij is
the density of matrix element of the electronic states. The wave
function is then further expanded in a multiconfiguration self-
consistent field (MCSCF) wave function

∑Ψ = ΦAi
m

mi m
(42)

such that the transition current reads

∫ ∑= Φ ∇Φ − Φ ∇Φ
≠

A Aj r r r( ) d ... d ( )ij N
m n m

mi nj m n n m2
,

where Ami is the CI coefficients of state i, configurationm, andΦm
its corresponding Slater determinant. The transition currents are
one-electron properties, meaning Brillouins theorem26 applies
and only combinations of determinants Φm and Φn differing in
exactly one orbital need to be considered. The contributing
determinants can be defined through

|Φ ⟩ = |Φ ⟩μ ν
†a an m (43)

where aμ
†and aν create and annihilate an electron in spin orbital μ

and ν, respectively. The current for MCSCF wave functions is
then determined by the molecular orbital pairs ψμ

(m)(r) and
ψν
(n)(r) generated from configurations m and n:
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The time dependence of j enters through the coherences ρij,

whereas the time-independent quantities (A and ψ) have been

obtained from the MCSCF calculation.

■ APPENDIX D: SUM-OVERSTATES EXPRESSIONS
FOR X-RAY SIGNALS

In this section, we provide explicit expression for the different

signals considered in this paper. The linear X-ray absorption

signal is defined in eq 23. We assume an x polarized plane wave

excitation A1(k) = ex A1δ(k − ks). We vary the incident angle on

the incoming pulse according to Figure 2. In the RWA

approximation, the signal is given by
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where Rx(θ) is the rotation matrix around the x axis by an angle θ.
We give sum-overstate expression for the complete third-order

response function.
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In Section 3.2, the SXRS signal is calculated using the following

expressions, derived from the diagrams in Figure 4.
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■ APPENDIX E: IMPULSIVE GAUSSIAN BEAMS

The monochromatic linearly polarized Gaussian beam propagat-

ing along the z axis in the paraxial approximation is given by

ω = +ω ζ− − − − +r z
w

w z
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( )
e . .r w z i kz t ikr R z i z

0
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(56)

where w(z) is the beam waist, R(z) is the radius of curvature, and

ζ(z) is the Gouy phase.27 We further assumed an infinite

Rayleigh length. Thus, the beam divergence along the z axis is

neglected. This is justified by the small extension of a molecule

compared to a typical Rayleigh length (few microns). The

Gaussian beam has a much simpler expression:
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0

/ ( ))2
0
2

(57)

A Gaussian time envelope for the Gaussian beam is obtained

by choosing a Gaussian frequency distribution and carrying out

the Fourier transform of the previous equation:

π
= +τ ω− − Δ − − − −r z t e e c cA

A
( , , )

2
e . .r w t t z

c i kz t0 / 4ln 2/ ( ) ( ))2
0
2 2 2

(58)

where Δt is the fwhm and τ is the retardation of the pulse. In the

impulsive limit, the beam takes the form used throughout this

article to calculate integrated components of the current and

charge densities:

π δ τ= − −− ⎜ ⎟⎛
⎝

⎞
⎠r z t e t

z
c

A A( , , ) 2 r w
0

/2
0
2

(59)

■ APPENDIX F: FINAL EXPRESSIONS FOR SXRS

In this appendix, we give the SXRS signal (eq 24) using eqs

52−55 in Appendix D and the definition of the vector potential

given in Appendix E, eq 58 for a pulse with a finite duration.
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where σi is related to the fwhm of the ith pulse by
σΔ =t 2 ln 2i i. The spatially integrated current densities μmn

i

are given by μmn
i = ∫ drAi(r)jmn(r), where Ai(r) is the spatial

profile of the incoming beam. For example, for a Gaussian beam
incoming from the z axis, discussed in Appendix E,

π= − −A e er( ) 1/ 2i
r w z/ iki i

2 2
.
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