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The success of nonlinear optics relies largely on pulse-to-pulse
consistency. In contrast, covariance-based techniques used in
photoionization electron spectroscopy and mass spectrometry
have shown that a wealth of information can be extracted from
noise that is lost when averaging multiple measurements. Here,
we apply covariance-based detection to nonlinear optical spec-
troscopy, and show that noise in a femtosecond laser is not
necessarily a liability to be mitigated, but can act as a unique and
powerful asset. As a proof of principle we apply this approach to
the process of stimulated Raman scattering in α-quartz. Our results
demonstrate how nonlinear processes in the sample can encode
correlations between the spectral components of ultrashort pulses
with uncorrelated stochastic fluctuations. This in turn provides
richer information compared with the standard nonlinear optics
techniques that are based on averages over many repetitions with
well-behaved laser pulses. These proof-of-principle results suggest
that covariance-based nonlinear spectroscopy will improve the ap-
plicability of fs nonlinear spectroscopy in wavelength ranges
where stable, transform-limited pulses are not available, such as
X-ray free-electron lasers which naturally have spectrally noisy
pulses ideally suited for this approach.
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Noise, intrinsic to the measurement of any physical quantity,
is normally seen as a limitation to eliminate. The desired

signal-to-noise ratio is commonly reached by (i) mitigating as
much as possible the amount of experimental noise and (ii)
taking the mean of a large number of repeated “identical”
measurements. From an alternative perspective, where every
repetition is considered to be a measurement under different
conditions, noise can become an asset and be exploited as a
source of additional information (1–4). In this case, since the
measurements are performed under different conditions, the
mean value loses significance and other statistical tools such as
higher-order moments are needed. If treated properly, noise can
help clarify the interpretation of experiments (5) and even am-
plify signals as in stochastic resonance schemes (6).
Femtosecond nonlinear optical spectroscopy is ideally suited

for an approach based on high-order moments. In standard
mean-value nonlinear spectroscopies, the nonlinear signals are
often extremely weak relative to the linear ones and complicated
experimental layouts are required to separate them. Pulsed
sources typically have several amplification stages, which natu-
rally lead to significant noise in the output, further complicating
the detection (7). To deal with these challenges, significant effort
and investment has gone into engineering stable laser sources,
and the stability requirements have influenced experimental
design and technique development (8–10). Laser cost and exper-
imental complexity have limited the adoption of many extremely
useful but overly difficult techniques [such as multidimensional
spectroscopy, fs-stimulated Raman scattering (fs-SRS), etc.].
Pioneering works by Lau and Kummrow (11, 12) in the 1980s

and 1990s and more recently by Turner et al. (13) have shown
that temporally incoherent (up to ns) pulses can be used in place
of transform limited fs pulses to perform various nonlinear

spectroscopic studies (14, 15) including coherent anti-Stokes
Raman spectroscopy and 2D electronic spectroscopy without
compromising on the required fs time resolution. These ap-
proaches are different from the present study since they require
each set of pulses to be identical copies, and use traditional
multibeam geometries and mean-value detection.
We can instead consider each laser pulse in a femtosecond

nonlinear experiment as a measurement under different condi-
tions rather than a repetition of the same experiment. The spec-
trum of a nonlinear signal in an N-wave mixing experiment
depends on the product of the excitation fields (10, 16), and will
thus change with the pulse-to-pulse fluctuations in the laser. In the
approach proposed here we show that in the presence of spectrally
narrow pulse-to-pulse fluctuations, the nonlinear sample response
imprints correlations between the spectral components within the
laser bandwidth. After recording each unique optical signal, we
use it to calculate the covariance between intensities at different
frequencies, rather than averaging all of the signals out as in
mean-value approaches. Evaluating the frequency difference be-
tween those spectral components whose covariance is different
from zero, we retrieve the energy of the sample excited states that
have interacted with the radiation and thus introduced the optical
correlation. From this viewpoint, it is clear that the larger are the
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Here we establish femtosecond covariance spectroscopy as a
technique that uses ultrashort stochastic light pulses to mea-
sure nonlinear material responses. By using pulses with spec-
trally uncorrelated fluctuations we can leverage on the noise
and consider each repetition of the experiment as a measure-
ment under different conditions. In this limit we demonstrate
that nonlinear processes in the sample can be retrieved by
measuring the spectral correlations in different pulses. We
validate the approach by studying stimulated Raman scattering
in α-quartz. This concept can be applied to reveal low-energy
modes of electronic, spin, and vibrational origin and adapted
to different techniques and wavelength ranges, from optical to
X-ray free-electron lasers, where strong stochastic fluctuations
are unavoidable.
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stochastic fluctuations in the optical pulse, the smaller are the
correlations between the pulse components before the interaction,
and the better the sample nonlinear response is explored. Thus,
adding a spectrally uncorrelated (i.e., spectrally narrow) stochastic
element to each excitation pulse is the key to improve the
covariance-based approach. There has recently been some effort
in combining single-pulse detection with metrics beyond mean
value for detection of signals at the shot-noise level (17–19);
however, so far there has been no demonstration of enhancement
of uncorrelated noise at a classical level to improve detection of
spectral correlations in a nonlinear experiment.
In this article, we use covariance-based measurements to study

vibrational modes in a crystalline quartz sample via SRS. When
repeated many times with different unique noise realizations, the
amplitudes of the different spectral components within the pulse
bandwidth that are separated by the sample phonon frequencies
become correlated (see SI Appendix, Model for a microscopic
description of the experiment). We stress that all of these cor-
related fluctuations are averaged out or never resolved in mean-
value measurements, whereas the frequency-resolved covariance of
the transmitted pulses contains valuable insight on the SRS pro-
cesses, and the energies of the phonons involved. Importantly, the
framework used here to reveal SRS could be generalized to other
nonlinear optical techniques based both on tabletop and free-
electron laser (FEL) sources (20). X-ray FELs pose a particularly
attractive possibility because they function based on self-amplified
spontaneous emission which intrinsically leads to noisy pulses op-
timally suited to covariance-based techniques.

Results
In the present demonstration of femtosecond covariance spec-
troscopy, ultrafast pulses from a regenerative amplifier (∼40 fs)
are transmitted through the sample and the spectrum of each
transmitted pulse is detected using a spectrometer that consists
of a grating and a fast photodiode array detector.
A stochastic element in the form of spectrally uncorrelated

pulse-to-pulse noise can be added in several ways. We utilize a
programmable liquid crystal spatial light modulator based
pulse shaper (21) placed between the laser and the sample as
sketched in Fig. 1B. The pulse shaper changes the spectral
phase with a defined modulation amplitude and correlation
length (±π/2 rms, 0.25 THz, respectively). A reference beam is
routed around the sample to a second identical spectrometer

so we can compare the spectral covariance with and without
interacting with the sample.
The time profiles resulting from the application of a spectral

phase to initially transform limited pulses can be divided into a
short coherent component (blue spike in Fig. 1A) which provides
the impulsive excitation of the Raman modes, and noisy in-
coherent tails which probe the mode. Over the course of many
noise realizations the average of the noisy tails becomes a
roughly 1-ps Gaussian pulse, shown in green in Fig. 1A.
In a typical measurement, we record sample and reference

pulse spectra for 50,000 different noise realizations. We then use
a covariance-based analysis to extract information about the
sample through correlations induced by SRS. While more di-
verse covariance metrics could be used, we consider the Pearson
coefficient, which quantifies the degree of linear correlation
between two random variables, the measured intensity I at the
frequencies ωi and ωj within the pulse bandwidth:

P
�
IðωiÞ, I

�
ωj
��

=
��
IðωiÞI

�
ωj
��

−
�
IðωiÞ

��
I
�
ωj
�����

σiσj
�
,

where the angular bracket indicates a mean across all measure-
ments, and σi(j) is the SD across all measurements of the intensity
at frequency ωi(j). P = 1 (−1) indicates perfect correlation (anti-
correlation), while P = 0 indicates no correlation. The result of
this data processing performed across all of the possible fre-
quency combinations forms a 2D Pearson coefficient map, such
as those shown in Fig. 1 C and D.
The Pmap calculated using the reference pulses, shown in Fig.

1C, exhibits no features apart from an area of positive correla-
tion at ωi = ωj (the diagonal of the map).
In contrast, when the pulse has interacted with the sample

(Fig. 1D), the map is evidently structured. Most importantly, we
observe signatures of correlation induced through SRS in the
form of features offset of a quantity Δω from the diagonal, with a
finite width which depends on the linewidth of the resonance and
the correlation length. By comparing the correlation map to the
spontaneous Raman spectrum (22) (Fig. 1E), it is clear that Δω
matches the Raman shift of the main phonon features. The
signal presence is substantiated by the fact that frequency com-
ponents separated by Ω must have the same phase for in-
terference between the paths leading to the population of that
vibrational level to occur (23).
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Fig. 1. (A) Simplified diagram of the SRS process, which induces correlations of spectral components at frequencies ω and ω ± Ω. The shaped pulses can be
divided into a coherent component (blue) and a noisy tail (green). (B) The experimental apparatus. (C and D) Pearson correlation plots for all pairs of fre-
quencies within the excitation spectrum (C) after the pulse shaper, and (D) after the quartz sample. (E) Spontaneous Raman spectrum of quartz (14), matching
the positions of the features in the covariance map in D.
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To visualize the Raman shift of the SRS features as a function
of Δω, the correlation data can be plotted as P (ω, Δω) instead of
P (ωi, ωj) (there is a symmetric set of features for negative Δω
which is left out of the plots in Fig. 2 for clarity purposes). Fig.
2A shows this for the same data as Fig. 1D. By taking the average
Δω values of these maps along the ω-axis, we can better analyze
the features. In Fig. 2D, we show the average for the three re-
gions indicated in Fig. 2 A–C: this can be thought of as a sort of
vibrational “spectrum,” where the Raman features appear on top
of a shifting background.
The programmable nature of the pulse shaper offers a broad

flexibility in how the noise is introduced, which affects the visi-
bility and the lineshape of the SRS features. Below, we explore
two variations in which the noise is applied to only one-half of
the spectrum (above ω0 = 369 THz). In the first variation (shown
in Fig. 2B), the spectral amplitude of the noise-free half of the
spectrum (<ω0) is shaped such that the average value of the
excitation spectrum has a Gaussian profile. In the second ex-
ample (shown in Fig. 2C), the spectral amplitude of the noise-
free side is reduced to 0, so that the average excitation spectrum
has a sharp edge at ω0. In both cases, the features become more
pronounced in the region quantifying the correlation between
modulated and nonmodulated components, indicated by the
black dashed boxes in Fig. 2 A–C. For comparison, the regions
which quantify the correlation of two noisy frequencies have
features similar to those achieved when the noise is applied
uniformly across the entire spectrum.
The resonances we identify appear at the spontaneous Raman

resonances of quartz (which are indicated by the gray dashed
lines) (22). Clearly, the lineshape of these resonances depends
on how the noise is applied. In most cases we observe a dis-
persive lineshape going from negative to positive values as Δω
increases, except in the case of the red region in Fig. 2C which
has purely positive peak shapes.

Discussion
The Raman process shifts spectral weight, which leads to spectral
correlations that manifest as off-diagonal lines in the P maps.
The mechanism underlying this shift in spectral weight could
have several origins, some coherent or incoherent. An SRS
process produces a four-wave mixing signal which is coherent
and––when spectrally and spatially overlapped with the excita-
tion pulse––leads to self-heterodyning of the excitation pulse and
SRS signal. The results in Fig. 2 suggest that the process is

coherent and stimulated; when there is a heterodyning field
present at the emission energy (i.e., in Fig. 2 A and B) we observe
dispersive peak shapes, but in the absence of a heterodyning field
(Fig. 2C) we observe nondispersive peak shapes. This de-
pendence of the peak shape on the presence of a heterodyning
field confirms the sensitivity of our detection technique to the
signal phase, and that the mechanism of the spectral weight shift
is coherent, consistent with SRS.
The dispersive peak shapes can be understood by considering

the effect of self-heterodyning on the spectrally resolved co-
variance. Regions where the signal and the excitation pulse are in
phase should be positively correlated, as an increase in the ex-
citation field will lead to a proportional increase in intensity at
the signal frequency, due to constructive interference of the
electric fields. Conversely, when signals and the pulse are out of
phase, their correlation is negative as the interference will be
destructive. The SRS signal has a π/2 phase shift relative to the
excitation pulse due to the absorption and reemission processes,
which is consistent with the observed dispersive shapes.
It is important to note that the correlation maps are funda-

mentally different from the more familiar intensity spectra. For
example, multiple mechanisms may induce correlations for
overlapping pairs of frequencies. The shape of the resulting
features in a P map is the sum of all these mechanisms, taking
into account the sign of the correlations, which could be mis-
taken for interference of electric fields.
We also note that P is not necessarily directly proportional to

the amplitude of the nonlinear signal: a weak signal can be
strongly correlated to other frequencies. While not intuitive, this
feature also illustrates the power of covariance-based detection:
weak signals in mean-value measurements are easily masked
by noise, but can be detected in the covariance plots, even
when the spectra fully spectrally and spatially overlap with the
excitation pulse.
In this work, we have shown that covariance-based detection

can be combined with noisy input pulses to resolve the SRS
spectrum of a crystalline sample, and more incisive analytical
tools than the average value can access a great depth of in-
formation that is missed by standard experiments. The transmitted
pulses averaged over many noise realizations do not show the
Raman resonances. However, the resonances are recovered in the
covariance spectrum that reveals correlations between two spectral
components separated by the phonon frequency. A high-resolution

A B C D

Fig. 2. Covariance maps recorded in α-quartz by applying uniform phase noise to each pulse. The noise is applied: (A) across the entire spectrum; (B) only to
frequencies above 369 THz; and (C) as in B, but with mean-value shaping to eliminate the frequencies below 369 THz from the pulse spectrum. (Insets) Some
detected pulse spectra. (D) SRS correlation spectra achieved by integrating the regions in A–C along the ω-axis indicated by the black dashed lines.
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Raman spectrum is thus generated by exploiting the noise fluctua-
tions, without the need for stable light sources.
We emphasize that this result is only one example of a broader

class of covariance-based analysis tools that can be applied both
using tabletop sources, where fluctuations can be controlled, as
well as using SASE FELs where amplitude and phase noise are
unavoidable (24).
Further, while the two frequency Pearson coefficient based

framework demonstrates how correlations induced by nonlinear
processes can be detected, we expect that other tailored statistical

tools will reveal nonlinear processes at higher orders as done in
multidimensional spectroscopy (25).
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Supplementary Information Text 

Experimental setup 
The experimental setup is shown in Fig. 1b of the main text. The source is an ultrafast laser delivering 

transform limited pulses of about 40 fs duration, with a Gaussian spectrum centered at 375 THz with a 

FWHM of ≈15 THz, and 2.4 mJ/PP. The pulses are produced by a Ti:Sapphire oscillator (Coherent Vitara) 

at 80 MHz and amplified using a 67 W pump laser at 5 kHz (Coherent Revolution) in an amplifier (Coherent 

Legend Duo) with two stages (regenerative cavity and single pass). The amplitude fluctuation of the laser 

output is about 5% shot to shot. 

The pulse shaper uses a 512 x 512 pixel 2D liquid crystal on silicon Spatial Light Modulator 

(Meadowlark Optics) in reflection geometry1. It is set up for diffraction-based pulse shaping, which allows 

the phase-only liquid crystal matrix to simultaneously shape the spectral amplitude and phase2. The speed of 

the experiment is limited by the liquid crystals rotation time to be about 500 Hz. The beam is dispersed on 

the liquid crystal matrix so that the frequency band on a single pixel is about 0.1 THz. To control the 

resolution of the experiment, the random phase patterns we generate have a correlation length larger than the 

optical resolution of the pulse-shaper and the detector3. To achieve this, we first generate an array of 512 

uniformly distributed random numbers. A Gaussian smoothing function with a standard deviation equal to 

the optical resolution is then used to smooth the array of random numbers. Finally, the resulting function is 

rescaled to achieve the desired RMS phase fluctuations (in this case ±
𝜋

2
). A reference pulse is created using 

a beam splitter between the pulse shaper and the sample. The sample beam is focused on a 1 mm thick 

crystalline 𝛼-quartz sample, cut orthogonally to the microscopic c-axis plane, then collimated, the intensity 

can be controlled from 0 to 10 mJ/cm2. The sample and reference beams are both detected using identical 

spectrometers consisting of a transmission diffraction grating, a 25 cm imaging lens (in 4-f geometry) and a 

256 element linear silicon photodiode array (Hamamatsu). 

 

Model 
In this appendix we develop a model able to describe the role of the randomness of the phase in our 

covariance-based spectroscopic technique. We first consider the effect of such random fluctuations on the 

reference (non-interacting) beam; we then describe the Stimulated Raman Scattering (SRS) process and 

discuss how the stochasticity of the phase affects the measurement. 

 

As discussed in the main text, each measurement of the frequency dispersed intensity is performed through 

a detector with finite frequency resolution. We model this by introducing a gate function 𝐺(𝜔 − 𝜔̅ ), 

spanning a spectral region centered around the central frequency of the pixel 𝜔̅. The spectral extension of the 

gating is set by the finite size of the pixel of the photodiode arrays. We can thus write the measured intensity 

on the pixel centered at 𝜔̅ by considering the superposition of the fields within its spectral extension: 

 

𝐼(𝜔̅) = ℜ ∫ 𝑑𝜔′𝑑𝜔′′𝐺( 𝜔′ − 𝜔̅ )𝐺( 𝜔′′ − 𝜔̅ )𝐸∗(𝜔′)𝐸(𝜔′′)𝑒−𝑖[𝜑(𝜔′)−𝜑(𝜔′′)] (1) 

where 𝜑(𝜔′,′′) is the stochastic phase of the incident pulses and 𝜔′,′′ are the integration variables to cover 

the pixel size. In the experiments reported in the manuscript the stochastic phase introduced between different 

components is decaying with a characteristic frequency-scale Δ𝑐𝑜𝑟𝑟  (parameter controlled experimentally). 

The symbol 〈…〉 represents the average over repeated measurements. We assume that the field amplitude 

𝐸(𝜔) and the phase 𝜑(𝜔) change slowly with 𝜑(𝜔′), i.e. Δ𝑐𝑜𝑟𝑟  is larger than the detector pixel size. We thus 

consider only the value of the fields at 𝜔̅ and expand the phase to first order around 𝜔̅ as 

 

𝜑(𝜔′′) − 𝜑(𝜔′) ≈ (𝜔′′ − 𝜔′)
𝜕𝜑

𝜕𝜔
|𝜔̅ = 𝛷(𝜔̅) (2) 

 

It should be noted that this treatment is not limited to Gaussian correlation functions only. It can be applied 

to any kind of decaying correlation functions whose scale is defined by a characteristic length. 

 

By considering the expansion in Eq. (2), the overall intensity measured on the pixel is given by: 

 

𝐼(𝜔̅) = ℜ 𝐸∗(𝜔̅)𝐸(𝜔̅)𝑒𝑖𝛷(𝜔̅)  =  |𝐸(𝜔̅)|2 𝑐𝑜𝑠(𝛷(𝜔̅)) ≡ 𝐼(̅𝜔̅) 𝑐𝑜𝑠(𝛷(𝜔̅)) (3) 



 

 

 

It is worth to note that in this limit the phase changes slowly over the pixel size and therefore Φ(𝜔̅) ≪ 1.  

We can now write the correlator between the intensities measured at different pixels with central frequencies 

𝜔̅1,2 as: 

 
〈𝐼(𝜔̅1)𝐼(𝜔̅2)〉 =  〈𝐼(̅𝜔̅1) 𝑐𝑜𝑠(𝛷(𝜔̅1)) 𝐼(̅𝜔̅2) 𝑐𝑜𝑠(𝛷(𝜔̅2))〉 (4) 

The correlation function between the different spectral phases 𝜑(𝜔1,2) results in a finite correlation length 

between their derivatives Φ(𝜔1) and Φ(𝜔2), resulting in an intensity correlator: 

 

〈𝐼(𝜔̅1)𝐼(𝜔̅2)〉 = {
𝐼(̅𝜔̅1)𝐼(̅𝜔̅2)𝜅12

2 , 𝑖𝑓 |𝜔̅1 − 𝜔̅2|  ≲ 𝛥𝑐𝑜𝑟𝑟

0, 𝑖𝑓 |𝜔̅1 − 𝜔̅2|  ≫ 𝛥𝑐𝑜𝑟𝑟
 (5) 

where 𝜅12
2 ≡ 〈cos(Φ(𝜔̅1)) cos(Φ(𝜔̅2))〉. Note that for frequency components farther apart than the 

correlation length, i.e. for |𝜔̅1 − 𝜔̅2|  ≫ Δ𝑐𝑜𝑟𝑟  the product 〈cos(Φ(𝜔̅1) ) cos(Φ(𝜔̅2) )〉 can be factorized in 

〈cos(Φ(𝜔̅1)) 〉〈cos(Φ(𝜔̅2))〉 = 0 since Φ(𝜔̅1,2)  are independent random variables with null average. 

This mechanism maps phase fluctuations into amplitude ones and results in the Pearson coefficient map of 

the reference channel shown in Fig. 1c in the manuscript. As discussed in the main text and detailed here, 

Δ𝑐𝑜𝑟𝑟  sets the spectral resolution of the method proposed.  

 

We stress that the crucial step in this approach is to consider the finite spectral resolution of the detectors*. 

Indeed, in the ideal case of a monochromatic detection, the random phase fluctuations would have no effects 

on the measured intensities, and no detectable correlations neither phase variations (Eq. (2)) would be 

expected within the reference beam.   

 

In the following, we adopt a fully quantum field model4 to calculate the optical signal. We describe the 

Stimulated Raman Scattering (SRS) process through a diagrammatic representation4 and recast the signal in 

terms of transition amplitudes. 

The detected signal of a quantum field is computed as the net time variation of the number of photons in the 

self-heterodyned transmitted field: 

 

𝑆 ≡ ∫ 𝑑𝑡 [
𝑑

𝑑𝑡
(𝒩̂)

𝜌
] =  

𝑖

ℏ
∫[ℋ̂𝑖𝑛𝑡 , 𝒩̂] (6) 

where 𝒩̂ ≡ ∑ 𝑎̂𝑠
†𝑎̂𝑠𝑠  and the symbol (… )𝜌 denotes the average over the density matrix operator of the whole 

system (field and matter). We have denoted by ℋ̂𝑖𝑛𝑡 the interaction Hamiltonian within the Rotating Wave 

Approximation, namely 

 

ℋ̂𝑖𝑛𝑡 = ℰ̂(𝑡) 𝑉̂† +  ℰ̂†(𝑡) 𝑉̂ (7) 

The commutator in Eq. (6) can be calculated by evaluating the canonical commutation relations for the 

bosonic operators. The solution of the Liouville-Von Neumann equation gives the time evolution of the 

density matrix in the interaction picture, so that the average can be now performed over the density matrix of 

the non-interacting system, denoted by 〈…〉5. The signal can be recast in the following expression: 

 

𝑆 =  
2

ℏ
ℑ ∫ 𝑑𝑡 〈ℰ̂𝐿

†(𝑡)𝑉̂𝐿(𝑡) 𝒯 𝑒−
𝑖
ℏ ∫ 𝑑𝜏 

𝑡

−∞
𝐻𝑖𝑛𝑡−(𝜏)〉 (8) 

where 𝒯 is the time-ordering operator in the Liouville space and 𝐻𝑖𝑛𝑡−(𝜏) is the time-dependent commutation 

relation with the interaction Hamiltonian in Eq. (7). We have adopted the L/R representation of the Liouville 

superoperators introduced in4. The electric field operator and the electric dipole one, are respectively defined 

as: 

 

                                                 
* Note that, even if we have discussed here only the role of the detectors, the results we have obtained can 

be extended to all non-ideal coarse-grained instruments which are responsible for summations over 

neighboring spectral modes. It is likely that also the SLM introduces similar effects on the pulses.   



 

 

 

𝐸̂(𝑡) = ℰ̂(𝑡) + ℰ̂†(𝑡) (9) 

𝜇̂(𝑡) = 𝑉̂(𝑡) + 𝑉̂†(𝑡) (10) 

Since we detect intense fields, i.e. fields in a classical regime, we replace in the following the electric field 

operators ℰ̂(𝑡) and ℰ̂†(𝑡) with their expected values ℰ(𝑡) and ℰ∗(𝑡). Moreover, when the coupling between 

the field modes and the matter is off resonances, the equality 𝑉(𝑡) = 𝛼(𝑡)ℰ(𝑡) holds. The signal can be then 

expressed in terms of the polarizability as: 

 

𝑆 =  
2

ℏ
ℑ ∫ 𝑑𝑡 〈ℰ𝐿

∗(𝑡)ℰ𝐿(𝑡)𝛼𝐿(𝑡) 𝒯 𝑒−
𝑖
ℏ ∫ 𝑑𝜏 

𝑡

−∞
𝐻𝑖𝑛𝑡−(𝜏)〉 (11) 

Since we perform a frequency-resolved shot-to-shot detection of the pulses transmitted by the sample, we are 

interested in the frequency dispersed signal 𝑆(𝜔). We can then consider a frequency gating 𝛿(𝜔 − 𝜔̅) and, 

by Fourier transform the electric field, get:  

 

𝑆(𝜔) =  
2

ℏ
ℑ ∫ 𝑑𝑡 𝑒𝑖𝜔𝑡 〈ℰ𝐿

∗(𝜔)ℰ𝐿(𝑡)𝛼𝐿(𝑡) 𝒯 𝑒−
𝑖
ℏ ∫ 𝑑𝜏 

𝑡

−∞
𝐻𝑖𝑛𝑡−(𝜏)〉 (12) 

Note that the 0𝑡ℎ-order in the last equation contains one light-matter interaction which results in a vanishing 

trace. We thus expand to the first (nontrivial) order as: 

 

𝑆(𝜔) =  
2

ℏ
ℑ ∫ 𝑑𝑡 𝑒𝑖𝜔𝑡 〈ℰ𝐿

∗(𝜔)ℰ𝐿(𝑡)𝛼𝐿(𝑡) (−
𝑖

ℏ
) ∫ 𝑑𝜏 

𝑡

−∞

𝐻𝑖𝑛𝑡−(𝜏)〉 (13) 

The signal thus splits into two terms: the first one (𝑆𝑎) involves interactions from both the left and the right, 

the second one (𝑆𝑏) only interactions from the left. 

 

We can diagrammatically describe them by using a Closed-Time-Path-Loop (CTPL) representation, 

following the rules given in4. The CTPL diagrams (Fig. S1) represent the process described by the latter 

equation. The diagram on the left represents the energy loss of the electric field (Stokes process), while the 

one on the right represents the energy gain of the electric field (Anti-Stokes process). 

First we explicitly evaluate 𝑆𝑎: 

 

𝑆𝑎(𝜔) =  
2

ℏ2
ℑ ∫ ∫

𝑑𝜔1𝑑𝜔2𝑑𝜔3𝑑𝜔4𝑑𝜔5

(2𝜋)5
 
〈ℰ∗(𝜔)ℰ(𝜔1)ℰ∗(𝜔3)ℰ(𝜔4)〉

−𝜔3 + 𝜔4 + 𝜔5 − 𝑖𝛾
 〈𝛼𝐿(𝜔2)𝛼𝑅(𝜔5)〉𝜇 2𝜋 𝛿(𝜔1 + 𝜔2 + 𝜔4 + 𝜔5 − 𝜔3 − 𝜔) (14) 

 

where in the last step we have explicitly written the interaction Hamiltonian and Fourier transformed both 

the fields and the polarizabilities. We have then explicitly written the material degrees of freedom, so that 

now the polarizabilities can be spanned in the energy eigenstates of the material.  

 

We consider here a two-level system (the ground state is denoted by |𝑔〉, while the vibrational excited state 

by |𝑒〉) with a single vibrational frequency Ω. The term involving the polarizability is then given by: 

 

〈𝛼𝐿(𝜔2)𝛼𝑅(𝜔5)〉𝜇 =  ⟨𝑒|𝛼(𝜔2)|𝑔⟩ ⟨𝑔|𝛼(𝜔5)|𝑒⟩  =  |𝛼𝑔𝑒|
2

(2𝜋)2 𝛿(𝜔2 + 𝛺)𝛿(𝜔5 − 𝛺) (15) 

where in the last step we have expressed the average in the Kramers-Heisenberg form (a generalized Fermi 

golden rule), as in6. We have denoted by |𝛼𝑔𝑒|
2
 the polarizability transition amplitude between the two states. 

 

By solving the Dirac deltas, we get the following expression for 𝑆𝑎: 

 

𝑆𝑎(𝜔) =  
2|𝛼𝑔𝑒|

2

ℏ2
ℑ ∬

𝑑𝜔1𝑑𝜔2

(2𝜋)2

〈ℰ∗(𝜔)ℰ(𝜔 + 𝜔1 − 𝜔2)ℰ∗(𝜔1)ℰ(𝜔2)〉

−𝜔1 + 𝜔2 + 𝛺 − 𝑖𝛾
 (16) 



 

 

 

The term 𝑆𝑏 can be evaluated in a similar fashion, with the exception that now the polarizability reads: 

 

〈𝛼𝐿(𝜔2)𝛼𝐿(𝜔5)〉𝜇 =  ⟨𝑔|𝛼(𝜔2)|𝑒⟩ ⟨𝑒|𝛼(𝜔5)|𝑔⟩  =  |𝛼𝑔𝑒|
2

(2𝜋)2𝛿(𝜔2 − 𝛺)𝛿(𝜔5 + 𝛺) (17) 

By recombining the two terms, we get: 

 

𝑆(𝜔) =  
2|𝛼𝑔𝑒|

2

ℏ2
ℑ ∬

𝑑𝜔1𝑑𝜔2

(2𝜋)2
 ℰ∗(𝜔)ℰ(𝜔 + 𝜔1 − 𝜔2)ℰ∗(𝜔1)ℰ(𝜔2) [

1

−𝜔1 + 𝜔2 + 𝛺 − 𝑖𝛾
− 

1

−𝜔1 + 𝜔2 − 𝛺 − 𝑖𝛾
 ] (18) 

We can now use the Sokhotski-Plemelj theorem to explicitly calculate the terms within the square brackets. 

The theorem states that: 

 
1

𝜔 − 𝑖𝛾
=  𝒫𝒫 

1

𝜔
+ 𝑖𝜋𝛿(𝜔) (19) 

Since ℰ∗(𝜔)ℰ(𝜔 + 𝜔1 − 𝜔2)ℰ∗(𝜔1)ℰ(𝜔2) is smooth and even around the poles of the integrand function, 

the principal values vanish when the integration over 𝜔1,2 is performed. Therefore, by considering the action 

of the Dirac deltas, we get: 

 

𝑆(𝜔) =
|𝛼𝑔𝑒|

2

ℏ2
ℜ ∬

𝑑𝜔′

2𝜋
[ℰ∗(𝜔)ℰ(𝜔 + 𝛺)ℰ∗(𝜔′)ℰ(𝜔′ − 𝛺)  − ℰ∗(𝜔)ℰ(𝜔 − 𝛺)ℰ∗(𝜔′)ℰ(𝜔′ + 𝛺)] (20) 

So far, we have neglected the temperature dependence of the system. If the sample has a finite temperature, 

two additional processes should be considered, since the system can be initially either in the ground state or 

in the vibrationally excited one.  The additional two contributions we get are identical to 𝑆𝑎 and 𝑆𝑏 if one 

replaces Ω ⟶ −Ω. We thus get the same contributions with a minus sign. If we assume the system to be at 

thermal equilibrium of inverse temperature 𝛽, the temperature dependence can be included by considering 

the thermal distributions for the system, given by 𝑝𝑔 =
1

1+𝑒−𝛽ℏΩ for the ground state and by 𝑝𝑒 =
1

1+𝑒𝛽ℏΩ for 

the excited one. The final signal reads: 

 

𝑆(𝜔; 𝛤) =  
|𝛼𝑔𝑒|

2
𝑝𝑔𝑒(𝛽)

ℏ2
 ℜ ∫

𝑑𝜔′

2𝜋
[ℰ∗(𝜔)ℰ(𝜔 + 𝛺)ℰ∗(𝜔′)ℰ(𝜔′ − 𝛺) − ℰ∗(𝜔)ℰ(𝜔 − 𝛺)ℰ∗(𝜔′)ℰ(𝜔′ + 𝛺)] (21) 

where we have defined the factor 𝑝𝑔𝑒(𝛽) = 𝑝𝑔 − 𝑝𝑒 and introduced the parameter 𝛤, which includes all the 

field parameters that can be tuned in the experiment. 

 

We consider a frequency dependent stochastic phase 𝜑(𝜔) with frequency scale Δ𝑐𝑜𝑟𝑟 , such that the phase 

correlations are considered statistically orthogonal 〈𝜑(𝜔1)𝜑(𝜔2)〉 = 0 when they are far enough and 
|𝜔1 − 𝜔2| ≫ Δ𝑐𝑜𝑟𝑟 . Since the phases of two spectral components are correlated only if their frequency 

difference is smaller than Δ𝑐𝑜𝑟𝑟 , this quantity sets the phase stochasticity scale. This additional frequency 

scale plays a key role in setting the spectral resolution while considering the signal correlation function. 

Assuming Ω ≫ Δ𝑐𝑜𝑟𝑟 , one may regard Φ(ω) and Φ(ω + Δ𝑐𝑜𝑟𝑟) as statistically independent variables. 

 

Under these conditions, we can rewrite the signal making explicit the spectral phases 𝜑(𝜔). By grouping the 

phase factors of each four-field product and taking the real part of the above equation, we get: 

 

𝑆(𝜔; 𝛤) =
|𝛼𝑔𝑒|

2
 𝑝𝑔𝑒(𝛽)

ℏ2
∫

𝑑𝜔′

2𝜋
 [𝐸∗(𝜔)𝐸(𝜔 + 𝛺)𝐸∗(𝜔′)𝐸(𝜔′ − 𝛺) 𝑐𝑜𝑠(𝛾) − 𝐸∗(𝜔)𝐸(𝜔 − 𝛺)𝐸∗(𝜔′)𝐸(𝜔′ + 𝛺) 𝑐𝑜𝑠(𝛽)] (22) 

where we have defined the following quantities: 

{
𝛾 =  𝜑(𝜔 + 𝛺) − 𝜑(𝜔) + 𝜑(𝜔′  − 𝛺) − 𝜑(𝜔′)

𝛽 = 𝜑(𝜔 − 𝛺) − 𝜑(𝜔) + 𝜑(𝜔′ + 𝛺) − 𝜑(𝜔′)
 

 



 

 

 

Since we have assumed that Ω ≫ Δ𝑐𝑜𝑟𝑟 , the average values of cos(𝛾) and cos(𝛽) vanish (and so does the 

average value of the signal) unless cos(𝛾) and 𝛽 are both zero, i.e. unless 

 

{
𝜔′ = 𝜔 + Ω                   for the first sum
 𝜔′ = 𝜔 − Ω             for the second sum

 

 

We can thus write the average transmitted signal as: 

 

〈𝑆(𝜔; 𝛤)〉 =
|𝛼𝑔𝑒|

2
 𝑝𝑔𝑒(𝛽)

2𝜋ℏ2

 

{|𝐸(𝜔)𝐸(𝜔 + 𝛺)|2 − |𝐸(𝜔)𝐸(𝜔 − 𝛺)|2} (23) 

which correctly describes the spectral (red or blue) shift due to the inelastic scattering7. We stress that when 

the pulse is very broad it is not possible to retrieve the Raman frequency Ω from the average signal. 

 

To compute the cross-correlation signal ⟨𝑆(𝜔𝑖;  𝛤)𝑆(𝜔𝑗;  𝛤)⟩
 
, we must evaluate the averages of the cosine 

products coming from the two integrals (whose integration variables are denoted with prime and double 

prime, respectively): 

 

a) 〈cos(𝛾𝑖
′) cos(𝛾𝑗

′′)〉 =  
1

2
 〈cos(𝛾𝑖

′ + 𝛾𝑗
′′) + cos(𝛾𝑖

′ − 𝛾𝑗
′′)〉 

b) 〈cos(𝛽𝑖
′) cos(𝛽𝑗

′′)〉 =  
1

2
 〈cos(𝛽𝑖

′ + 𝛽𝑗
′′) + cos(𝛽𝑖

′ − 𝛽𝑗
′′)〉 

c) ⟨cos (𝛾𝑖
′)cos (𝛽𝑗

′′)⟩ =  
1

2
 ⟨cos(𝛾𝑖

′ + 𝛽𝑗
′′) + cos (𝛾𝑖

′ − 𝛽𝑗
′′)⟩ 

d) ⟨cos (𝛽𝑖
′)cos (𝛾𝑗

′′)⟩ =  
1

2
 ⟨cos(𝛽𝑖

′ + 𝛾𝑗
′′) + cos (𝛽𝑖

′ − 𝛾𝑗
′′)⟩ 

where we have denoted by the subscripts i and j the detected frequencies. 

It is useful to consider the second term from equation c) and the first term from equation a): 
 

i) 𝛾𝑖
′ − 𝛾𝑗

′′ =  𝜑(𝜔𝑖 + Ω) − 𝜑(𝜔𝑖) + 𝜑(𝜔′  − Ω) − 𝜑(𝜔′) − [𝜑(𝜔𝑗 + Ω) − 𝜑(𝜔𝑗) + +𝜑(𝜔′′ − Ω) − 𝜑(𝜔′′)] 

 

ii) 𝛾𝑖
′ + 𝛽𝑗

′′ = 𝜑(𝜔𝑖 + Ω) − 𝜑(𝜔𝑖) + 𝜑(𝜔′  − Ω) − 𝜑(𝜔′) + [𝜑(𝜔𝑗 − Ω) − 𝜑(𝜔𝑗) + +𝜑(𝜔′′ + Ω) − 𝜑(𝜔′′)] 

These terms yield narrow distributions (delta-like) upon averaging. In particular, they give the following 

contractions: 

 

i) 〈cos(𝛾𝑖
′ − 𝛾𝑗

′′)〉 =  𝛿(𝜔′′ − 𝜔′′) 𝛿(𝜔𝑗 − 𝜔𝑖) 

ii) 〈cos(𝛾𝑖
′ + 𝛽𝑗

′′)〉 =  𝛿(𝜔′ −  𝜔′′ − Ω) 𝛿(𝜔𝑖 − 𝜔𝑗 + Ω) 

Similar contractions arise also from the remaining terms.  

The terms which contribute with the contractions of the type i) are trivial, since represent a contribution to 

the main diagonal of the Pearson coefficient map. Contractions of the type ii) are the interesting ones, since 

give rise to distinct off-diagonal sidebands shifted by the Raman frequency from the diagonal.  

 

We explicitly calculate one of the terms of the second kind: 

 

⟨𝑆(𝜔𝑖 , 𝛤)𝑆(𝜔𝑗 , 𝛤)⟩𝛾𝑖
′+𝛽𝑗

′′   =
|𝛼𝑔𝑒|

4
 𝑝𝑔𝑒

2(𝛽)

ℏ4
 ∫

𝑑𝜔′

2𝜋
 ∫

𝑑𝜔′′

2𝜋
 𝛿(𝜔′ − 𝜔′′ − 𝛺) 𝛿(𝜔𝑖 − 𝜔𝑗 + 𝛺) ×

× [𝐸∗(𝜔𝑖)𝐸(𝜔𝑖 + 𝛺)𝐸∗(𝜔′)𝐸(𝜔′ − 𝛺)𝐸∗(𝜔𝑗)𝐸(𝜔𝑗 − 𝛺)𝐸∗(𝜔′′)𝐸(𝜔′′ + 𝛺)] =                                       (24)

=  
|𝛼𝑔𝑒|

4
 𝑝𝑔𝑒

2(𝛽)

ℏ4  |𝐸(𝜔𝑖)𝐸(𝜔𝑖 + 𝛺)|2 ∫
𝑑𝜔′

(2𝜋)2 
 |𝐸(𝜔′)𝐸(𝜔′ − 𝛺)|2 𝛿(𝜔𝑖 − 𝜔𝑗 + 𝛺) 

 

 

The contribution above adds a distinct line which is shifted from the diagonal by the Raman frequency. Note 

that the condition of statistical dependence between two frequencies is satisfied for all the distances smaller 

or comparable to the distribution stochasticity scale, Δ𝑐𝑜𝑟𝑟 . Hence, the width of the line (infinitesimal, in Eq. 

(24)) must be considered finite, leading to a blurring of the signal. 

 



 

 

 

 

Fig. S1. Closed-time-path-loop diagrams describing the Stimulated Raman Scattering process. a) 

Stokes process. b) Anti-Stokes process. 
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