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ABSTRACT
Covariance spectroscopy signals based on the transmission of broadband stochastic probe light undergoing a nonlinear optical process with
matter are studied. The resulting signal depends on intensity correlation functions of the probe pulse. Application is made to transient absorp-
tion and stimulated Raman signals, where an ultraviolet pump and a delayed stochastically modulated infrared or optical Raman probe are
used for monitoring vibrational excitations. We show that the stochastic properties of light can be exploited to circumvent the limitations
on the joint temporal and spectral resolution of the signal. We study a model system with a time-dependent frequency and show that the
dynamical information can be fully extracted from the covariance signal. This information is heavily suppressed upon averaging of noisy
signals and practically inaccessible in conventional stimulated Raman measurements.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109258., s

I. INTRODUCTION

The effects of laser light incoherence on spectroscopic mea-
surements have been studied since the early days of lasers in the
1970s.1–4 Interest in the problem was motivated by the lack of ideal
coherent laser sources, which made it hard to observe nonlinear
optical effects in a controlled way. This continued to be the case until
the development of coherent mode-locked lasers,5 whose coherence
time can reach hundreds of seconds. X-ray sources now face similar
challenges, and stochastic models have been reviewed recently with
applications to free electron x-ray lasers.6–8

In this article, we discuss the merits of combining the femtosec-
ond pump-probe technique with stochastically modulated light. The
pump-probe technique is commonly used in the study of photoin-
duced processes in molecular systems.9 The pump induces optical
transitions, which are then detected by the probe at different fre-
quency regimes [infrared (IR), ultraviolet (UV), or X-rays]. The
effective temporal and spectral resolution of the UV/IR pulse is
not determined solely by its control parameters but depends on the
studied system. The frequency resolution of a spectrometer and the
time-frequency uncertainty of light can be varied independently.

However, ultrafast resolution of the signal requires the active
involvement of the entire probe bandwidth, while in a given appli-
cation, the system may select a narrower segment of the pulse.10–12

Simultaneous high spectral and temporal resolution cannot be real-
ized in transient absorption, where the signal involves two inter-
actions with the probe, that determines both the temporal and
spectral resolutions. One approach to manipulate the joint spec-
tral and temporal resolution is via chirped pulses.13–16 The chirped
probe pulse has a time-frequency profile, which can be described
by the rotation of a narrowband pulse in time-frequency space, so
that the pulse may be viewed as a combination of waves with dif-
ferent frequencies and distributed arrival times. This allows us to
extend the probe-pulse envelope in both the frequency and time
domains.

In this paper, we use a covariance analysis of the tran-
sient absorption signal generated by a stochastically modulated
probe pulse. Rather than controlling the temporal and spectral
properties of a fluctuating probe field, we propose control of its
statistical properties.17 Rapid decay of the correlation function
translates into a phase matching, and the correlations in the
stochastic light field allow us to single out desired time/frequency
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intervals. Correlation functions are accessible experimentally
through ensemble averaging over realizations of repeated measure-
ments. In Ref. 18, it has been shown that the covariance spectroscopy
approach can be extended for investigation of two-dimensional
electronic spectra and allows us to increase the method sensi-
tivity to long-lived intermediates. We demonstrate that covari-
ance spectroscopy with a stochastic probe makes it possible to
achieve joint high temporal and spectral resolution and can be
used for monitoring fast dynamical changes in molecular systems.
The method can also be applied to other noisy sources such as
free electron lasers, based on self-amplified spontaneous emission
(SASE).19,20

The experimental setup of time-resolved transmitted light spec-
troscopy starts with a visible or UV (actinic) pulse, which launches

FIG. 1. (a) Schematic layout of the TA setup. The actinic pulse Ea excites the
sample (S.) at time t = 0 and prepares it in the superposition |ν⟩⟨ν′|, the stochastic
probe pulse arrives at time T, and the transmitted light is measured by detector (D.)
at time t; level schemes [(b) and (c)] and loop diagrams [(d) and (e)] contributing
to TA signal, ξ is the stochastic phase.

some electronic or nuclear dynamics in the molecule. We then con-
sider two detection schemes: (i) Transient absorption (TA): An
intense near-infrared broadband probe pulse arrives after a time
delay T. The probe frequency-dispersed transmission is observed for
various values of T; see Fig. 1(a). (ii) Stimulated Raman spectroscopy
(SRS) [Fig. 4(a)]: A combined narrowband and broadband probe is
used to generate a Raman process.

The UV/IR TA signal may be viewed as a sequence of four
events: An IR actinic pump impulsively creates vibrational coher-
ence. The system then interacts twice with the probe field which
results in almost instantaneous excitation and deexcitation to one of
vibrational levels. We assume that each frequency of the probe pulse
is modulated by a random phase. The ensemble-averaged TA signal,
calculated in Sec. II A when the probe field is modulated by almost
uncorrelated random phases, is weak. In contrast, the second-order
intensity correlation function yields the covariance signal, which
survives the averaging and contains information about the molec-
ular transitions. The formal definition of the TA covariance signal is
defined in Sec. II. This signal is simulated in Sec. II C for δ-correlated
random phases (i.e., random phase modulation at each frequency is
statistically independent from modulated phases at other frequen-
cies), and the covariance spectrogram is analyzed. The spectrogram
for finitely correlated phases is discussed as well. The SRS covari-
ance signal is derived and simulated in Sec. III. In Sec. IV, a model
of open molecular system with a time-dependent vibrational fre-
quency is studied. We develop a method, which allows us to reveal
the time-flow of the molecular system dynamics from the covariance
spectroscopy.

II. THE TRANSIENT ABSORPTION
COVARIANCE SIGNAL

TA is a pump-probe technique9,21–25 that usually employs a
UV probe and near-IR broadband probe pulse. The measurement
is performed by varying the delay T between the pulses and detect-
ing the transmission change in the probe by interaction with mat-
ter; see Fig. 1(a). In covariance spectroscopy, each frequency of the
broadband probe pulse is additionally modulated by a frequency-
dispersed random phase ξ(ω),

Epr(ω, ξ) = Ēpr(ω)eiξ(ω). (1)

Here, E(ω) is the Fourier transform of the electric field E(t). The
ensemble is sampled by many repetitions of the experiment with
various realizations of the fluctuating phase.

The Hamiltonian of the system is H = H0 + Hint , where
H0 = ∑νh̵ων|ν⟩⟨ν| is the unperturbed molecular Hamiltonian with
excitation energies ων and eigenstates |ν⟩. The light-matter interac-
tion in the rotating-wave approximations is given by

Hint = h̵V̂†Ê(t) + h.c., (2)

where h̵V̂† is the raising dipole operator. The positive frequency
component of the electric field is given by the sum of the actinic
pulse field and the stochastic probe pulse,

Ê(t) = Ea(t) + Epr(t − T, ξ). (3)

The frequency-gated TA signal, STA,ξ(Ω,T), generated by the
stochastic light field [Eq. (1)], is12
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STA,ξ(Ω,T) = 2I E ∗pr(Ω, ξ)∫
∞

−∞

dΔ
2π

Epr(Ω + Δ, ξ)S̄(Ω,T;Δ). (4)

The auxiliary signal, S̄(Ω,T;Δ), can be read off the loop diagrams
shown in Fig. 1(b),

S̄(Ω,T;Δ) = S̄TA(i)(Ω,T;Δ) + S̄TA(ii)(Ω,T;Δ), (5)

where

S̄TA(i)(Ω,T;Δ)

= 2ih̵3eiΔT
∫

∞

−∞

dω1

2π
dω′1
2π

Ea(ω1)E
∗

a (ω
′

1)δ(ω1 − ω′1 + Δ)

× ⟨V̂G̃†
(ω′1)V̂

†G̃†
(ω′1 −Ω − Δ)V̂G̃(ω1)V̂†

⟩, (6)

S̄TA(ii)(Ω,T;Δ)

= 2ih̵3eiΔT
∫

∞

−∞

dω1

2π
dω′1
2π

Ea(ω′1)E
∗

a (ω1)δ(ω′1 − ω1 + Δ)

× ⟨V̂G̃†
(ω1)V̂G̃(ω′1 + Ω + Δ)V̂†G̃(ω′1)V̂

†
⟩. (7)

The δ-function in the integrand guarantees energy conservation, and
G̃(ω) is Green’s function of free molecular propagation.

Covariance signals are obtained by data processing of the trans-
mitted stochastic probe pulse. We focus on the covariance of the
detected light intensity at two frequencies,

C(Ω1, Ω2)=
⟨Sξ(Ω1,T)Sξ(Ω2,T)⟩ξ − ⟨Sξ(Ω1,T)⟩ξ⟨Sξ(Ω2,T)⟩ξ

√
⟨S 2

ξ(Ω1,T)⟩ξ ⟨S 2
ξ(Ω2,T)⟩ξ

,

(8)
where the brackets ⟨ ⋅ ⟩ξ denote averaging over the ensemble of
realizations of the random function ξ(ω).

The covariance (8) depends on the expectation values
⟨Sξ(Ω,T)⟩ξ and ⟨Sξ(Ω1,T)Sξ(Ω2,T)⟩ξ . The ensemble-averaged
signal [Eq. (4)] is given by

⟨Sξ(Ω,T)⟩ξ = 2I Ē ∗pr(Ω)∫
∞

−∞

dΔ
2π

Ēpr(Ω+Δ)N (Δ)S̄(Ω,T;Δ), (9)

where the role of stochasticity is contained in the autocorrelation
function,

N (Δ) ≡ ⟨eiξ(Ω+Δ)−iξ(Ω)
⟩ξ . (10)

The correlation function of the signal (4) can be calculated with
the help of the identity I a ⋅ I b = 1

2R(ab
∗
− ab),

⟨Sξ(Ω1,T)Sξ(Ω2,T)⟩ξ − ⟨Sξ(Ω1,T)⟩ξ⟨Sξ(Ω2,T)⟩ξ = 2R∫
∞

−∞

dΔ1

2π
Ē ∗pr(Ω1)Ēpr(Ω1 + Δ1) S̄(Ω1,T;Δ1)∫

∞

−∞

dΔ2

2π

×

⎡
⎢
⎢
⎢
⎢
⎣

Ēpr(Ω2)Ē
∗

pr(Ω2 + Δ2)S̄
∗

(Ω2,T;Δ2)[Ξ(Ω1, Ω2 + Δ2,Δ1,−Δ2) −N (Δ1)N (Δ2)]

− Ē ∗pr(Ω2)Ēpr(Ω2 + Δ2)S̄(Ω2,T;Δ2)[Ξ(Ω1, Ω2,Δ1,Δ2) −N (Δ1)N (Δ2)]

⎤
⎥
⎥
⎥
⎥
⎦

, (11)

where Ξ is the four-point correlation function,

Ξ(Ω1, Ω2,Δ1,Δ2) ≡ ⟨eiξ(Ω1+Δ1)−iξ(Ω1)+iξ(Ω2+Δ2)−iξ(Ω2)⟩ξ . (12)

Until now, we made no assumptions about the type of noise. The
choice of particular model is dictated by experimental details. Nev-
ertheless, we can formulate a number of generic requirements:
(i) Since the material object of investigation is a molecule, whose
size is usually assumed to be much smaller than the radiation
wavelength, any possible spatial decoherence of light plays no role
in our consideration. (ii) To characterize the temporal/frequency
randomness of the light field, it is enough to define the corre-
lation functions in one of the two domains, either in frequency
domain or in time domain. In our model, the probe field is rep-
resented by a sum of strongly localized pulses with statistically
independent random phases ξ(ω) and deterministic envelop func-
tion Ēpr(ω). This pulse structure requires fast decay of the cor-
relation functions [Eqs. (10) and (12)] with respect to the argu-
ments Δ, Δ1, and Δ2. The higher order correlation functions have
the same property, but they are not used in further calculations.

In Sec. II A, we consider a particular mathematical model of the
noise.

A. The averaged signal for the Brownian
phase model

In this model,17,26–28 the random phase ξ(ω) is taken to be a one-
dimensional Brownian coordinate, which varies along the ω axis.
The phase increment ∣ξ(Ω + Δ) − ξ(Ω)∣ is independent of Ω and
has a Gaussian distribution, whose variance grows linearly with the
interval length, ⟨(ξ(Ω + Δ) − ξ(Ω))2

⟩ξ = TC∣Δ∣, where TC is auto-

correlation time. For this model, N (Δ) = e−∣Δ∣TC and Ξ [Eq. (12)] is
given in Appendix A and is displayed in Fig. 10. Equation (9) now
reads

⟨Sξ(Ω,T)⟩ξ

= ∫

∞

−∞

dκ
2πTC

[
1

1 + i(κ − T)/TC
+

1
1 − i(κ − T)/TC

]W(Ω, κ),

(13)
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where

W(Ω, κ) = 2I Ē∗pr(Ω)∫
∞

−∞

dΔ
2π

Ēpr(Ω + Δ)S̄(Ω, κ;Δ). (14)

The averaged signal is given by a convolution of the auxiliary sig-
nal W(Ω, κ) with a Lorentzian kernel. The auxiliary signal (14) is
given by Eq. (4) but is calculated for the deterministic probe pulse,
Ēpr(ω), and at time κ (different from T). The spreading of the
interval T − κ reduces the temporal resolution and is governed by
the correlation time TC. For strongly correlated phases, i.e., when
TC → 0 W(Ω,T) ≡ S(Ω,T), so that Eqs. (13) and (14) recover
the signal (4). The 1/TC factor in Eq. (15) implies that decoher-
ence (loss of phase memory) reduces the average signal magnitude.
For finite TC, only the time interval of length ∼ TC in the vicinity
of T contributes to the integral in Eq. (13). Narrowing this inter-
val weakens the average signal. In the limit of δ-correlated phases,
⟨ξ(Ω)ξ(Ω + Δ)⟩ξ = δ(Δ). When TC →∞, Eqs. (13) and (14) result in
the averaged TA signal,

⟨Sξ(Ω,T)⟩ξ ∝
2∣Ēpr(Ω)∣

2

TC
I S̄(Ω,T; 0). (15)

Note that Eq. (15) is independent of T since T enters S̄(Ω, κ;Δ)
only through the phase eiΔT [see Eqs. (6) and (7)]. The 1/TC fac-
tor in Eq. (15) implies that the average signal becomes weak for
short-range phase correlations. Nevertheless, the information can be
retrieved from the covariance signal, which remains finite, as shown
below.

B. Covariance signal for the Brownian phase model
For the model of Brownian random phase ξ(ω), introduced in

Sec. II A (see also Appendix A), the four-point correlation func-
tion Ξ(Ω1, Ω2, Δ1, Δ2) [Eq. (A2)] shown in Fig. 10(a) has two sharp
maxima at the following points:

Δ1 = Δ2 = 0, (16)

Δ1 = −Δ2 = Ω2 −Ω1, Ω2 ≠ Ω1, (17)

and decays exponentially on the TC scale. This rapid decay makes
it possible to evaluate the covariance off-diagonal terms using the
saddle-point approximation. Assuming ∣Ω1 −Ω2∣TC ≫ 1 and that
the maxima of Ξ(Ω1, Ω2, Δ1, Δ2) are well separated, we obtain for
the covariance signal at Ω1 ≠Ω2

C(Ω1, Ω2) ≃ −
1

√
I(Ω1)I(Ω2)

R∫
∞

−∞

dκ1

2π ∫
∞

−∞

dκ2

2π

×
W(Ω1, κ1)W(Ω2, κ2)ei(Ω1−Ω2)(κ1−κ2)

(1 + (κ1 − T)2/(2T 2
C) + (κ2 − T)2/(2T 2

C))

3/2
,

(18)

where W(Ω, κ) is given by Eq. (14), and

I(Ω) = ∫
∞

−∞

dΔ∣Ēpr(Ω)Ēpr(Ω + Δ)S̄(Ω,T;Δ)∣2. (19)

Equation (18) gives the covariance for long TC. In the other extreme
TC → 0 (infinitely correlated phases), the correlation functions

N (Δ) and Ξ(Ω1, Ω2, Δ1, Δ2) tend to one so that the covariance
⟨Sξ(Ω1,T)Sξ(Ω2,T)⟩ξ−⟨Sξ(Ω1,T)⟩ξ⟨Sξ(Ω2,T)⟩ξ vanishes at all
Ω1 ≠Ω2; see Eq. (11).

For δ-correlated phases, TC → ∞. Using the representation
δ(x) = 1

2 limTC→∞TCe−∣x∣TC , the function Ξ becomes

lim
TC→∞

(TC/2) ⋅ Ξ(Ω1, Ω2,Δ1,Δ2) = δ(Δ1)δ(Δ2)

+ δ(Ω1 −Ω2 + Δ1)δ(Ω1 −Ω2 − Δ2). (20)

The first term cancels with the product ⟨Sξ(Ω1;T)⟩ξ⟨Sξ(Ω2;T)⟩ξ
upon substitution into Eq. (8), and the second product of
δ-functions gives

C(Ω1, Ω2) = δ(Ω2 −Ω1)
I(Ω1) −RS̄2

(Ω1,T; 0)
√

I(Ω1)I(Ω2)

− ∣Ēpr(Ω1)∣
2
∣Ēpr(Ω2)∣

2

×
RS̄(Ω1,T; Ω2 −Ω1)S̄(Ω2,T; Ω1 −Ω2)

√
I(Ω1)I(Ω2)

. (21)

The same result can be obtained from Eq. (18) for TC → ∞. When
TC is long, the denominator in the integrand of Eq. (18) can be
replaced by a constant, and the κ1 and κ2 integrals yield the product
δ(Δ1 + Ω1 − Ω2)δ(Δ2 − Ω1 + Ω2), where Δ1 and Δ2 are the inte-
gration variables in Eq. (14). We then recover Eq. (21). In this limit,
the phase correlations are narrower than all decoherence rates. Note
that despite T dependence of the auxiliary signal S̄(Ω1,T; Ω2 −Ω1),
the resulting expression (21) in this limit is independent of T. This
becomes clear upon the substitution of Eqs. (6) and (7) into Eq. (21).
In this limit, the probe pulse temporal envelope is infinitely large
and the T parameter may no longer be observed. For finite TC, the
integration order in Eq. (18) must be kept resulting in increased line
widths in the covariance spectrum. This limit is discussed in more
detail in Sec. II C.

To conclude, TC controls the time and frequency dispersion
of the probe pulse. Variation of TC allows us to resolve resonances
with a short lifetime (compared to TC) and can blur the long-living
resonances. The natural constrains for TC are the time-interval sep-
arating the actinic and probe pulses, and the lifetime of the system’s
state. The averaged signal is a convolution of the signal [Eq. (13)]
calculated with deterministic amplitude of the probe pulse taken
at various moments of the arrival time κ [Eq. (14)]. Variable κ
in Eqs. (13) and (14) plays a role of a new arrival time of the
pulse. The same structure has Eq. (21) for the covariance signal,
where now the deterministic signals at two different κ1 and κ2 are
convoluted.

C. Simulations of the transient absorption
covariance signal

We first consider the TA signal simulated for a three electronic
level |g⟩, |e⟩, and | f ⟩model system, where the state |e⟩ supports three
vibrational levels |e⟩, |e′⟩, and |e′′⟩, as shown in Fig. 2(a). Assuming
that the actinic pulse is impulsive (Ea(t) = Eaδ(t)), the TA auxiliary
signal (see details in Appendix B) can be calculated using Eqs. (B5)
and (B6) to give
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FIG. 2. Panels (a) and (b) depict the two quantum pathways contributing to the TA
signal [Eq. (23)] shown by arrows; (c) the TA signal simulated for a three electronic
level system; (d) the simulated TA covariance signal. Parameters of the model
are ωg = 770 cm−1, ωe = 825 cm−1, ωe ′ = 835 cm−1, ωe′′ = 860 cm−1, and
ωf = 920 cm−1; all decoherence rates ε are equal to 60 ps, ∣Epr ∣ = ∣Ea∣ = 1, and
all transition dipole moments are equal to one. (e) Cross section of the covariance
spectra along the diagonal Ω1 + Ω2 = 50 cm−1.

S̄TA(Ω,T;Δ) = 2∣Ea∣
2
∑

ν,ν′=e,e′ ,e′′
vg,νv∗ν′ ,g ∑

μ=f ,g
vμ,ν′v∗ν,μ

eiΔT

ων′ ,ν + Δ − iεν′ ,ν

× [
1

ων′ ,μ −Ω − iεν′ ,μ
−

1
ων,μ + Ω + iεν,μ

], (22)

where εν ,μ are the decoherence rates and ωμ ,ν denotes the excitation
energies, ωμ ,g − ων ,g . The complex coefficients vν ,μ are matrix ele-
ments of the transition dipole operators V̂ . Only transitions between
electronic levels (g ⇆ e, e′, e′′ ⇆ f ) are allowed in our model, and its
parameters are given in the caption of Fig. 2.

The TA signal generated by an impulsive deterministic probe
pulse, i.e., Epr(t, ξ) = Ēpre−iωprTδ(t−T) and ξ(ω) = 0, can be obtained
from Eq. (22) by using Eq. (4),

STA(Ω,T) = 2∣Ea∣
2
∣Ēpr ∣

2
R ∑

ν,ν′=e,e′ ,e′′
vg,νv∗ν′ ,g ∑

μ=f ,g
vμ,ν′v∗ν,μ

× e−iων′ ,νT−εν′ ,νT[
1

ων′ ,μ −Ω − iεν′ ,μ
−

1
ων,μ + Ω + iεν,μ

].

(23)

Equation (23) plotted in Fig. 2(c) vs Ω and T shows six oscil-
lating vertical lines at frequencies corresponding to the intervalence
resonance excitations ωe ,g and ωf ,g . The oscillation frequencies are
given by the vibrational manifold frequencies ωe′ ,e, ωe′′ ,e′ , and ωe′′ ,e.
The signal further contains nonoscillatory components which cor-
respond to interaction pathways without energy absorption, such as
g → e→ f → e→ g. The oscillations of the signal in T can interfere,
which complicates their resolution. The TA signal calculated for the
system by excluding level e′ (i.e., transitions to this level are forbid-
den, vg ,e′ = vf ,e′ = 0) is plotted in Fig. 3(b). We only see a single
oscillation frequency ωe′′ ,e = 35 cm−1.

Resolving desired features in the signal requires a transfor-
mation, which would amplify specific contributions to the signal.
Fourier transform of STA(Ω,T) with respect to T is a linear uni-
tary transformation. A different type of transformation is provided
by the covariance signal. It is a quadratic transformation involving
an integration over a given probability measure. The TA covariance
signal for δ-correlated phases and an impulsive deterministic enve-
lope of the probe pulse can be calculated using Eq. (21). Diagonal
features of the covariance carry no interesting information; we there-
fore focus on the off-diagonal features. These are expressed through
the auxiliary signal [Eq. (22)] and up to a sign and normalization give

CTA(Ω1, Ω2)∝ ∣Ēpr ∣
4
R S̄TA(Ω1,T; Ω2 −Ω1)S̄TA(Ω2,T; Ω1 −Ω2).

(24)

We next examine the 2D covariance spectrum of the model sys-
tem shown in Figs. 2(a) and 2(b) calculated for δ-correlated phases
using Eqs. (24) and (22). The model parameters are given in the
caption of Fig. 2. The covariance spectrogram shown in Fig. 2(d)
contains a pattern of horizontal, vertical, and diagonal lines and
is symmetric with respect to the main diagonal, Ω1 = Ω2. This
pattern is typical for covariance spectra8,17 and can be interpreted
using Eqs. (22) and (24). Each pathway contributing to the tran-
sient absorption process gives a product of two Lorentzians in the
auxiliary signal STA(Ω, T; Δ) [Eq. (22)]. The peaks in Ω describe
resonances caused by transitions between electronic levels, while
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FIG. 3. (a) TA signal [Eq. (23)]; (b) TA covariance signal [Eq. (24)] from the probe pulse with δ-correlated phases; (c)–(e) TA covariance signals simulated for various
combinations of T and TC (the values in fs are shown inside the plots). The plots are simulated for a two level model and a single vibrational level; see the level scheme in
Fig. 2(a) with an excluded level e′′ (vg,e′′ = vf ,e′′ = 0); other parameters are ωg = 770 cm−1, ωe = 825 cm−1, ωe ′ = 860 cm−1, and ωf = 920 cm−1; the decoherence rates ε
are equal to 60 ps, ∣Epr ∣ = ∣Ea∣ = 1, and all nonzero transition dipole moments are equal to one; (f) the scheme of lines for 2D covariance spectrum for δ-correlated phases
[Eq. (21)]. The thick solid lines correspond to resonant maxima auxiliary signal S̄(Ω2,T; Ω1 −Ω2); the dashed line marks the diagonal Ω2 = Ω1. Intersection of three lines
detects the excited state absorption process e→ f → g′; see Fig. 2(b).

Δ is responsible for resonances between vibrational levels. For our
model system with three vibrational levels, the spectrogram has
three diagonal lines (from both sides of the main diagonal) and
six vertical (horizontal) lines, which reveal the valence transition
frequencies (ωe ,g = 55 cm−1, ωe′ ,g = 65 cm−1 ωe′′ ,g = 90 cm−1,
and ωf ,e = 95 cm−1, ωf ,e′ = 85 cm−1 ωf ,e′′ = 60 cm−1). The dis-
tances between the main diagonal and other diagonal lines corre-
spond to the vibrational spacings ωe′ ,e = 10 cm−1, ωe′′ ,e′ = 25 cm−1,
and ωe′′ ,e = 35 cm−1. All lines corresponding to absorption and emis-
sion of the same photon (for instance, the pathway g → e → f
→ e→ g) overlap with the main diagonal and are not resolved by the
covariance signal. The intersection points of three lines correspond
to a particular quantum pathway describing absorption (emission)
process of the transmitted light by the higher (lower) lying vibration
level; see Fig. 3(f).

We have further investigated the influence of finite phase cor-
relation range for the same model system with electronic levels |e⟩
and | f ⟩, where level |e⟩ has a single vibrational level |e′⟩ (level |e′′⟩
is omitted). The bare TA signal [Eq. (23)] is given in Fig. 3(a).
The TA covariance spectra displayed in Fig. 3 are calculated for

a finite phase correlation length 1/TC using Eq. (18). Each spec-
trum has a single diagonal line (two lines symmetric with respect to
the main diagonal), which corresponds to the vibrational frequency
ωe′ ,e = 35 cm−1 [compare panels (c) and (d) in Fig. 2 with panels
(a) and (b) in Fig. 3]. In the covariance spectrogram generated by a
probe with δ-correlated phases [panel (b) in Fig. 3], the line shapes
and their visible lengths are completely determined by the decoher-
ence rates ε. The line shapes in the spectrograms generated for corre-
lated phases depend on two temporal parameters: T and TC. Panels
(c), (d), and (e) in Fig. 3 show that this dependence is not strong. The
overall pattern of the spectrogram remains virtually the same for var-
ious combinations of parameters T and TC. More detailed analysis
of the spectra shows that the decrease in TC blurs the line shapes.
For instance, for TC > T, the experimental time window cannot
cover the entire probe pulse time-profile, which effectively changes
the correlation time and makes it much weaker than the initial TC.
Such an effective change in TC is reflected in shorter but broader
diagonal lines in the spectrogram [compare plots (c) and (e) in
Fig. 3].

To conclude, we note that the finite correlation range of ran-
dom phases does not influence the spectrum significantly. The
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pattern contains well resolved lines for reasonable combinations
of T and TC so that the desired spectroscopic information can be
extracted from the covariance spectrum.

III. THE STIMULATED RAMAN SPECTROSCOPIC
COVARIANCE SIGNAL

We next turn to stimulated Raman spectroscopy which is a
common technique for probing time-resolved vibrational dynam-
ics.10,11,14,29–32 In this experiment, nuclear dynamics in an excited
electronic state launched by the actinic pulse (Ea) is subsequently
probed by a combination of a narrow (E2)- and broad (Epr)-band
pulse arriving simultaneously at time T; see Fig. 4(a). The carrier
frequency of E2 is tuned to a selected resonance with the transition
between single and double excited electronic levels, to generate fast
resonant Raman transitions in the system. The pulses propagate in
different directions determined by wave-vectors k1, k2, and k3. The
transmitted broadband pulse is frequency dispersed and detected
along k3.

In covariance SRS, the probe pulse is modulated by a random
phase, ξ. The positive frequency component of the electric field is
given by the sum of three fields,

E(t) = Ea(t)eik1r + E2(t − T)eik2r + Epr(t − T, ξ)eik3r . (25)

The light-matter interaction is given by the dipole Hamilto-
nian in the rotating wave approximation [Eq. (2)]. In analogy
with TA [Eq. (4)], the SRS signal can be represented by the
convolution

FIG. 4. Layout of the SRS signal (a), level scheme (b), and loop diagram (c).

SSRS,ξ(Ω,T) = 2I E ∗pr(Ω, ξ)∫
∞

−∞

dΔ
2π

Epr(Ω + Δ, ξ)S̄SRS(Ω,T;Δ).
(26)

The derivation of the SRS auxiliary signal S̄SRS(Ω,T;Δ) is simi-
lar to that of the TA auxiliary signal, but it includes two addi-
tional interactions with the field E2. The relevant term in the per-
turbative expansion of the time-dependent polarization is given
by a six-wave mixing quantum amplitude.12 Its form can be read
off from Fig. 4(c) so that the auxiliary signal S̄SRS is given by the
expression

S̄SRS(Ω,T;Δ)

= h̵5
∫

∞

−∞

dteiΩ(t−T)
∫

t

−∞

dτ2E2(τ2)∫

τ2

−∞

dτ1Ea(τ1)

⋅∫

t

−∞

dτ3e−i(Ω+Δ)(τ3−T)
∫

τ3

−∞

dτ4E∗2 (τ4)∫

τ4

−∞

dτ5E∗a (τ5)

× ⟨g∣V̂G†
(τ4, τ5)V̂G†

(τ3, τ4)V̂†G†
(t, τ3)

× V̂G(t, τ2)V̂†G(τ2, τ1)V̂†
∣g⟩. (27)

Equation (21) may be used to calculate the SRS covariance
signal generated by stochastic broadband pulse with
δ-correlated phases. The off-diagonal SRS covariance spectrum is
given by

CSRS(Ω1, Ω2)∝ ∣Ēpr ∣
4
R S̄SRS(Ω1,T; Ω2 −Ω1)S̄SRS(Ω2,T; Ω1 −Ω2).

(28)

Simulation of the bare and covariance SRS signals is presented in
Sec. III A.

A. Simulation of the stimulated Raman absorption
covariance signal

We first simulate the SRS signal for a closed molecular system
with three electronic levels |g⟩, |e⟩, and | f ⟩, where state |e⟩ has an
additional vibrational level |e′⟩; see Fig. 4(b). Equation (27) can be
simplified by assuming an impulsive actinic pulse arriving at zero
time. A monochromatic field E2(t) with frequency ω0 is tuned to be
resonant with the f → e transition, ω0 ∼ ωf ,e. The signal reaches
its peak values for frequencies Ω close to ω0. Using Eq. (B4) for
Green’s function of a closed system, we can calculate the resonant
contribution to the SRS auxiliary signal,

S̄SRS(Ω − ω0,T;Δ)

= ∣Ea∣
2
∣E2∣

2
∑

ν,ν′ ,ν′′=e,e′

v∗g,ν′′v
∗

ν′′ ,f

ωf ,ν′′ − ω0 − iε
⋅

vg,νvν,f

ωf ,ν − ω0 + iε

⋅
∣vν′ ,f ∣

2eiΔT

Ω + Δ + ων,ν′ − iε
[

1
Δ + ων,ν′′ − 2iε

−
1

ων′′ ,ν′ −Ω − iε
].

(29)

Here, Ea is the actinic pulse amplitude and ε is the decoherence
rate, which is assumed to be equal for all coherent states. The com-
plex coefficients vν ,ν ′ are matrix elements of the transition dipole
operators V̂ .

Assuming an impulsive deterministic probe pulse, i.e.,
Epr(ω, ξ) = Ēpr and ξ = 0, and using Eqs. (29) and (26), we
obtain
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SSRS(Ω − ω0,T) = 2∣Ēpr ∣
2
∣Ea∣

2
∣E2∣

2
R ∑

ν,ν′ ,ν′′=e,e′

v∗g,ν′′v
∗

ν′′ ,f

(ωf ,ν′′ − ω0) − iε

⋅
vg,νvν,f

(ωf ,ν − ω0) + iε
⋅
∣vν′ ,f ∣

2e−iων,ν′′T−2εT

ων′′ ,ν′ −Ω − iε
. (30)

The bare SRS signal [Eq. (30)] is plotted in Fig. 5(a) vs Ω and T. The
model parameters are given in the caption. It shows an oscillating
vertical line at the vibrational frequency ωe′ ,e = 35 cm−1 and the line
symmetric with respect to zero. This line corresponds to the quan-
tum path which goes through both electronic |e⟩ and vibrational |e′⟩
levels: the Stokes process g → e′ → f → e → f → e → g and the
anti-Stokes process g → e → f → e → f → e′ → g. The oscillation
frequency is defined by the same vibrational level spacings, i.e., ωe′ ,e.
The signal also contains an oscillating components at frequency Ω
= ω0, which corresponds to the processes without energy exchange
between matter and radiation, such as g → e→ f → e′ → f → e→ g.
The oscillations with T have the same frequency ωe′ ,e caused by the
Raman transition between | f ⟩ and |e′⟩.

FIG. 5. (a) SRS signal [Eq. (30)]; (b) SRS covariance signal from the probe pulse
with δ-correlated phases [Eq. (28)]. The plots are simulated for a two level model
and a single vibrational level; see the level scheme in Fig. 4(b). The model param-
eters are ωg = 770 cm−1, ωe = 825 cm−1, ωe ′ = 860 cm−1, and ωf = 920 cm−1;
the decoherence rates ε are equal to 60 ps, ∣Epr ∣ = ∣Ea∣ = 1, and all nonzero
transition dipole moments are equal to one.

The 2D SRS covariance signal shown in Fig. 5(b) was calculated
by Eq. (28) together with Eq. (29) for the auxiliary signals. We used
the level scheme shown in Fig. 4(b) with parameters given in the
caption of Fig. 5. The covariance spectrogram has a similar pattern
to the TA covariance spectrogram in Fig. 3(b). A detailed compari-
son of TA spectrogram and SRS shows that their features correspond
to different processes. The diagonal lines in the TA spectrum are not
identical with horizontal (vertical) lines: the horizontal lines corre-
spond to resonance transitions between valence levels, whereas the
diagonal lines represent transitions between vibration levels. In con-
trast, all three sets of lines (horizontal, vertical, and diagonal) in the
SRS correspond to one and the same set of vibrational frequencies.
The three-line intersection points also have different interpretation.
Each three-line intersection point corresponds to a single symmetric
pathway. For instance, the path g→ e→ f → e′→ f → e→ g generates
a single intersection point (and its symmetric counterpart) in the
spectrogram. In Sec. IV, we demonstrate that dynamic information
is accessible.

IV. COVARIANCE SPECTROSCOPY OF A SYSTEM
WITH A TIME-DEPENDENT FREQUENCY
A. The continuous frequency switch model

In previous sections, we demonstrated that statistical process-
ing of the signal generated by the stochastic input allows us to reveal
correlations in the flow of nonlinear processes in the media. In
this section, we apply nonlinear covariance spectroscopy to study
molecular systems with nontrivial dynamics. We assume that the
vibrational frequency switches continuously between two values.
This models a photoisomerization process, for example. A detailed
description of the signal is based on the solution of the Liouville
equation for the molecule in a thermal bath. Each molecular orbital
weakly interacting with the bath is split into several levels with close
energies. This dynamics is described by the stochastic Liouville equa-
tion model31,34 or by the continuous frequency switch (CFS) model
formulated in Ref. 10. The excited molecular level dynamics is then
described by a time-dependent excitation frequency ω̃(t),

ω̃(t) =
ω− + ω+

2
[1 +

ω+ − ω−
ω+ + ω−

Erf(
t − t0
σ
)], (31)

where Erf(t) = 2
√

π ∫
t

0 e−x
2
dx. The frequency ω̃(t) switches between

its value ω− at short times, t ≪ t0, and ω+ at large times, t ≫ t0;
see Fig. 6(a). The slope of the frequency switch is defined by σ. e
is the dynamically evolving excited state, whose quantum evolution
results in the Green’s function diagonal matrix element Ge ,e(t, τ),12

Ge,e(t, τ) =
−i
h̵
θ(t − τ) exp[i∫

t

τ
dτ′ω̃(τ′)], (32)

where θ(t − τ) is the unit step function. It is useful to represent the
Green’s function element in the form of the product of two auxiliary
functions (the asterisk denotes complex conjugation),

Ge,e(t, τ) =
−i
h̵
θ(t − τ)K (t)K ∗

(τ), (33)

with

K (t) = exp[i∫
t

0
dτω̃(τ)], K (0) = 1. (34)
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FIG. 6. (a) The time-dependent vibrational frequency in the
CFS model [Eq. (31)]; (b) SRS signal calculated by Eq. (42);
low-frequency (c) and high-frequency (d) regions of the TA
signal [Eq. (38)]; low-frequency (e) and high-frequency (f)
TA covariance spectrograms [Eq. (39)]. Parameters of the
function Eq. (31) are given inside the panels in inverse cen-
timeters for ω± and in femtoseconds for t0 and σ; for other
model parameters, see the caption of Fig. 5.

The product K (t)K ∗
(τ) in Eq. (33) can be understood as an inde-

pendent time-evolution of the bra and the ket vectors from zero time
to some t or τ, respectively. At t = τ, the evolution ends up in the
same vector due to the property K (t)K ∗

(t) ≡ 1. In Sec. IV B, it
will be shown that the observed signal depends on ω̃(t) indirectly.
It enters the resulting expression through the function K (t), see
Fig. 9. Therefore, the signal can be used to restore the time evolu-
tion of K (t) and consequently of the time evolution of ω̃(t). For
completeness, the TA covariance signal for the CFS model is given
below.

B. The transient absorption covariance signal
of the continuous frequency shift model

We study the TA covariance signal for the model system with
three electronic levels |g⟩, |e⟩, and | f ⟩, where the energy of a

single-excited level |e⟩ switches between two values [we neglect levels
|e′⟩ and |e′′⟩, see Figs. 2(a) and 2(b)]. The excitation energy trajec-
tory is defined in Eq. (31), ωe,g(t) = ω̃(t). The other electronic levels
are static.

To calculate the signal for this dynamical CFS model, it is nec-
essary to recast Eqs. (6) and (7) in terms of temporal integrations.
The two contributions to the signals (i) and (ii) can be read off from
Figs. 1(b) and 1(c) and now have the forms

S̄TA(i)(Ω,T;Δ) = 2h̵3
∫

∞

−∞

dt∫
t

−∞

dτ1 ∫

t

−∞

dτ2eiΩ(t−τ2)e−iΔ(τ2−T)

× ∫

τ2

−∞

dτ3Ea(τ1)E∗a (τ3)⟨g∣V̂G†
(τ2, τ3)

× V̂†G†
(t, τ2)V̂G(t, τ1)V̂†

∣g⟩, (35)

and
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S̄TA(ii)(Ω,T;Δ) = 2h̵3
∫

∞

−∞

dt∫
t

−∞

dτ1 ∫

t

−∞

dτ2eiΩ(t−τ2)e−iΔ(τ2−T)

× ∫

τ2

−∞

dτ3Ea(τ3)E∗a (τ1)⟨g∣V̂G†
(t, τ1)

× V̂G(t, τ2)V̂†G(τ2, τ3)V̂†
∣g⟩. (36)

Since levels |g⟩, |e⟩, and | f ⟩ do not vary with time, the cor-
responding Green’s function diagonal elements coincide with
Green’s function of free propagation, for instance, Gf ,f (t, τ)
= −i

̵h θ(t − τ) exp[iωf ,g(t − τ)], and the Ge ,e(t, τ) matrix element
is defined by Eq. (33). Substitution of the actinic field in impul-
sive approximation allows us to take the integrals over τ3 and τ1,
so that the final expression for the auxiliary signal S̄TA,dyn(Ω,T;Δ)
= S̄TA(i)(Ω,T;Δ) + S̄TA(ii)(Ω,T;Δ) has the form

S̄TA,dyn(Ω,T;Δ) = −4∣Ea∣
2
∫

∞

0
dt∫

t

0
dτ2eiΩ(t−τ2)e−iΔ(τ2−T)

×
⎛

⎝
∣ve,g ∣2∣vf ,e∣

2 cos[∫
t

τ2

dτω̃(τ) − ωf ,g(t − τ2)]

+ ∣vg,e∣
4 cos[∫

t

τ2

dτω̃(τ)]
⎞

⎠
. (37)

The bare TA signal is obtained for impulsive deterministic probe
pulse, Epr(t, ξ) = Ēpre−iωprTδ(t − T)δ(ξ), from Eq. (4) after substi-
tution of Eq. (38). It is

STA,dyn(Ω,T) = −8I∫
∞

T
dteiΩ(t−T)⎛

⎝
∣ve,g ∣2∣vf ,e∣

2 cos[∫
t

T
dτω̃(τ)

−ωf ,g(t − T)] + ∣vg,e∣
4 cos[∫

t

T
dτω̃(τ)]

⎞

⎠
. (38)

To calculate the TA covariance signal generated by stochastic
broadband pulse with δ-correlated phases in the CFS model, we
have used Eqs. (35) and (36). The off-diagonal TA covariance
spectrum is

CTA,dyn(Ω1, Ω2)∝ ∣Ēpr ∣
4
×R S̄TA,dyn(Ω1,T; Ω2 −Ω1)

× S̄TA,dyn(Ω2,T; Ω1 −Ω2). (39)

Equation (38) shows that the TA signal is composed of two
parts which show up at two frequency intervals. The low-frequency
interval around Ω = ω− − ωf ,g is generated by the first term
in Eq. (38) and corresponds to the transition involving the dou-
bly excited state: g → e → f → e → g. The plot calculated by
Eq. (38) is shown in panel (c) in Fig. 6. For a static level e, i.e.,
ω− ≡ ω+ = 860 cm−1, this part of signal would generate a sin-
gle nonoscillating line at frequency Ω = 60 cm−1 [compare with
Fig. 3(a)]. The high-frequency interval [second term in Eq. (38)]
located around the frequency Ω = ω−, panel (d) in Fig. 6, is gener-
ated by the path g→ e→ g→ e→ g. The TA covariance spectrum can
be also divided into two nonoverlapping regions; see plots in panels
(e) and (f) of Fig. 6. TA and SRS covariance signals generated within
the CFS model are compared in Sec. IV D.

C. The stimulated Raman spectroscopy signal
for the continuous frequency switch model

To derive the auxiliary SRS signal for the CFS model, we start
from Eq. (27) and derive expressions for a three-level system model
[Fig. 4(b)], in which the singly excited state has only two vibra-
tional levels |e⟩ and |e′⟩. The level |e′⟩ frequency evolves in time,
while other levels |g⟩, |e⟩, and | f ⟩ are static. As demonstrated in
Sec. IV B, the TA signal may have several contributions at different
frequency regimes. The monochromatic component E2(t) = E2eiω0t

of the probe field in the SRS protocol [Fig. 4(a)] makes it possible
to amplify contribution for a specific quantum pathway by tuning
the frequency ω0. This can be seen from Eq. (29), which describes
a closed molecular system, when ω0 is close to ωf ,e single out e → f
resonances and all other nonresonant terms can be neglected. There-
fore, we assume that ω0 ≃ ωf ,e. Among all possible combinations of
state-to-state transitions, this choice amplifies the path where after
the interaction with the actinic pulse, the system is at the lower-
excited state e [Fig. 4(b)] from which it is resonantly excited to the
coherent state |e⟩⟨ f | by the monochromatic field E2(t). The system
may be further deexcited by the stochastic probe Epr to the dynam-
ically evolving state |e′⟩ forming the coherence |e′⟩⟨e| between the
vibrational levels. The dynamics is assumed to be slow in com-
parison with other fast optical processes so that the system can be
described by the CFS model with ωe′ ,e = ω̃(t) so that the nontriv-
ial time evolution of |e′⟩ is described by Eq. (33), the states |g⟩, |e⟩,
and | f ⟩ are static, and their evolution is described by free propa-
gation Green’s function. The time-dependence of ω̃(t) is approx-
imated by Eq. (31); see Fig. 6(a). Assuming an impulsive actinic
pulse and a monochromatic E2 [Eq. (27)], we obtain for the auxiliary
signal

S̄SRS,dyn(Ω − ω0,T;Δ)

= h̵∣Ea∣
2
∣E2∣

2 ∣ve,g ∣
2
∣ve,f ∣

2
∣ve′ ,f ∣

2

(ωf ,e − ω0)2 + ε2 e
iΔT
∫

∞

0
dtK ∗

(t)eiΩt−εt

×∫

t

0
dτK (τ)e−i(Ω+Δ)τ−ετ , (40)

where the function K (t) describes the nontrivial phase evolution
due to the internal dynamics of the system [Eq. (34)]. Note that the
auxiliary signal S̄SRS,dyn(Ω−ω0,T;Δ) contains also a term which cor-
responds to the sequence of quantum transitions through the static
states only,

h̵∣Ea∣
2
∣E2∣

2 ∣ve,g ∣
2
∣ve,f ∣

2
∣ve,f ∣

2

(ωf ,e − ω0)2 + ε2
eiΔT

(Ω + iε)(Δ − 2iε)
. (41)

Contributions from such types of terms to the SRS covariance
signal were studied in Sec. III, and they will be omitted in our
further consideration. For impulsive, deterministic probe pulse,
Epr(t, ξ) = Epre−iωpTδ(t − T)δ(ξ). The SRS signal is

SSRS(Ω,T) = 2∣Epr ∣
2
∣Ea∣

2
∣E2∣

2 ∣ve,g ∣
2
∣ve,f ∣

2
∣ve′ ,f ∣

2

(ωf ,e − ω0)2 + ε2

×I K (T)∫
∞

T
dteiΩ(t−T)−ε(t−T)K ∗

(t). (42)

It is instructive to compare the bare SRS signal displayed vs Ω
and T in panel (b) with the TA signal shown in panels (c) and (d)
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of Fig. 6. Note that the TA signal was calculated for a three-level
system with changing single-excited level |e⟩, while the SRS signal is
plotted for the system with an additional time-dependent vibrational
level |e′⟩. Nevertheless, both signals show identical reflection, total
phase, and position on the frequency axis patterns. We shall con-
sider the SRS signal in panel (b) of Fig. 6 separately. For long-T, the
pattern reduces to a single nonoscillating line parallel to the T axis at
Ω = ω+ and coincides with the pattern which would be generated in
the static case. The asymptotic regime can be seen from Eq. (42) for
T ≫ t0, when K (t ≫ t0) ∝ eiω+t . The initial frequency ω− reveals
itself at T ∼ 0 as the smallest value of Ω where the signal crosses zero.
In this limit, the resonant contribution I 1

i(Ω−ω−)−ε
can be extracted

from the integral in Eq. (42).
The issue of simultaneous temporal and spectral resolution in

the SRS signal has been discussed in Ref. 11. The signal depends on
the entire trajectory ω̃(t) between the stimulation time T and the
detection time t and is not related directly to the single snapshot
ω̃(T); see Eq. (42). In the static case, it would be enough to calculate
Fourier transform over T for a given Ω to find the oscillation fre-
quency, which is the interval between the vibrational levels ωe′ ,e; see
discussion in Sec. II C. In the dynamical case, any integration over
T mixes values of ω̃(t) at different times and cannot be interpreted
in a simple manner. From Eq. (42), one can see that the quantity,
which can be formally extracted from the signal, is K̃ (Ω), which
is Fourier transform of K (t) and SSRS(Ω,T = 0) ∝ K̃ (Ω); see
Fig. 7. SSRS(Ω,T = 0) represents a special limit limT→0 SSRS(Ω,T)
and, thus, is not directly achievable in experiment. Calculation of the

Fourier transform at any nonzero T gives a quantity with a reduced
amount of information about ω̃(t). The latter problem can be par-
tially avoided by using chirped pulses. A similar plot: signal SSRS vs
Ω and T′, where T′ is effective time of chirped pulse arrival, can be
generated. Fourier transform over Ω with a given T′ now gives the
quantity ∫

∞

0 dtw(t,T′)eiΩ(t−T)−ε(t−T)K ∗
(t)with some weight func-

tion w(t). Covariance spectroscopy, as demonstrated in Sec. IV D,
is a tool which allows us to extract unmodified function K̃ (Ω).

D. Continuous frequency shift dynamical parameters
revealed from the stimulated Raman spectroscopy
covariance spectrum

The covariance of the SRS signal obtained for δ-correlated
phases is calculated by

CSRS(Ω1, Ω2)∝ RS̄SRS(Ω1 + ω0, 0; Ω2 −Ω1)

× S̄SRS(Ω2 + ω0, 0; Ω1 −Ω2), (43)

where S̄SRS(Ω,T;Δ) is the auxiliary frequency-dispersed SRS
signal. The SRS covariance spectrum for the case of static
excitation frequencies derived in Sec. III consists of diagonal and
horizontal lines without any marks of interference patterns. Typ-
ical SRS covariance spectra of a three-level system (|g⟩, |e⟩, and
| f ⟩) and dynamically changing vibrational level |e′⟩ are plotted in
Fig. 7 for various parameters of the CFS model. The covariance
spectra contain interference patterns, and variation of dynamical

FIG. 7. SRS covariance signals
[Eqs. (43) and (40)] of the CFS model
with [(a) and (b)] sharp, σ = 6 fs, and [(c)
and (d)] slow, σ = 15 fs, slopes probed
by stochastic pulse with δ-correlated
phases plotted vs t0 = 100 fs and 300 fs.
Other parameters are taken to be the
same for each plot: ωe ,g = 800 cm−1,
ω− = 30 cm−1, ω+ = 75 cm−1, and
decoherence time 60 ps.
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parameters leads to a continuous change in the pattern. In particu-
lar, the larger the t0, the more the oscillatory cycles we observe, while
the pattern is less sensitive to the frequency switch rate governing by
σ. In addition to the qualitative observation of dynamical changes,
quantitative information about the internal dynamics of the system
can be also extracted from SRS covariance spectra, through asymp-
totic analysis of the covariance (43) at large values of frequencies Ω1
and Ω2.

The SRS covariance spectra are shown in Fig. 7. Note that T
is a dummy parameter in the covariance spectrum. Considering the
asymptotic of S̄(Ω1 +ω0, 0; Ω2−Ω1) [Eq. (40)] at Ω1 ≫ ω̃+ (ω+ is the
maximum characteristic frequency of ωe′ ,e), the τ dependence of the
second integral in (42) can be simplified. The large-Ω1 asymptotic,
up to an Ω-independent prefactor, is

S̄SRS(Ω1 + ω0, 0; Ω2 −Ω1) ≃ −
K ∗
(0)

iΩ1 − ε ∫
∞

0
dtK (t)ei(Ω1−Ω2)t−2εt .

(44)
In the same large-Ω1 limit, the auxiliary signal with interchanged
arguments reduces to

S̄SRS(Ω2 + ω0, 0; Ω1 −Ω2) ≃
K(0)

iΩ1 + ε ∫
∞

0
dtK ∗

(t)eiΩ2t−εt

× (1 − e−iΩ1t−εt). (45)

The traces of the above asymptotics are clearly seen in the
RS̄SRS(Ω1 + ω0, 0; Ω2 − Ω1) vs Ω1 and Ω2 plot in Fig. 8(a). In

particular, it follows from Eq. (44) that S̄SRS(Ω1 + ω0, 0; Ω2 − Ω1)

is almost a constant along each line from the family of lines:
Ω2 = Ω1 − Ω̃, when Ω̃ ≫ ω+. The real and the imaginary part
profiles of S̄SRS(Ω1 + ω0, 0; Ω2 − Ω1) calculated along a diagonal
line are shown in the panel (b) in Fig. 8. Note that the imagi-
nary part nullifies, while the real part is a nonzero constant solely
depending on Ω̃. The Fourier transform of K (t) is contained in the
large-Ω1 asymptotic of the auxiliary signal with inverse arguments
[Eq. (45)]. Asymptotic expression for the covariance at large Ω1
is

CSRS(Ω1, Ω2) ≃
1

Ω2
1 + ε2 R(K̃ (Ω2)− K̃ (Ω2 −Ω1))K̃

∗
(Ω2 −Ω1),

K̃ (Ω) = ∫
∞

0
dτK(τ)eiΩτ−ετ .

(46)

The covariance calculated along the line Ω1 = Ω2 + Ω̃ is therefore
proportional to 1

(Ω1−Ω̃)2+ε2 RK̃ (Ω1 − Ω̃)K̃ ∗
(−Ω̃), from which the

quantity K̃ (Ω) can be directly extracted by small variations of Ω1
around the large value Ω̃.

The covariance profile along the diagonal line in panel (c) is
compared in Fig. 8(d) with the Fourier transform of the original
function K (t) [see Fig. 9(d)]. Based on the good agreement between
two curves, we conclude that the dynamical information about the
system in the CFS model can be extracted from the SRS covariance
signal.

FIG. 8. (a) 2D density plot of the auxil-
iary signal S̄SRS(Ω1, 0; Ω2 −Ω1) in vari-
ables Ω1 and Ω2; (b) real and imaginary
parts of S̄SRS(Ω1, 0; Ω2−Ω1) calculated
along the solid diagonal line in plot (a);
(c) SRS covariance signal for the CFS
model; (d) SRS signal (green) calculated
along the black thin line shown in plot (c)
compared with the Fourier transform of
K (t) (blue).
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FIG. 9. (a) Time-dependent vibrational frequency in the CFS model [Eq. (31)] calculated for ω− = 30 cm−1, ω+ = 75 cm−1, and σ = 55 fs; (b) and (c) K (t) = e−iϕ(t),
ϕ(t) = ∫ t

0 ωe′ ,e(τ)dτ; (d) Fourier transform of K (t).

In summary, we note that the method used to obtain K̃ (Ω)
can be extended in various ways. To improve the quality, one can
choose several different cross sections in the plane (Ω1, Ω2) using
the asymptotic expression (46) and perform statistical averaging
of the obtained data. We have considered the covariance of the
signal with itself. However, the covariance can be calculated with
another SRS signal, whose properties are known a priori. Such het-
erodyne SRS covariance signal will allow to relax the requirements
for asymptotic values of Ω. Finally, we note that the SRS covari-
ance signal has an advantage with respect to the TA covariance
signal analyzed in Sec. IV B. The time-reversal symmetry of SRS pro-
cess simplifies the resulting expressions for the covariance spectrum
[compare Eqs. (37) and (27)] and allows us to make the asymptotic
analysis.

V. CONCLUSIONS
We analyzed the mean and the covariance signals generated

by transmitted broadband probe pulse modulated by frequency-
dependent stochastic phase. We have demonstrated how stochastic
light may be used to improve the temporal and spectral resolu-
tions of nonlinear signals. The probe beam interferes with the radi-
ation generated by the sample polarized by the same probe pulse.
The detected electric field intensity is proportional to the product
of probe pulse envelope and to the time-dispersed auxiliary signal
S̄(t,T; τ) [or frequency-dispersed S̄(Ω,T;Δ)] dressed by the same
probe pulse field.12 In measurements involving deterministic light,
the frequency-gated signal provides only integrated spectral infor-
mation at instant of time T [in impulsive approximation for the
probe field S(Ω,T) = 2∣Epr ∣

2I ∫
∞

−∞

dΔ
2π S̄(Ω,T;Δ)]. We showed

that the probe pulse coherence breaking allows us to disentangle
the time interval and spectral range covered by the probe pulse
[Eqs. (13) and (14)]. Covariance spectroscopy involves averaging the
signals generated by interaction of the sample with random chirped
pulses. The governing control parameter is the frequency correla-
tion range, 1/TC. We considered two types of covariance signals,
TA and SRS, generated by an actinic pulse and broadband probe
pulse with a stochastic phase. The covariance spectra were calcu-
lated for the broadband probe pulses modulated by a stochastic
phase ξ(ω). Control of the two- and four-point correlation func-
tions allows us to amplify certain components of the signal. The
main theoretical results are Eqs. (8) and (11) for the 2D covariance
spectrum.

For a closed molecular system and δ-correlated phases
(⟨ξ(Ω)ξ(Ω + Δ)⟩ξ = δ(Δ)), the 2D covariance spectra of TA and
SRS signals represent a set of vertical, horizontal, and diagonal
linear features. The characteristic frequencies of these lines reveal
the molecular transition frequencies. For a closed system (with static
frequencies), covariance spectroscopy carries the same amount of
information as the TA and SRS signals generated by deterministic
light. For a deterministic probe, the data analysis is based on Fourier
transform with respect to the probe pulse arrival time T.9,35 Both
approaches, however, require repeated measurements either to per-
form statistical averaging or to calculate the Fourier transform with
a required accuracy.

In experiments focusing on ultrafast molecular dynamics,
tracking the nuclear wave packet dynamics in various regions of the
excited-state potential energy surface is of interest. In frames of CFS
model, we demonstrated that the covariance spectroscopy allows
us to reveal the time-flow of the molecular system dynamics. We
developed an analytic approach for SRS covariance spectrum analy-
sis that restores the function K̃ (Ω) [Eqs. (34) and (46)] of quan-
tum evolution defined in frequency domain and gave arguments
that this quantity cannot be extracted from the bare TA and SRS
signals.

Therefore, in the case of static energy levels (closed molec-
ular system), stochastic spectroscopy can be used to resolve the
vibrational levels,6–8 while it gives a principally new tool for study
of open molecular system with time-dependent vibrational fre-
quencies. Further improvement of the method can be done with
a “heterodyne” covariance spectrum, i.e., covariance of a signals
generated by interaction of stochastic pulse with the sample and
with a reference material. Another type of modifications is various
choices of the two- and the four-point phase correlation functions.
In this paper, we have discussed the simplest case of δ-correlated
phases.
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APPENDIX A: THE BROWNIAN PHASE MODEL
The one-dimensional Brownian motion (Wiener random pro-

cess) is a mathematical model for description of phase ξ(ω) as a
random continuous function of ω.36 We represent the phase incre-
ment in a form of integral of a white noise, ξ(Δ) − ξ(0) = ∫

Δ
0 dWξ .

The probability density function of the increment follows normal
distribution with zero mean value, which variance grows linearly
with respect to the interval length, ⟨[ξ(Δ) − ξ(0)]2⟩ξ = TCΔ, where
TC is the effective range of phase correlation. The Gaussian nature of
increments permits the calculation of the autocorrelation functions,

⟨eiξ(Ω)−iξ(Ω−Δ)
⟩ξ =

1
√

4πTC∣Δ∣
∫ dxeix−x2

/(4TC ∣Δ∣) = e−∣Δ∣TC . (A1)

The autocorrelation function of a combination of increments can be
calculated similarly taking into account that all increments, which
correspond to nonintersecting intervals, are distributed indepen-
dently. The average value of four phases is a piecewise defined
function of four arguments,

FIG. 10. Schematic plot of Ξ(Ω1, Ω2, Δ1, Δ2) [Eq. (A2)] as a function of Δ1 and Δ2
with fixed Ω2 > Ω1 for the Brownian phase model. The function has two maxima
and decays exponentially.

Ξ(Ω1, Ω2,Δ1,Δ2) ≡ ⟨eiξ(Ω1+Δ1)−iξ(Ω1)+iξ(Ω2+Δ2)−iξ(Ω2)⟩ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−(∣Δ1 ∣+∣Δ2 ∣)TC , ∣Δ1∣ + ∣Δ2∣ ≤ ∣2Ω2 − 2Ω1 + Δ2 − Δ1∣;
e∣2Ω2−2Ω1+Δ2−Δ1 ∣TC−2(∣Δ1 ∣+∣Δ2 ∣)TC , ∣Δ2 − Δ1∣ ≤ ∣2Ω2 − 2Ω1 + Δ2 − Δ1∣;
e−∣2Ω2−2Ω1+Δ2−Δ1 ∣TC , ∣Δ2 + Δ1∣ ≤ ∣2Ω2 − 2Ω1 + Δ2 − Δ1∣;
e−(∣Δ1 ∣−∣Δ2 ∣)TC , Δ1 + Δ2 ≥ ∣2Ω2 − 2Ω1 + Δ2 − Δ1∣, Δ2 ≤ 0;
e−(∣Δ2 ∣−∣Δ1 ∣)TC , Δ1 + Δ2 ≤ ∣2Ω2 − 2Ω1 + Δ2 − Δ1∣, Δ1 ≥ 0;
e−(3∣Δ1 ∣+∣Δ2 ∣)TC , Δ1 − Δ2 ≥ ∣2Ω2 − 2Ω1 + Δ2 − Δ1∣, Δ1 ≤ 0;
e−(3∣Δ2 ∣+∣Δ1 ∣)TC , Δ1 − Δ2 ≥ ∣2Ω2 − 2Ω1 + Δ2 − Δ1∣, Δ2 ≥ 0.

(A2)

In the text, we also use another combination of phases,
which average value is connected with function Ξ as follows:
⟨eiξ(Ω1+Δ1)−iξ(Ω1)−iξ(Ω2+Δ2)+iξ(Ω2)⟩ξ = Ξ(Ω1, Ω2 + Δ2,Δ1,−Δ2).

APPENDIX B: THE TRANSIENT ABSORPTION SIGNAL
In this section, we derive expression for the deterministic TA

signal.9,12,22,25 The signals is defined as the change of total photon
number, ∫

d
dt ⟨Ê

†
(t)Ê(t)⟩dt. The Heisenberg equation of motion for

the field operator, d
dt Ê =

i
̵h [H, Ê] + ( ∂

∂t Ê)H , allows us to represent
the signal in the form

S = 2I∫
∞

−∞

dt Tr [Ê†
(t)V̂(t)ρ(t)]. (B1)

The density operator ρ(t) is defined in the joint field-matter space
of the entire system, and I stands for the imaginary part. For the
classical optical pulse, the electric field operator is replaced by its
expectation value ⟨Ê(t)⟩ = E(t). The sample is prepared in a super-
position state at zero time, which is modeled by interaction with an
actinic pulse, Ea(t). The probe pulse arrives after the time delay T;

see Eq. (3). The frequency-dispersed signal is expressed in terms of
positive frequency polarization P(t),

S(Ω) =
2
h̵
I E ∗pr(Ω)∫

∞

−∞

dtP(t)eiΩ(t−T), (B2)

where P(t) = h̵Tr [V̂(t)ρ(t)]. Evolution of the matter density
matrix, ρ(t), is governed by the Liouville equation, h̵ρ̇(t) = −i[H, ρ].
Its solution yields

P(t) = h̵Tr [V̂(t) Texp(−
i
h̵ ∫

t

−∞

dτ[Hint(τ), ⋅])ρ0]. (B3)

Specific signals are obtained by expanding Eq. (B3) to the
desired order in Hint . The TA signal is defined as the change in the
probe intensity and must contain two interactions with the actinic
field. Therefore, the signal is the third-order expansion of the expo-
nent in Eq. (B3). The expansion contains two contributions, see loop
diagrams in Fig. 1(b), which originate from the third-order expan-
sion of the bra and ket vectors in the quantum expectation value
⟨Ψ(t)∣V̂(t)∣Ψ(t)⟩. By the convention,33 the time-evolution along
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the loop goes from the ket to the bra, and the last in time interac-
tion occurs on the ket side. For a time independent Hamiltonian,
the retarded Green’s function of free propagation depends on the
time interval. In the frequency domain, it is

G̃(ω) = −
1
h̵

i
ω − (H0/h̵ − ωg) + iε

, (B4)

where h̵ωg is the ground state energy. Each diagram contributes to
the TA signal. In Fig. 1 (i), the actinic pulse Ea(ω1) electronically
excites the molecule to the level |ν⟩. Then, the molecule propagates
until de-exciting to the level |ν′⟩ by the probe pulse Ēpr(Ω) at the
frequency Ω. The ket vector propagates backward in time. After
excitation by the E ∗a (ω′1) pulse to the level ⟨μ|, it propagates until
stimulated emission by the probe pulse Ē ∗pr(Ω + Δ) to the level ⟨ν′|.
The system propagates further with the energy ω′1−Ω−Δ. Similarly,
one reads diagram (ii). The contributions to the auxiliary signal S̄TA
are given by Eqs. (6) and (7). They can be further simplified for an
impulsive actinic pulse, Ea(t) = Eaδ(t),

⟨VG̃†
(ω1)V†G̃†

(ω2)VG̃(ω3)V†
⟩ =

i2
(−i)
h̵3 ∑

ν,ν′ ,μ
vg,νv∗ν,ν′vν′ ,μv

∗

μ,g

×
1

ω1 −ων,g − iεν
1

ω2 −ων′ ,g − iεν′

×
1

ω3 − ωμ,g + iεμ
, (B5)

⟨VG̃†
(ω1)VG̃(ω2)V†G̃(ω3)V†

⟩ =
i(−i)2

h̵3 ∑
ν,ν′ ,μ

vg,νvν,ν′v∗ν′ ,ν′′v
∗

μ,g

×
1

ω1 −ων,g − iεν
1

ω2 −ων′ ,g + iεν′

×
1

ω3 − ωμ,g + iεμ
. (B6)

Substitution of Ea(t) = Eaδ(t) into Eqs. (6) and (7) and integration
over ω1 and ω′1 yield Eqs. (22) and (23).
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