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Two techniques that employ equally spaced trains of optical pulses to map an optical high frequency
into a low frequency modulation of the signal that can be detected in real time are compared. The
development of phase-stable optical frequency combs has opened up new avenues to metrology and
spectroscopy. The ability to generate a series of frequency spikes with precisely controlled separa-
tion permits a fast, highly accurate sampling of the material response. Recently, pairs of frequency
combs with slightly different repetition rates have been utilized to down-convert material suscep-
tibilities from the optical to microwave regime where they can be recorded in real time. We show
how this one-dimensional dual comb technique can be extended to multiple dimensions by using
several combs. We demonstrate how nonlinear susceptibilities can be quickly acquired using this
technique. In a second class of techniques, sequences of ultrafast mode locked laser pulses are
used to recover pathways of interactions contributing to nonlinear susceptibilities by using a photo-
acoustic modulation varying along the sequences. We show that these techniques can be viewed
as a time-domain analog of the multiple frequency comb scheme. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5000375]

I. INTRODUCTION

Mode-locked lasers, widely used for generating ultrashort
light pulses, operate by keeping a fixed phase relationship
between the modes of the laser, leading to periodic constructive
interferences that result in a train of pulses with a well-defined
interpulse separation T. In the frequency domain, such an elec-
tric field corresponds to a series of frequency spikes with
fixed wavenumber separation 1/T, called a frequency comb.1–5

Their advent has revolutionized high-precision metrology,5,6

enabled the creation of intense, few-cycle pulses with con-
trolled carrier-envelope phase,7,8 and shows great promise
for novel spectroscopic applications.2,5,9–15 Frequency combs
can be used for fast data acquisition and also offer ultrahigh
resolution spectra.

In a standard ultrafast nonlinear spectroscopy set-up,
multiple pulses generate several interaction pathways within
the matter that may then be separated through various tech-
niques (phase-cycling, phase matching). The laser’s repetition
rate is then used to accumulate signals with a satisfactory
signal to noise ratio. In the scheme presented here, all the
pulses in the comb sequence are used to intrinsically iso-
late a desired contribution to the signal. A variety of spec-
troscopic signals have been measured using dual frequency
combs (DFCs). Traditionally, experiments have been con-
ducted by mixing the two lasers, with either one or both having
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travelled through the material, and measuring the interference
between the two.5,16,17 The Fourier transform of this interfer-
ogram gives the signal that, at linear order, is the absorption
spectrum and higher-order contributions showing Raman and
other resonances.18,19 The use of multiple frequency combs
with slightly different frequency spacings induces slow tem-
poral modulations of the various pathways contributing to
the signal.20 These down-shifted frequencies can be small
enough to allow their detection by electronic means in real
time while conserving the high frequency resolution of the
comb.

This technique can be alternatively described in the time
domain. Since a frequency shift is equivalent to a modula-
tion in the time domain, the advantages of using a frequency
comb can also be, in principle, obtained by modulating pulses
within a sequence with a varying frequency.21,22 This tech-
nique has been used23,24 to detect and select various interaction
pathways in two-photon fluorescence. The modulation of the
pulses is achieved by using an independent acousto-optic mod-
ulator (AOM) for each of the four pulses in the interaction
scheme. A standard ultrafast laser can be used in this applica-
tion, and the modulation of the pulses is tailored to match the
repetition rate of the laser, releasing the constraint of using a
comb in the frequency domain. On the other side, frequency
combs offer a frequency shift control that would be diffi-
cult to achieve by modulating standard sources in the time
domain.

In this manuscript, we develop a unified description
for the multi-comb spectroscopies and the phase-modulated
AOM detection techniques and compare the respective sig-
nals. Both techniques have their merits and limitations. AOM
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is more straightforward to implement since it requires a simpler
ultrafast laser:25 a typical laser oscillator at 100 MHz can be
used and the downshifted signals are acquired at 3–13 kHz
using a lock-in amplifier. However, phase modulation using
AOM still requires varying the delays between the pulses. This
requires long acquisition times because of the necessity to scan
various delay stages as well as requiring a larger setup. Fre-
quency comb techniques, on the other hand, do not require
scanning any delays, and the acquisition can be done at the
much higher frequency of the comb repetition rate. The down-
shifting of the relevant signals is due to the frequency shift
between various combs. The signal can then be modulated at
very low, few-Hertz frequencies.

We extend the formalism of multidimensional spec-
troscopy to account for incoming fields composed of multiple
combs. This can be used to analyze the aforementioned exper-
iments and to guide the development of these techniques. In
Sec. II, we derive general expressions for nonlinear signals
using broadband transmission and fluorescence detection. Our
derivations make clear that the same ideas of temporal signal
modulation can be applied to incoherent detection when the
exciting field is an overlap of combs. In Sec. III, we perturba-
tively expand the signal to linear and third order to demonstrate
the effect of using a DFC field. Four-comb spectroscopic tech-
niques for measuring the third order response function are
discussed in Sec. IV. Finally, in Sec. V, we compare the
phase modulation of ultrafast pulses with the frequency comb
techniques.

II. COHERENT VS. INCOHERENT SIGNALS

First, we demonstrate that coherent detection can be
described as the rate of material energy change due to the laser
combs. We then discuss incoherent fluorescence detection,
which has recently been used to measure two-photon absorp-
tion of Rubidium vapor.26 We derive expressions for the fluo-
rescence signal, using the excited state population as a proxy
quantity for this signal. In both cases, we derive the signal
expressions in terms of the material quantities without speci-
fying how they are generated, thus subsuming arbitrary-order
interaction and allowing specialization to linear or nonlinear
signals in Secs. III and IV.

A. Coherent signal: broadband nonlinear transmission

The time-dependent dissipation of field energy by the
interaction with matter can be measured as the nonlinear trans-
mission. We start with a model Hamiltonian given by the sum
of a material-only term Ĥ0 and a dipolar term coupling the
electric field E(t) to the matter

Ĥ = Ĥ0 − E(t)V̂ , (1)

where V̂ is the dipole operator. We define the signal as the rate
of change of material energy

S(t) ≡
d
dt
〈Ĥ〉(t) =

d
dt

Tr
[
Ĥ(t)ρ(t)

]

= Tr
[

˙̂H(t)ρ(t) + Ĥ(t) ρ̇(t)
]
. (2)

Working in the Schrödinger picture and using the Liouville
equation ρ̇ = −i[Ĥ, ρ] then gives

S(t) = Tr
[

˙̂H(t)ρ(t)
]
− iTr

[
Ĥ2(t)ρ(t) − Ĥ(t)ρ(t) ) Ĥ(t)

]

= 〈
d
dt

Ĥ〉 = −Ė(t)〈V̂〉(t), (3)

where we have used the invariance of the trace operation to
cyclic permutations and the fact that only the electric field
depends explicitly on time. The total energy change due to the
field, given by the time integration,

∆H(t) ≡
∫ t

−∞

dτ
d

dτ
〈Ĥ〉, (4)

can thus be found by substituting the Fourier transforms of the
electric field and dipole expectation value

Ė(t) =
d
dt

∫
dωE(ω)e−iωt = −i

∫
dωE(ω)ωe−iωt

〈V̂〉(t) =
∫

dω〈V̂〉(ω)e−iωt (5)

to obtain

∆H(t) =
i

(2π)2

∫ t

−∞

dτ
∫

dω1ω1

∫
dω2

×E(ω1)〈V̂〉(ω2)e−i(ω1+ω2)τ . (6)

In the long-time limit (t → ∞), the time-integration gives
a δ-function in frequencies, and the total dissipated energy
is

∆H =
−i

(2π)2

∫
dωE(−ω)〈V̂〉(ω)ω

=
1

(2π)2
=

∫
dωE∗(ω)〈V̂〉(ω)ω, (7)

where the last equality follows from E∗(ω) = E(−ω) and
the fact that ∆H is real. This reproduces the standard start-
ing point for arbitrary-order nonlinear spectroscopic signals.
To proceed further, we must specify the electric field and some
care must be taken when considering one which is temporally
unlimited. The simplest example of such a case is a contin-
uous wave E-field, but a continuously applied pulsed laser
is also temporally unlimited. In such cases, Eq. (7) diverges,
and the material dissipates an infinite total amount of energy.
The meaningful observable should then be the rate of this
dissipation

S(t) = −Ė(t)〈V̂〉(t)

=
−1

(2π)2
=

∫
dω1ω1

∫
dω2E(ω1)〈V̂〉(ω2)e−i(ω1+ω2)t

(8)

or its Fourier transform

S(ω) =
−1
2π
=

∫
dω1ω1dω2E(ω1)〈V̂〉(ω2)δ(ω − ω1 − ω2)

=
−1
2π
=

∫
dω′(ω − ω′)E(ω − ω′)〈V̂〉(ω′), (9)

which is the rate of energy dissipation as a function of fre-
quency. In the applications given hereafter, we consider infinite
combs. We thus use Eqs. (8) and (9) rather than (6) and (7).
We then analyze the temporal modulation of the signals for
various comb configurations.
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B. Incoherent, fluorescence-detected, signals

So far, we have discussed a coherent detection of the gain
(or loss) of material energy due to the field. Alternatively,
one can detect the time-dependent population P̂e ≡ |e〉〈e|
of some selected excited state e, where P̂ is a projection
operator. While multi-frequency comb spectroscopy has tra-
ditionally been done in a heterodyne fashion, we demon-
strate below that the same ideas can be imported into flu-
orescence detection schemes. By exciting the system with
a field composed of multiple combs, the same phase mod-
ulation of the signal occurs in fluorescence as in the het-
erodyne case. As before, when the field is not temporally
confined, the physically relevant signal is the rate-of-change
of this population. Fluorescence is a readily identifiable proxy-
signal for this quantity. The signal is then proportional to
the time-dependent population flux of an emitting excited
state

d
dt
〈P̂e〉(t) ≡ Se(t) = Tr

[
˙̂Peρ + P̂e ρ̇

]
= iTr

[
P̂eĤ ρ − P̂eρĤ

]
,

(10)

where we have used the Liouville equation and ˙̂Pe = 0 when
|e〉 is an eigenstate of Ĥ0. This can be further simplified by
making use of the cyclic invariance of the trace and evaluating
the resulting commutator

Se(t) = iTr
[
[P̂e, H]ρ

]
= =

[
E(t)〈P̂eV̂〉(t)

]

= =

[∫
dω1dω2E(ω1)〈P̂eV̂〉(ω2)ei(ω1+ω2)t

]
(11)

or, in the frequency domain,

Se(ω) = =

[∫
dω1dω2E(ω1)〈P̂eV̂〉(ω2)δ(ω − ω1 − ω2)

]

= =

[∫
dω′E(ω − ω′)〈P̂eV̂〉(ω′)

]
. (12)

These expressions for the incoherent population signal are
analogous to Eqs. (8) and (9) for the rate of energy gain/loss
and may be similarly expanded order by order. The only dif-
ference between the two types of detection is that the material
operator of relevance is now the projected dipole product P̂eV̂
rather than the entire dipole V̂ . If we define the projected
susceptibilities,

〈P̂eV̂〉(1)(ω) ≡
∫

dω′E(ω′)χ(1)
e (−ω,ω′)δ(−ω + ω′),

〈P̂eV̂〉(3)(ω) ≡
∫

dω1dω2dω3E(ω3)E(ω2)E(ω1)χ(3)
e

× (−ω,ω3,ω2,ω1)δ(−ω + ω3 + ω2 + ω1),

(13)

then all results derived formally for the coherent transmission
signal will apply immediately to these incoherent signals by the
simple substitution χ → χe. We note that, since the projection
operators satisfy

∑
P̂e + P̂g = 1, we have

∑
χe + χg = χ.

However, the χg signal obviously does not contribute to a
fluorescence signal since it is the probability of returning to
the ground state after the last dipole interaction.

The projected susceptibility can also be written as a
Liouville-space superoperator expression

χ(n)
e (−ω,ωn, . . . ,ω1)

≡ 〈〈1|P̂e,LV̂L(ω)V̂−(ωn) . . . V̂−(ω1)|ρ(−∞)〉〉, (14)

where 〈〈1| is the trace operator. The subscript “L” indicates
action on the left in Hilbert space ÔL |ρ〉〉↔ Ôρwhile the “�”
subscript stands for the commutator Ô− |ρ〉〉↔ Ôρ − ρÔ. We
could also simplify this by acting with the projection operator
to the left on the trace operator 〈〈1|P̂e,L = 〈〈ee|

χ(n)
e (−ω,ωn, . . . ,ω1) ≡ 〈〈ee|V̂L(ω)V̂−(ωn) . . . V̂−(ω1)|gg〉〉,

(15)

where we have assumed the equilibrium density matrix to be
the ground state. For comparison, the superoperator expression
for the full χ(n) is

χ(n)(−ω,ωn, . . . ,ω1) ≡ 〈〈1|V̂L(ω)V̂−(ωn) . . . V̂−(ω1)|gg〉〉.

(16)

III. DUAL FREQUENCY COMB SPECTROSCOPY
A. Time domain derivation

We now apply the results of Sec. II to frequency combs
as shown at the top of Fig. 1. We first consider the linear
response of a system to a pair of frequency combs. The time-
domain electric field of a pulse train corresponds to a comb
in frequency space so that, for the j-th pulse train with T j, the
repetition period of the mode-locked pulses, we have4

Ej(t) =
∑

n

Ẽ(t − nTj)e
i(ωct−nωcTj+nφce,j+φj) → Ej(ω)

= eiφj Ẽ(ω − ωc)
∑

n

ein(φce,j−ωTj)

= eiφj Ẽ(ω − ωc)
∑

n

δ(ω − n∆ωj − ωce,j), (17)

where we have separated the electric field into an envelope
function Ẽ and a carrier wave with frequencyωc,∆ωj ≡ 2π/Tj,

FIG. 1. Top: Two combs with different repetition frequency [Eq. (18)] are
overlaid and interact with the sample. Different interactions pathways are
modulated with different slow frequencies. Bottom: multiple pulses with an
AOM frequency φi are combined with a varying pulse delay. By accumulating
over multiple sequences, interactions pathways are also modulated at slow
frequencies.
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j = 1, 2 are the laser repetition frequencies, φce,j is the pulse-
to-pulse carrier envelope phase shift leading to the uniform
frequency shift ωce,j = φce,j∆ωj, and φj is an overall phase.
This definition can also be used for a pulse series of ultrafast
lasers. When an AOM with frequency φjn is used, an extra
φjnTj is added to the phase. The ability to measure φce for
optical frequency combs, by self referencing for example, was
instrumental in allowing their use for high-precision metrology
since it determines the mapping between optical frequencies
ω and RF frequencies ∆ω and ωce.5 In dual- and multi-comb
spectroscopies, active control of φce allows a much higher
degree of accuracy,27 and phase-sensitive schemes can be used
to separate linear from nonlinear signals.20 While knowledge
of ωce is thus necessary to precisely determine the frequency
of the comb teeth, it is not essential for understanding the key
property of downshifting high frequency material response,
where the downshift factor depends on the laser repetition
rate difference. As the focus of this paper is the derivation of
general expressions for AOM and multi-comb nonlinear spec-
troscopy, we do not further address these important details in
this manuscript and, for simplicity, takeωce,j and φj to be zero
with the understanding that they can be easily resurrected at
any point as needed.

We consider a DFC composed of two frequency combs
E =

∑
j Ej. We assume that the two combs have the same

envelope function and are in phase so that the DFC is given by

E(ω) = Ẽ(ω − ωc)
∑

n

(δ(ω − n∆ω1) + δ(ω − n∆ω2)). (18)

In practical experimental implementations,26 the repetition
rates are chosen such that

∆ω2 − ∆ω1

∆ω1(2)
≡

δω2

∆ω1(2)
<< 1 (19)

For this reason, we will use the notation ∆ω1 ≡∆ω, ∆ω2

=∆ω + δω2 which is readily generalizable to ∆ωj =∆ω + δωj

where we set δω1 = 0 without loss of generality.
We first consider the linear response in which the dipole

expectation value is given by

〈V̂〉(ω) =
∫

dω′ χ(1)(−ω,ω′)E(ω′)δ(−ω + ω′)

= χ(1)(−ω,ω)E(ω), (20)

where χ(1) is the linear susceptibility. Upon substituting Eqs.
(18) and (20) into Eq. (8), we find that the time-dependent rate
of energy change has four contributions, which we denote by
Sjk(t), j, k = 1, 2, depending on whether the material interacts
with comb 1 or 2 in each E field. The “diagonal” terms come
as

S(1)
jj (t) = −=

∑
nm

n∆ωj

(2π)2
Ẽ(n∆ωj − ωc)Ẽ(m∆ωj − ωc)

× χ(1)(−m∆ωj, m∆ωj)e
−i(n−m)∆ωj t , (21)

while the cross terms are

S(1)
12 (t) = −=

∑
nm

n∆ω1

(2π)2
Ẽ(n∆ω1 − ωc)Ẽ(m∆ω2 − ωc)

× χ(1)(−m∆ω2, m∆ω2)e−i(n−m)∆ωte−im(δω2−δω1)t

(22)

with ∆H21(t) following similarly by 1 ↔ 2. The time mod-
ulation represented by the exponential factors is critically
important. Note that the diagonal terms can come modulated
with any multiple of the repetition frequencies while the cross
terms come modulated with a multiple of one of the repeti-
tion frequencies and a δω shift. The double summation can
be simplified by considering the time-dependent signal that
would result from a low-pass filtering where the cutoff fre-
quency is less than either ∆ωj. This would eliminate all terms
n , m, rendering ∆Hjj a static, DC contribution. The cross
terms, however, would then come as

S(1)
12 (t) = −=

∑
n

n∆ω

(2π)2
Ẽ(n∆ω − ωc)Ẽ(n∆ω2 − ωc)

× χ(1)(−n∆ω2, n∆ω2)e−inδωt , (23)

where we have set δω2 = δω as it is the only such term at
linear order. The nth term in this summation carries the infor-
mation of the material response at n∆ω2 but is modulated in
time by the factor einδωt , i.e., at a down-shifted frequency of
δω. Thus, in a temporal detection of the rate of energy dis-
sipated (absorbed) by the matter, the response at an optical
frequency n∆ω2 will be modulated at a frequency nδω. Since
the externally controlled ratio between these two factors can
reach δω

∆ω ≈ 10−6, this effectively down-shifts the optical fre-
quency to the microwave or even RF regime, where it is easily
detected in the time-domain by standard electronics. The mate-
rial susceptibility at an optical frequency is accompanied by a
microwave oscillation.

B. Frequency domain derivation

Equivalently, we can begin with the general expres-
sion [Eq. (9)] for the frequency-dependent rate of energy
dissipation

S(ω) =
−1
2π
=

∫
dω′(ω − ω′)E(ω − ω′)〈V̂〉(ω′). (24)

Inserting Eq. (18) for the electric field gives

S(ω) =
−1
2π
=

∑
j=1,2

∑
n

n∆ωjẼ(n∆ωj −ωc)〈V̂〉(ω− n∆ωj). (25)

The linear response is then obtained by inserting Eq. (20),
which gives

S(1)(ω) =
−1
2π
=

∑
j=1,2

∑
n

n∆ωjẼ(n∆ωj − ωc)χ(1)

× (n∆ωj − ω,ω − n∆ωj)E(ω − n∆ωj). (26)

Inserting the form of the E field then results in

S(1)(ω) =
−1
2π
=

∑
j,k=1,2

∑
nm

n∆ωjẼ(n∆ωj − ωc)Ẽ(m∆ωk − ωc)

× χ(1)(−m∆ωk , m∆ωk)δ(n∆ωj + m∆ωk − ω), (27)

where we have used the δ-function to simplify the arguments
of χ(1). Upon setting j = 1, k = 2, we recover the Fourier
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transform of Eq. (22). We can also recast this in an alternative
form by relabeling n + m = n′,

S(1)(ω) =
−1
2π
=

∑
j,k=1,2

∑
m

(ω − m∆ωk)Ẽ(ω − m∆ωk − ωc)

× Ẽ(m∆ωk − ωc)χ(1)(−m∆ωk , m∆ωk)

×
∑

n′
δ(n′∆ω + m(δωk − δωj) − ω). (28)

Here the relabeling (and the use of the δ-function) has allowed
us to put one of the summations purely on the δ-function term,
into which we have substituted the definition of ∆ωj,k . This
makes clear that, for each choice of n′, there will be a comb
with spikes separated by δωk − δωj corresponding to different
values of m, and each of these separate combs will be shifted
by n′∆ω. Finally, we may consider a low-pass filtered signal as
before to select the n′ = 0 term and obtain the simple formula

S(1)(ω) =
1

2π
=

∑
j,k=1,2

∑
m

m∆ωjẼ(−m∆ωj − ωc)

× Ẽ(m∆ωk − ωc)χ(1)(−m∆ωk , m∆ωk)

× δ(m(δωk − δωj) − ω). (29)

It is then immediately clear that the j = k terms will all con-
tribute a DC component at ω = 0, while the j = 1, k = 2
term will generate spikes at ω = mδω2, the j = 2, k = 1 term
generates spikes at ω = − mδω2 which overlap since m takes
positive and negative integer values. The above frequency-
domain approach is clearly equivalent to the time-domain
approach of Sec. III A but is easier to visualize because of the
explicit appearance of the δ-function in the frequency domain.
This expression can be simplified further by assuming that only
one comb passes through the material while the other is used
for the heterodyne detection so that, setting j = 2, k = 1, we
obtain

S(1)
21 (ω) =

1
2π
=

∑
m

m∆ω2Ẽ(−m∆ω2 − ωc)Ẽ(m∆ω − ωc)

× χ(1)(−m∆ω, m∆ω)δ(−mδω − ω), (30)

where, for simplicity, we have relabeled δω2 = ∆ω2 − ∆ω
= δω since this is the only such quantity in the linear case.
Similarly, detecting the reference beam corresponds to setting
j = 1, k = 2 to obtain

S(1)
12 (ω) =

1
2π
=

∑
m

m∆ωẼ(−m∆ω − ωc)Ẽ(m∆ω2 − ωc)

× χ(1)(−m∆ω2, m∆ω2)δ(mδω − ω). (31)

IV. QUAD COMB SPECTROSCOPY: MEASURING
THE THIRD-ORDER RESPONSE

Extending the previous formalism to any nonlinear
response is straightforward. Here, we calculate the third-order
signals obtained by the application of 4 combs. Third-order
signals measured using 2 or 3 combs are then special cases
while the use of higher numbers of combs would simply be a
sum over possible 4-sets of the applied combs. A recent imple-
mentation20 of a four-wave mixing measurement effectively
utilizes 3 combs by starting with 2, splitting one of these, and
using an AOM in one path of the apparatus. In that work,
a phase cancellation scheme is utilized to separate out the
desired signal. While the details of experimental implemen-
tation of such techniques are not completely straightforward,
the advantages discussed above (short acquisition times at high
resolution) justify their use.

Generalizing Eq. (18), we write the electric field as

E(ω) = Ẽ(ω − ωc)
∑

j={1,2,3,4}

∑
n

δ(ω − nωj), (32)

and the dipole expectation value at this order is

〈V̂〉(ω) =
∫

dω1dω2dω3E(ω1)E(ω2)E(ω3)χ(3)(−ω,ω3,ω2,ω1)δ(−ω + ω3 + ω2 + ω1), (33)

which, upon substitution of Eq. (32), becomes

S(3)(ω) =
−1
2π
=

∑
j1,j2,j3,j4

∑
nmpq

n∆ωj1 Ẽ(n∆ωj1 − ωc)Ẽ(m∆ωj2 − ωc)Ẽ(p∆ω3 − ωc)Ẽ(q∆ωj4 − ωc)

×χ(3)(n∆ωj1 − ω, m∆ωj2 , p∆ωj3 , q∆ωj4 )δ(n∆ωj1 − ω + m∆ωj2 + p∆ωj3 + q∆ωj4 ), (34)

where each of the j1, . . . , j4 are summed over {1, . . . , 4}, signifying the 4 applied combs. To simplify this expression, we first
define n + m + p + q ≡ n′ and ωmpq ≡ m∆ωj2 + p∆ωj3 + q∆ωj4 , which gives

S(3)(ω) =
−1
2π
=

∑
j1,j2,j3,j4

∑
mpq

(ω − ωmpq)Ẽ(ω − ωmpq − ωc)Ẽ(m∆ωj2 − ωc)Ẽ(p∆ω3 − ωc)Ẽ(q∆ωj4 − ωc)

× χ(3)(−ωmpq, m∆ωj2 , p∆ωj3 , q∆ωj4 )
∑

n′
δ(−ω + n′∆ωj1 + m(δωj2 − δωj1 ) + p(δωj3 − δωj1 ) + q(δωj4 − δωj1 )), (35)

where all high-frequency components are at multiples of n′. Applying a low-pass filter, as in the linear case, thus finally selects
the n′ = 0 term

S(3)(ω) =
1

2π
=

∑
j1,j2,j3,j4

∑
mpq

(m + p + q)∆ωj1 Ẽ(−(m + p + q)∆ωj1 − ωc)Ẽ(m∆ωj2 − ωc)Ẽ(p∆ω3 − ωc)Ẽ(q∆ωj4 − ωc)

× χ(3)(−ωmpq, m∆ωj2 , p∆ωj3 , q∆ωj4 )δ(−ω + m(δωj2 − δωj1 ) + p(δωj3 − δωj1 ) + q(δωj4 − δωj1 )), (36)
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where the first argument of χ(3) can also be written as −ωmpq = −(m + p + q)∆ωj1 − ω via the δ-function. Setting the detected
comb to be the reference comb then gives j1 = 1, and the signal corresponds to

S(3)
1 (ω) =

1
2π
=

∑
mpq

(m + p + q)∆ωẼ(−(m + p + q)∆ω − ωc)Ẽ(m∆ωj − ωc)Ẽ(p∆ω3 − ωc)Ẽ(q∆ω4 − ωc)

× χ(3)(−(m + p + q)∆ω − ω, m∆ω2, p∆ω3, q∆ω4)δ(−ω + mδω2 + pδω3 + qδω4), (37)

where we have used the symmetry of χ to eliminate the sum-
mations over the ji [e.g., the transformation (j2, m) ↔ (j3, p)
yields the same expression]. The presence of the integer sum-
mations means that the various frequency dimensions of the
nonlinear response are essentially “folded” into the single
observation axis ω, preventing an immediate recovery of the
full χ at precise frequencies. By varying δωj, we can then
produce a 4-dimensional signal S(ω, δω2, δω3, δω4). The sum-
mations over mpq can be thought of as tensor contractions (of
the tensors represented by the δ-function and the product of
field envelopes with χ(3)) and a generalized tensor equation
inversion procedure can then be used to determine χ(3). The

essential point remains the same as in the case of linear spec-
troscopy, i.e., all measurements are conducted at the frequency
scale determined by the δω, but they are sampling the material
response χ at the ∆ω-scale, which may be 5 or 6 orders of
magnitude higher in frequency.

A. Dual-comb third-order techniques

The special case of dual-comb, third-order spectroscopy
in which all perturbative interactions are with comb 2, and
the signal is heterodyne detected with respect to comb 1
gives

S(3)
1 (ω) =

1
2π
=

∑
mpq

(m + p + q)∆ωẼ(−(m + p + q)∆ω − ωc)Ẽ(m∆ω2 − ωc)Ẽ(p∆ω2 − ωc)Ẽ(q∆ω2 − ωc)

× χ(3)(−(m + p + q)∆ω2, m∆ω2, p∆ω2, q∆ω2)δ(−ω + (m + p + q)δω). (38)

It is immediately clear that the third-order DFC technique does not provide enough tunable parameters to allow for a full
inversion to obtain χ(3) due to the dimensionality. Another special case is two interactions with each of two combs which
becomes

S(3)
1 (ω) =

1
2π
=

∑
j2,j3,j4

∑
mpq

(m + p + q)∆ωẼ(−(m + p + q)∆ω − ωc)
[
Ẽ(m∆ω − ωc)Ẽ(p∆ω2 − ωc)Ẽ(q∆ω2 − ωc)

× χ(3)(−(m + p + q)∆ω − ω, m∆ω, p∆ω2, q∆ω2)δ(−ω + (p + q)δω) + Ẽ(m∆ω2 − ωc)Ẽ(p∆ω − ωc)Ẽ(q∆ω2 − ωc)

× χ(3)(−(m + p + q)∆ω − ω, m∆ω2, p∆ω, q∆ω2)δ(−ω + (m + q)δω) + Ẽ(m∆ω2 − ωc)Ẽ(p∆ω2 − ωc)Ẽ(q∆ω − ωc)

× χ(3)(−(m + p + q)∆ω − ω, m∆ω2, p∆ω2, q∆ω)δ(−ω + (m + p)δω)
]
. (39)

This can be simplified by changing m ↔ p in the second term and m ↔ q in the third,

S(3)
1 (ω) =

1
2π
=

∑
j2,j3,j4

∑
mpq

(m + p + q)∆ωẼ(−(m + p + q)∆ω − ωc)Ẽ(m∆ω − ωc)Ẽ(p∆ω2 − ωc)

× Ẽ(q∆ω2 − ωc)δ(−ω + (p + q)δω)
[
χ(3)(−(m + p + q)∆ω − ω, m∆ω, p∆ω2, q∆ω2)

+ χ(3)(−(m + p + q)∆ω − ω, p∆ω2, m∆ω, q∆ω2) × χ(3)(−(m + p + q)∆ω − ω, q∆ω2, p∆ω2, m∆ω)
]
. (40)

This expression possesses peaks at every p′ ≡ p + q, and we thus recast as

S(3)
1 (ω) =

1
2π
=

∑
j2,j3,j4

∑
mpp′

(m + p′)∆ωẼ(−(m + p′)∆ω − ωc)Ẽ(m∆ω − ωc)Ẽ(p∆ω2 − ωc)

× Ẽ((p′ − p)∆ω2 − ωc)δ(−ω + p′δω)
[
χ(3)(−(m + p′)∆ω − ω, m∆ω, p∆ω2, (p′ − p)∆ω2)

+ χ(3)(−(m + p′)∆ω − ω, p∆ω2, m∆ω, (p′ − p)∆ω2) × χ(3)(−(m + p′)∆ω − ω, (p′ − p)∆ω2, p∆ω2, m∆ω)
]
. (41)
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We thus see that each choice of p′, corresponding to a choice
of peak in the detection, fixes the sum of pairs of arguments
of χ(3) as −p′∆ω2 and p′∆ω2. The amplitude of this peak
is then given by the sum over m, p. The resulting spectra
will reveal resonances whenever p′∆ω2 is a two-photon res-
onance of the material. This therefore contains resonances
at Raman transitions (frequency differences) as well as two-
photon (frequency sum) absorption transitions, depending on
the magnitudes of p′ and ∆ω relative to these material energy
scales.

V. TIME-DOMAIN COMB SPECTROSCOPY:
ACOUSTO-OPTIC MODULATION

Acousto-optic modulation is an alternative technique that
makes use of pulse trains to downshift material responses into
detectable frequency regimes (see Fig. 1). Here, the laser out-
put is separated into 4 paths using multiple beam splitters and
delay stages to independently control their arrival time on the
sample.24 Each pulse passes through an AOM that imparts
a phase φjnT to the pulse that passes through it (j = 1, 2,
3, 4 for each of the 4 pulses). The jth pulse is then given
by

Ej(t) =
∑

n

Ẽj(t − tj − nTj)e
iω(t−tj−nT )+iφjnTj , (42)

where tj is the time delay of the pulse sequence j, T j is the
repetition period of the laser (≈1.25µs), and n is the discrete
variable for a pulse within the jth pulse train.

We first assume incoherent detection where the signal is
proportional to the time-dependent excited-state population to
match existing experiments. Doing so, we do not explicitly
consider the emission from the excited state into unpopu-
lated modes of the field. The fluorescence signal is then given,
according to Eq. (10), by

Se(t) = Pe ρ
(4)(t) (43)

=

∫
dt1dt2dt3Re(t3, t2, t1) · E(t)E(t − t3)

×E(t − t3 − t2)E(t − t3 − t2 − t1), (44)

where Pe is the projector |e〉〈e| over the detected transition
and ρ(4)(t) is the fourth order perturbative expansion on the
density matrix. The response function R(t3, t2, t1) is the fourth
order correlation function calculated in the usual way and is
the Fourier transform of the 4-point matter correlation function
defined in Eq. (15). It is the sum of various contributions that
are represented in Fig. 2. In the standard convention, each
interaction with a leftward-facing arrow brings a−φj frequency
shift to the signal, while an interaction with a rightward-facing
arrow brings a +φj one.

Typical values of the frequency differences are φ43 = φ4−

φ3 = 8 kHz and φ21 = φ2−φ1 = 5 kHz.24 When the pulses are
short enough compared to any material time-scale, the pulses
are impulsive and their envelopes Ẽj can be approximated by
Dirac δ-functions and the emitted fluorescence is

S(t3, t2, t1, t ′) = 2<
(∑

i

Ri(t3, t2, t1, t ′)
)
, (45)

where t ′ =mT and the sum over i runs over the different inter-
action pathways28 presented in the diagrams in Fig. 2. Lock-in

FIG. 2. Diagrams that contribute to the fluorescence signal are represented
with the respective AOM necessary to extract them. Marcus had considered
the pathways modulated at −Φ1 +Φ2 −Φ3 +Φ4 and +Φ1 −Φ2 +Φ3 −Φ4 and
did not consider f -manifold excitations. Thus, the two diagrams highlighted
in red are the one measured in his experimental scheme. Other diagrams at
the bottom row would require creating different reference waveforms to be
measured.

amplifiers are used for the detection. The incoming signal is
multiplied by a reference waveform and a low pass filter is
applied:

SLI =
1
τLI

∫ +∞

0
dt ′S(t3, t2, t1, t ′)R(t ′)e−t′/τLI , (46)

where S is the detected fluorescence out of the sample, R is a
reference waveform created from the incoming pulses and τLI

is the lock-in low pass time (200 ms). Two different reference
waveforms are constructed as follows:

R+(t3, t1, t ′) = cos(ω43t3 + ω21t1 − (φ43 + φ21)t ′ − θ), (47)

R−(t3, t1, t ′) = cos(ω43t3 − ω21t1 − (φ43 − φ21)t ′ − θ). (48)

The reference waveforms are created by sending pair of
pulses through a monochromator. For pulses 1 and 2, for
example, the power density is |E1(ω, t ′) + E2(ω, t ′)|2 and the
monochromator is tuned to evaluate the intensity at ω = ω21,
leading to Eqs. (47) and (48). The extra oscillation in the
reference waveform is unnecessary to pick signals modu-
lated at Φ43 ± Φ21, but it adds an extra oscillation along
t3 and t1 that downshifts the frequency of the transition
[e−iωegt3 −→ e−i(ωeg−ω43)t3 and eiωegt1 −→ ei(ωeg−ω21)t1 ]. By tun-
ing the monochromator frequency closer to the transition, we
can expect further downconversion. In a recent experiment,24

the monochromator frequency used wasωm = 381 THz and the
transition frequency observed was ωeg = 384 THz to achieve
a downshifted frequency of 3 THz. This downshifting is used
to reduce the number of data points to acquire and to improve
the signal to noise ratio.

The recorded signal is split into two and sent to two lock-in
amplifiers, using R+ and R

�

as a reference wave, respectively.
θ is set to 0 or π/2 to detect the in-phase and in-quadrature
component of the signal. Pathways 1 and 4 are modulated by
φ43 + φ21, while pathways 2 and 3 are modulated by φ43 + φ21.
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FIG. 3. Diagrams contributing to heterodyne detected signals for kI , kII , and
kIII techniques.

Assuming that the low pass filter removes the oscillatory part of
the integrated function, the lock-in R+ extracts the contribution
of R1 + R4 to the signal. Similarly, R

�

extracts the contribution
of R2 + R3.

We have discussed incoherent fluorescence-detected sig-
nals, but it is also possible to use heterodyne detection too to
measure coherent signals. The heterodyning pulse then carries
the frequency ψ4 and a lock-in detection can also be used.29

The corresponding diagrams for the kI , kII and kIII techniques
are depicted in Fig. 3, and the matter correlation function of
Eq. (16) is then measured.

VI. CONCLUSION

The pulse sequences for the multicomb and the AOM
techniques are illustrated in Fig. 1. Dual frequency comb
spectroscopy and its multi-comb generalizations permit the
extraction of a wealth of material information by employing a
single pulse sequence. High-resolution spectral measurements
are effectively taken simultaneously at all the comb teeth.
Thus, data acquisition can be achieved much more rapidly,
making the recording less sensitive to fluctuations. In dual
comb spectroscopy, the signal is modulated by the difference in
repetition rates between the two combs, allowing access to high
frequency (e.g., optical) material information via measure-
ments at much lower (MHz) frequencies with the frequency
conversion factor δω/∆ω. While phase cancellation schemes
can be used to separate the linear from nonlinear signals, the
different combinations of comb interactions that can lead to
a particular observed frequency become harder to disentangle
for multiple frequency combs probing the nonlinear response.
Tensor equation inversion techniques (see, e.g. Ref. 30, and
references therein) could be employed to obtain the full mul-
tidimensional material susceptibility from varying the comb
repetition frequencies relative to each other.

In multicomb spectroscopies, the frequency down-shifted
signal is usually acquired in the time domain, and the

spectra are recovered by Fourier transforms at the data pro-
cessing stage. In the AOM scheme, by contrast, a frequency
shift is added in the time domain to each pulse in the sequence
which is then accumulated on an intensity detector. This detec-
tion scheme carries a Fourier transform experimentally and
the frequency to extract different interaction pathways is then
selected by a lock-in amplifier. Frequency combs and multi-
comb techniques have been employed to quickly record a
variety of spectroscopic signals at high resolution.5,16–20,26,31

This paper provides a unified analysis for multi-comb spectro-
scopies that can be used to analyze these experiments and to
guide their further development.

We point out that the two techniques have a somewhat
blurry separation. Standard ultrafast laser effectively behave
like combs when one is able to add an arbitrary phase to
each pulse within a sequence. The slow modulation added
on interaction pathways with the AOMs also allow to down-
shift the detected signal. On the other side, multi-comb spec-
troscopy can also rely on the use of AOM to add an extra
frequency shift to a whole sequence, useful to deconvolute
various contributions to the signal (linear from nonlinear or
separating different nonlinear interaction pathways).20 While
the two techniques formally overlap, the ability to resolve
frequency teeth within the comb allow us to do the same acqui-
sition on a much lower time scale, eliminating long time laser
fluctuations.
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