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Hong-Ou-Mandel interferometry and spectroscopy
using entangled photons
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Optical interferometry has been a long-standing setup for characterization of quantum states

of light. Both linear and the nonlinear interferences can provide information regarding the light

statistics and underlying detail of the light-matter interactions. Here we demonstrate how

interferometric detection of nonlinear spectroscopic signals may be used to improve the

measurement accuracy of matter susceptibilities. Light-matter interactions change the photon

statistics of quantum light, which are encoded in the field correlation functions. Application is

made to the Hong-Ou-Mandel two-photon interferometer that reveals entanglement-

enhanced resolution that can be achieved with existing optical technology.
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Quantum states of light provide an exciting platform for
observing and controlling matter beyond what is possible
classically1–4. Quantum states are very sensitive to the

external environment, which makes them useful probes of matter.
Quantum features of light have long been used in metrology and
quantum information5,6 while lately there has been a growing
activity in utilizing them in spectroscopic applications7,8. Inter-
ferometry offers robust detection schemes of quantum light. In
this paper, we present a novel spectroscopy based on the Hong-
Ou-Mandel (HOM)9 two-photon interferometric setup. Obser-
vables measured by the interference of two waves depend on two
times separated by a delay Δ which can be controlled by the
propagation path difference of the mixed waves. The unified
picture of second-order and fourth-order interferences in a single
interferometer has been demonstrated in ref. 10. Previous works
attempted either to utilize HOM-like measurements to address
properties of the beam splitters or the individual emitters11 or
utilize four-wave mixing for the quantum light generation12 and
characterization13.

Interferometric signals can be recast in terms of moments of
the field operators posterior to the interaction with the matter,
thereby revealing its statistics. The signal-field operator (see
“Methods” and Supplementary Note 1) is given by14

Ê
þð Þ
s r; tð Þ ¼ �iωsV̂ r; tð Þ; ð1Þ

Where ωs is the signal mode frequency and V̂ is the matter dipole
operator. The interferometric setup naturally gives rise to two
characteristic timescales and respective length scales. First, the
response interval τR in which light-matter interaction occurs. It is
determined by the pulse envelope, the spatial dimension of the
sample, and the response time. Second, is the pulse relative delay
interval δT determined by the interference region governed by the
interferometer dimensions. Here, we consider the field-matter
interaction region to be localized compared to the spatial
dimensions of the interferometer. We further consider a sequence
of ultrafast coherent excitation pulses—which are classical for all
practical purposes—followed by an interaction with the quantum
state of light. The interferometer operation mode is shown in
Fig. 1: when the pulse interval cδT and the maximal response
interval of the sample cτR, are smaller than the free propagation
distance between the sample and the interference-detection
location Lp (L*≪ Lp) where L* := cmax{τR’ δT}—the measured
response functions are classical. The response in this regime is
highly localized temporally and immediately after the pulse
interacts with the sample, the matter degrees of freedom can be

traced out. The excitation and deexcitation period is dominated
by the duration of the narrowband envelope of the quantum field
given by cτR combined with the pulse delay interval cδT. The
maximal duration of this interval is defined by L* which is
smaller than a few hundred micrometers even for a picosecond
pulse which is well within the narrowband region. For example,
for a transform-limited Gaussian pulse with central wavelength
λc= 1064 nm and pulse duration Δt= 2 ps which occupies cτR ≈
600 μm. Finally, the interferometer length scale denoted Lp spe-
cifies the free propagation distance between the incident beams,
the beamsplitter, and the detector. Typical interferometer length
is in the order of few centimeters which justifies the separation of
timescales—considering the interaction interval to be localized
around the sample compared with Lp. Moreover, the Rayleigh
distance is typically a few meters in this setup, thus one can
consider the propagation as unidirectional for all practical pur-
poses. For a femtosecond pulse cδT∝ 10−1 μm while for a tra-
ditional interferometer Lp is in the order of centimeters. In the
following we consider short pulses, so that (L*≪ Lp). Trace w.r.t.
matter results in the nth order polarization in the external field
P nð Þ tð Þ � V̂ tð Þ nf g (details are given below). This polarization
serves as a source for the signal field. This regime fits experi-
mental setups involving ultrafast pulses (δT ≤ 1 ps). In the
opposite regime, cτR’ cδT≫ Lp, the pulse is long enough to
create ambiguity in the order of interactions and the arrival of the
relatively delayed photons (see Supplementary Notes 2–4 for
detailed derivations of this regime). One cannot then trace the
matter degrees of freedom prior to the measurement which gives
rise to different observables.

In the present work, we combined the interferometric detection
(HOM) with wave mixing that involves both classical and
quantum light beams to address more complex nonlinear optical
processes and the corresponding components of the nonclassical
response function. We investigate how the quantum state of light
and its statistics are modified by interaction with matter. In
particular, we address the following two issues of the quantum
nonlinear interferometric spectroscopy. The first issue is regard-
ing the nature of the change of the quantum state and its sta-
tistics. The second point investigates the details of the matter
information that can be deduced from the change in the statistics
of the field. These questions are explored by using an interfero-
metric setup traditionally used to study quantum states of light
and now applied for investigation of the matter degrees of free-
dom via extraction of the matter response functions. We therefore
focus on accuracy enhancement of such responses and their
deviations from classical susceptibilities.

Fig. 1 Interferometric spectroscopy setup. Hong-Ou-Mandel interferometer. A pump beam propagates through a χ(2) nonlinear crystal. The interaction
between field modes mediated through the crystal induces entanglement between two well separated beams of different polarization produced by
spontaneous parametric down conversion. One beam interacts with a sample (inset I), while the other propagates in an empty arm. The two beams are
finally combined on a beamsplitter (BS) (inset II), and collected in two detectors Da and Db. Insets I and II are specified in more detail in Figs. 3 and 4,
respectively.
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Results and discussion
The proposed experiment combines several conventionally used
optical techniques such as four-wave mixing, beam splitting, and
Hong-Ou-Mandel (HOM) interferometer, and three-photon
absorption spectroscopy. In the following sections, we present
each technique independently highlighting the main principle
and the underlying theoretical model that will be used to describe
each part of the setup. We finally combine both techniques in
the setup shown in Fig. 2a and discuss the resulting HOM
spectroscopic measurements. In the experimental setup the three
classical light beams are combined with the quantum light pulse
produced by the parametric down conversion (independently
from the classical three pulses). The corresponding level scheme
is shown in Fig. 2b. The main goal of the proposed measurement
is to use interferometric (HOM-like) detection to investigate the
χ(3) nonlinear susceptibility that combines an absorption of the
three classical fields and the transmission of one quantum field
shown in Fig. 2c. The corresponding Feynman diagram and
HOM signal are shown in Fig. 2d, e, respectively. Unlike the Kerr
process which requires high-intensity laser pulses to produce
third-order nonlinear response, here we deal with resonant
absorption of each of the light beams participating in the four-
wave mixing. This nonlinear process is the main focus of our
study.

The general third-order nonlinear optical process generates
various signals that are well studied in classical light spectroscopy:
optical pump-probe, Raman, fluorescence, transient grating,
photon echo, and others. Four-wave mixing (FWM) signals play
an important role as it allows to have additional control over the
field-matter interactions via spatial phase matching. The typical
FWM setup shown in Fig. 3 where three beams interacting with

the material sample generate a fourth beam propagating in the
direction governed by one of the eight possible phase-matching
conditions. The response functions are obtained by tracing over
the matter degrees of freedom. The state of the outgoing field in
Fig. 3 is given by tracing Eq. (1) over the matter degrees of

freedom Ê
þð Þ
a tð Þ ! Ê

þð Þ
s tð Þ,

Ê
þð Þ
s r; tð Þ ¼ �iωs

ffiffiffiffiffiffiffi
_ωs

2π

r
Nf Δkð Þ

Z
dωχ 3ð Þ ωð Þâ ωð Þe�iωt ; ð2Þ

where χ 3ð Þ ωð Þ � χ 3ð Þ �ω;ω3;ω2;ω1ð Þ is the third-order suscept-
ibility. We have omitted the three classical incoming wave fre-
quencies for brevity. The matter is modeled by a collection of N
homogeneously distributed point-like molecular dipoles at ran-
dom positions rα. Adopting the multipolar coupling Hamiltonian

Fig. 2 Hong-Ou-Mandel (HOM) interference signal. An illustration of the variation of the coincidence probability with the optical delay Δ. a Level scheme
of the model system. b Experimental setup based on HOM interferometer combined with four-wave mixing signal. c Its transmission function TðωÞ �
1� iA0χ

ð3ÞðωÞ (real part—orange line, imaginary part—blue line) Vs the scanned frequency ω3 at fixed ω1 and ω2. The third-order susceptibility for a multi-
level system is computed following ref. 9. d Schematic diagram representing the main contribution of the third-order susceptibility. e Variation of the HOM
coincidence counting rates with the optical delay (without matter—blue line, with matter—orange line).

Fig. 3 Four-wave mixing scheme. Inset I in Fig. 1 is shown for a four-wave
mixing process. Three incoming waves k1, k2, k3 interact with matter. The
fourth ks mode is the detected signal in the direction dictated by the phase-
matching factor f(Δk) introduced in Eq. (2).
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following with rotational averaging we obtain

V̂ r; tð Þ nf g¼
XN

α¼1
δ r� rαð ÞV̂ tð Þ nf ge

ik nf gr: ð3Þ
Here {n} denotes averaging with respect to the nth order density
operator due to n interacting fields one of which is the photon
with the entangled noninteracting counterpart. In this calculation,
each of the incoming modes interacts with a single molecule.
f Δkð Þ ¼ 1

N

P
α e

iΔkrα is a geometrical factor that carries the
information regarding the distribution of molecules which gives
rise to the phase-matching condition when Δk= 0= k{n}−ks and
k nf g ¼

P3
i¼1 ± ki where ks is the wavevector of the entangled

photon containing the 23 phase-matching directions15. Note that
f(0)= 1.

The Hong-Ou-Mandel interferometric signal. We next turn to
the HOM two-photon interferometer in the presence of matter.
The electric field is transformed by the relatively displaced
beamsplitter (BS) depicted in Fig. 4 according to

Ê
þð Þ
a0 ωð Þ

Ê
þð Þ
b0 ωð Þ

 !
¼

ffiffiffiffi
T

p
i
ffiffiffi
R

p
eiωΔ

i
ffiffiffi
R

p
e�iωΔ

ffiffiffiffi
T

p
 !

Ê
þð Þ
a ωð Þ

Ê
þð Þ
b ωð Þ

 !
; ð4Þ

where the linear phase results in the ±Δ relative time delay,
corresponding to the ±cΔ displacement of the BS.

ffiffiffiffi
T

p
and

ffiffiffi
R

p
are

the transmission and reflection coefficients. We focus on the
photon coincidence signal depicted in Fig. 1 given by a joint
probability to detect one photon in Da and one photon in Db

separated by delay τ given by

NPab τð Þ ¼ Ê �ð Þ
a0;R tð ÞÊ �ð Þ

b0;R t þ τð ÞÊ þð Þ
b0;L t þ τð ÞÊ þð Þ

a0;L tð Þ
D E

; ð5Þ

where N is a normalization factor. We employ the superoperator
notation, OLA=OA and ORA=AO, the superoperator O±

represents an anti/commutator O±A=OA ± AO. Note that the
superoperator time ordering Ƭ, which is an operator in Liouville
space is different from the standard Glauber’s normally ordered
operators7,8. The plus-minus and the left-right superoperators are
linked by a linear transformation. Below we focus on a narrow-
band pump. Extension to a broadband pump is outlined in
Supplementary Note 2.

The narrowband HOM spectrometer. In their seminal paper,
HOM have used the narrowband wavefunction (see Eq. (16) and
“Methods”). Following this procedure in path ‘a’ (top branch of
the interferometer), a sample composed of many molecules is

placed, and the signal is given by the four-wave mixing setup
depicted in Fig. 3.

We focus on the L*≪ Lp regime, where the spatial extent of
the photon wavepacket after the interaction is small compared to
the dimensions of the interferometer. Calculating the coincidence
count according to Eq. (5) using Eqs. (2) and (15) we obtain,

Pab τ;Δ; ωf gn
� � ¼ P0

T2 C τð Þj2 þ R2
�� ��C 2Δ� τð Þj2

�RT½C* τð ÞC 2Δ� τð Þe�iωp τ�Δð Þ þ c:c:�

( )
:

ð6Þ
Here the convoluted response is given by the functional C(τ)=

G(τ)*χ(3)(τ), where G τð Þ ¼ 2πð Þ�1
2
R
dωΦ ω;ωp � ω

� �
e�iωτ ; where

the two-photon wavefunction amplitude Φ ωa;ωbð Þ is given by

Eq. (15) (see “Methods”); χð3Þ τð Þ ¼ 2πð Þ�1
2
R
dωχð3Þ ωð Þe�iωτ and

ωf g3¼ ω1;ω2;ω3 are the frequencies of the three classical waves.
The pre-factor containing the central frequency and the setup
geometry is given by P0 ¼ N�1=2ðN_ω2

0Þ2jf Δkð Þj2. In the absence
of matter, χ(t)= δ(t) and we recover the HOM interference9

signal. In that case, the extra phase factor that appears in the
second term in Eq. (6) can be shifted at the frequency integration
by ω→ ω+ ωp/2. When the material sample is added, a reference
frequency is set. This can be compensated by equivalently
translated matter response. When the coincidence counting is
not temporally gated, we obtain the signal by integration over τ,

Pab Δ; fωgn
� � ¼ n0 � v

Z
dτ C* Δþ τð ÞC Δ� τð Þe�iωpτ þ c:c:
n o

:

ð7Þ
where n0 ¼ P0 R2 þ T2ð ÞRdτjCðτÞj2, and v= P0= P0RT. For large
BS displacement cΔ, the overlap term—the second term in the R.
H.S. of Eq. (7)—vanishes due to diminishing correlations of the
relatively shifted response. It assumes a Wigner function form in
the {Δ,ωp} space. As Δ is reduced, the overlap term increases,
introducing the hallmark dip in the HOM interference pattern. A
material sample added in one of the pathways affects the overlap
term. Matter information is revealed in Eq. (7) by the variation of
the HOM dip with the convoluted response C(τ) Wigner function
as illustrated in Fig. 2e. Note, that the response function C(τ) is
calculated using three classical fields followed by a single-photon
field in the last interaction. While it is not unusual that quantum-
enhanced performance is dramatically eroded by the loss of a
single photon, this is not the case here. Several noise sources can
be considered such as losses associated with single-photon sources,
non-phase-matched contributions, and imperfect transmission
and detection efficiency. First, the proposed setup in the single-
photon regime allows overcoming the noise because of the photon
correlation measurement. The classical incoming fields contain a
large number of photons and are thus insensitive to losses
compared to other classical technique. When the single-photon
contribution has losses, the signal vanishes due to violation of the
phase-matching due to momentum conservation. Second, the
improved performance is attributed to the nonclassical correla-
tions between the photon pair, not from their Fock-state
characteristics. Contributions to such losses can originate from
non-phase-matched signals, like spontaneous emission adding
vacuum fluctuations to the transmitted beams. Third, losses
occurring after the mixing can be modeled by a beamsplitter with
an empty port16. Recent interferometry: Experiments in the four-
wave mixing setup performed in a multiphoton regime17 indicate
the reduction of quantum correlations is proportional to the
square of the transmission ratios of the light beam intensities that
characterize such losses. Single-photon experiments have sub-
stantially lower transmission ratios and are therefore robust

Fig. 4 The beamsplitter. BS of inset II of Fig. 1 is shown with more details.
The BS described in Eq. (4), generates a superposition of the incoming
fields (plane subscripts) in its output (primed subscripts).
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against such losses. Finally, it has been shown that similar
biphoton spectroscopy measurements are robust against the
external noise at the detection stage such as background thermal
radiation18, even under the signal-to-noise ratio reaches 1/30.

Interferometric detection of χ(3). We now turn to the
setup depicted in Fig. 2a. The molecule is modeled by
a four-level system {g, e1, e2, f} with transition energies
ωe1g

¼ Ee1 � Eg ¼ 3 eV, ωe2e1
¼ 2 eV, ωfe2

¼ 1 eV. It undergoes
three interactions with classical light pulses with controlled
delays, the fourth-interaction is taken to be one photon produced
by a parametric down-converted shown in Fig. 2a. The signal
with phase matching at ks= ka+ kb+ kc can be generated in the
four electronic state system. One can surely select another phase-
matching direction, out of the eight possible ones. Each direction
contains a different type of material information governed by the
set of pathways containing in the corresponding χ(3) nonlinear
susceptibility. The third-order nonlinear susceptibility is calcu-
lated using perturbative field-matter interactions according to the
diagram in Fig. 2d. Following the general approach outlined in
chapter six of ref. 19. We obtain:

χ 3ð Þ �ω;ωc;ωb;ωa

� �
¼ �μfe2μe2e1μe1g

ðωaþωbþωc�ωfgþiγfg Þðωaþωb�ωe2g
þiγe2g Þðωa�ωe1g

þiγe1g Þ
;

ð8Þ

where ω= ωa+ ωb+ ωc implies energy conservation and μij are
transition dipole moments. The nonlinear susceptibility contains
one-, two-, and three-photon resonances determined by
the transition frequencies ωij and dephasing rates (linewidth)
γij, i, j= g, e1, e2, f.

Figure 2e compares the HOM signal Pc(Δ) with and without
matter. Without matter, the spectrum shows the well-known HOM
dip. We consider three classical beams with central frequencies
matching the ωe1g

, ωe2e1
, and ωfe2

. Here ωmn= Em− En is the
transition frequency for n→m. We assume that the matter-induced
modulation of the HOM spectrum measures the susceptibility χ(3)

(−ω; ω3, ω2, ω1) obtained by scanning ω3 while ω1 and ω2 are fixed.
The main contribution to χ(3) is represented by the ladder diagram
shown in Fig. 2d. The sample breaks the time-reversal symmetry P
(τ)= P(−τ) possessed by the bare HOM dip. Such symmetry is a
consequence of the exchange symmetry in the twin-photon
wavefunction Φ(ω1, ω2)=Φ(ω2, ω1). By modulating one arm of
the twin-photon, the interaction with matter breaks the exchange
symmetry. When absorption can be neglected, the matter acts as a
frequency-dependent phase shifter TðωÞ � eiθðωÞ, the optical delay
in the idler beam can compensate the modulation if Δ and θ have
the same sign, or further enhance the relative phase difference
between the two beams.

The measurement resolution can be controlled by photon
entanglement. Figure 5 compares the HOM signal using a
nonentangled photon pair (a, b) and highly entangled twin
photons (c, d). The two-photon wavefunctions in panels a and c,
and the corresponding HOM signals, are shown in panels b and d.
The coincidence HOM measurement can reveal the energies and
lifetimes of the four electronic levels {g, e1, e2, f} along with the
transition dipoles between the states and relevant coherence
dephasing rates. For instance, the f-g coherence dephasing is a
crucial parameter that determines the temporal resolution of the
coincidence measurement and strongly depends on the state of
light. The signal in Fig. 5 is computed by scanning the pump
frequency impinging the nonlinear crystal. As shown, the central
feature arises at

ωp

2 ¼ 6 eV which matches the transition frequency
ωfg. The decay of the signal comes from the finite lifetime of the |f〉
〈g| coherence induced by the classical laser pulses. While both
classical and quantum light give the resonance frequency, the

temporal resolution that can track the f-g coherence decay is
significantly enhanced by using a highly entangled photon pair.
This can be understood in a similar way to the two-photon
absorption with entangled photons where the product of temporal
and spectral resolutions violates the uncertainty relation.

The quantum light statistics is modified by interaction with
matter. To understand the nature of the change and the matter
information it carries, we have used the HOM interferometric
setup which provides information about the state of light after the
interaction with matter. Ultrashort pulses can exploit the
quantum nature of light in order to increase the measurement
accuracy of a classical response function. This was studied in
detail for a model system.

Interaction of quantum systems changes their state in the
course of light-matter interaction at a single-photon regime20–22.
Each interaction enhances the correlation, and the system
becomes more inseparable. This may be employed in novel
quantum spectroscopic setups, which extract matter information
from optical probes. While single-photon states can be easily
described in the photon number (Fock) basis, they are less
suitable for probing phase-shifts due to number-phase
uncertainty23,24. Multiphoton (entangled) states provide a richer
playground for improving the temporal resolution imprinted by
matter on the optical probe and is the focus of our study.
Multimode squeezed states25 may be useful since the number-
phase uncertainty can be further tuned in order to reach a desired
joint frequency-time resolution.

Methods
Optical signals description. We start with the joint light-matter Hamiltonian,

Ĥ ¼ Ĥμ þ Ĥϕ þ Ĥμϕ; ð9Þ
where μ, ϕ represent the matter and electromagnetic field, respectively, and Ĥμϕ is
their coupling. The electric field operator is partitioned into positive and negative
frequency components,

Ê r; tð Þ ¼Pnþ1
s¼1 Ê

þð Þ
s r; tð Þ þ Ê

�ð Þ
s r; tð Þ;

Ê
þð Þ
s r; tð Þ ¼ Ê

�ð Þ
s r; tð Þ

h iy
;

ð10Þ

where the sum over s runs over the modes participating in the wave-mixing
experiment, the positive frequency component (h.c. of the negative counterpart) in
the continuum limit is expressed in the slowly varying amplitude approximation,

Ê
þð Þ
s r; tð Þ ¼ _ωs

2π

� 	1
2

eiksr
Z

dωâsðωÞe�iωt ð11Þ

with the canonical bosonic commutation relations as tð Þ; ays0 t0ð Þ
h i

¼ δss0δ t � t0ð Þ.
Given the dipole operator μ̂ ¼ V̂ þ V̂y , the light-matter interaction in the rotating
wave approximation (RWA) is given by,

Ĥμϕ ¼ Ê
�ð Þ

r; tð ÞV̂ r; tð Þ þ Ê
þð Þ

r; tð ÞV̂y r; tð Þ; ð12Þ
which associates absorption of a photon with dipole excitation and emission with
deexcitation. We shall solve the equation of motion of the field in the interaction
picture,

d
dt

Ê
þð Þ
s r; tð Þ ¼ � i

_
Ê

þð Þ
s r; tð Þ; Ĥμϕ r; tð Þ

h i
: ð13Þ

The entangled two-photon wavefunction. We next present the general form of
the entangled two-photon wavefunction. Equations (15), (16), and (S10) are then
used for two limiting cases of narrowband and broadband generating pulses. The
wavefunction of frequency-entangled photons, generated by a parametric down-
conversion (PDC) is given by26,27,

jψ
 ¼ Z dωadωbΦ ωa;ωb

� �
ay ωa

� �
by ωb

� �j0a; 0b
; ð14Þ

where Φ(ωa, ωb) is the two-photon amplitude and a†(ω) and b†(ω) are creation
operators for the two modes. Here ωa/c and ωb/c correspond to the projections of the
wavevectors along the crystal length, where c is a speed of light. These operators obey
boson commutation relations a ωð Þ; a ω0ð Þ½ � ¼ b ωð Þ; b ω0ð Þ½ � ¼ a ωð Þ; by ω0ð Þ� � ¼ 0 and
a ωð Þ; ay ω0ð Þ� � ¼ b ωð Þ; by ω0ð Þ� � ¼ δ ω� ω0ð Þ. For a type II phase-matched PDC
process generated by a broadband pulse, the amplitude is given by pump envelope
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multiplied by the phase-matching factor

Φ ωa;ωb

� � ¼ α ωa;ωb

� �
φ ωa;ωb

� �
: ð15Þ

The Gaussian envelope is given by αðωa;ωbÞ ¼ ð2πσ2pÞ�1=2exp½�ðωa þ ωb�
ωpÞ2=ð2σ2pÞ�, which is inherited from the pump pulse centered around ωp with σp
bandwidth. The phase-matching condition is included in the two-photon state

amplitude26 φ ωa;ωbð Þ ¼ sinc Lc ωa �
ωp

2

� �
k0a � k0p
� �

þ ωb �
ωp

2

� �
k0b � k0p
� �h in o

.

Here Lc is the length of the generating nonlinear crystal, k′a,b are the inverse group
velocity at half pump frequency

ωp

2 and k′p is the corresponding velocity at the
central frequency ωp.

There are two limiting cases for this wavefunction. One is mostly used for
ultrafast pulses resulting in wide bandwidth pump. In this case, a Schmidt
decomposition to pulse-modes is useful. The other is narrowband limit in which
the width of the pump envelope σ2p is set to zero. For a narrowband pump pulse, a

(ωa, ωb) → δ(ωa + ωb−ωp), and the conjugate temporal profile δT ¼ σ�1
p is

therefore large. The two-photon wavefunction then takes the form,

jψinb¼
Z

dω sinc ω� ωp

2

� �
Ta þ

ωp

2
� ω

� �
Tb

h i
jωiajωp � ωib ð16Þ

where we have defined the time variables Ta=b ¼ k0a=b � k0p
� �

Lc. By shifting the

frequency variables, we obtain

ψinb¼
Z

dω sinc ωTent½ �
����

����ωþ ωp

2

E
a
jωp

2
� ω

E
b

ð17Þ

where Tent= Ta− Tb is the entanglement time. Note, that the wavefunction in Eq. (15)
does not generally possess exchange symmetry, since the twin state represents the state
of the field modes (amplitudes), which can be distinguished by, e.g., group velocity
dispersion, polarization etc. In the same time, Eq. (16) yields a simplified expression
originating from the narrowband pump pulse, where overlapping modes result in the
exchange symmetry of the wavefunction typical for the HOM experiment. A more
general treatment of the photon wavefunctions is discussed in ref. 28.

Data availability
The authors declare that full theoretical details are available in the Supplementary
Information. All raw data that support the findings in this study are available from the
corresponding authors upon request.
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Supplementary Note 1. Interaction picture equation of motion for the electromagnetic field 14 

In order to introduce the moments of the field obtained by the interferometer through 15 

coincidence photon counting, we first derive an expression for the field operator immediately 16 

after the interaction with the matter. The interaction picture equation of motion is given by, 17 

𝑑

𝑑𝑡
�̂�𝑠

(+)(𝐫, 𝐭) = −
𝑖

ℏ
[�̂�𝑠

(+)(𝐫, 𝐭), �̂�𝜇𝜙(𝐫, 𝐭)]. (S1) 18 

Such commutators essentially are diverging and can be regularized by infinitesimal temporal 19 

integration. In order to avoid such operation we develop a alter procedure by representing 20 

the Heisenberg equation formally as the following limit, 21 

𝑑

𝑑𝑡
�̂�𝑠

(+)
(𝐫, 𝐭) = −

𝑖

ℏ
lim
𝑡′→𝑡

[�̂�𝑠
(+)

(𝐫, 𝐭), �̂�𝜇𝜙(𝐫, 𝐭′)], (S2) 22 

The field operator is given by Eq. (10). Eq. (S2)  then yields, 23 

𝑑

𝑑𝑡
�̂�𝑠

(+)(𝐫, 𝛕) = −
𝑖

ℏ
lim
𝑡′→𝑡

[�̂�𝑠
(+)(𝐫, 𝐭), �̂�𝜇𝜙(𝐫, 𝐭′)]

= −𝑖 lim
𝑡𝜀→0

∑
√𝜔𝑠𝜔𝑛

2𝜋𝑠′ 𝑒−𝑖𝐫(𝐤𝑠−𝐤𝑛)𝛿𝑠𝑠′∫ 𝑑𝜔 𝑒−𝑖𝜔(𝑡𝜀)�̂�(𝐫, 𝑡′),
 (S3) 24 
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where 𝑡𝜀 = 𝑡 − 𝑡′. Integrating this expression and using ∫ 𝑑𝜔 𝑒−𝑖𝜔𝑡 = 2𝜋𝛿(𝑡) and Heaviside 25 

theta function  𝑢(𝜏 − 𝑡′) = ∫ 𝑑
𝜏

−∞
𝑡𝛿(𝑡 − 𝑡′), the field operator prior to the interaction takes 26 

the form, 27 

�̂�𝑠
(+)(𝜏) = �̂�𝑠

(+)(−∞) − 𝑖𝜔𝑠�̂�(𝐫, 𝑡)𝑢(𝜏 − 𝑡). (S4) 28 

After integration we finally obtain the field operator, 29 

�̂�𝑠
(+)(𝐭) = �̂�𝑠

(+)(−∞) − 𝑖𝜔𝑠�̂�(𝐫, 𝑡). (S5) 30 

One can further neglect the vacuum  background contributions �̂�(−∞). 31 

Supplementary Note 2. 𝑳∗ ≫ 𝑳𝒑 - generalized susceptibilities  32 

Nonlinear spectroscopy with quantum states of light can be roughly divided into two levels. 33 

On the first level which was considered so far, the matter degree of freedom is characterized 34 

by a set of causal response functions (susceptibilities) which are the result of consecutive 35 

interactions followed by a single measurement [4,11]. In this level the observable is classical, 36 

and it is measured with a unique probe that in some cases allows higher accuracy due to 37 

quantum enhancements [12]. Ultrashort pulses can exploit the quantum nature of light in 38 

order to increase the temporal resolution  of the classical response measurements. The second 39 

level contains novel observables which have no classical counterpart. They can be described 40 

by a classical response with quantum noncausal contributions. In this regime one employs 41 

longer pulses which can scramble time ordering and give rise to generalized quantum 42 

response. 43 

When the pulse duration and the matter response time exceed the free propagation time 44 

throughout the interferometer  {𝛿𝑇, 𝜏𝑅} ≫ 𝐿𝑝/𝑐 , it is not possible to trace out the matter 45 

degrees of freedom prior to the measurement time. For simplicity, in this section we will not 46 

discuss in detail specific geometrical characteristics of the sample, and consider a single 47 

molecule and focus on the time ordering which gives rise to intriguing effects. Computing Eq. 48 

(5) using Eq. (1) transformed by Eq. (4), considering the narrowband wavefunction given in 49 

Eq. (14) yields the two photon coincidence probability, 50 

𝑃𝑎𝑏(𝑡, 𝜏, ∆) = 𝒩−1ħ𝜔0
3{𝑇2tr[Ƭ�̂�𝑅

⟊(𝑡 + 𝜏)�̂�𝐿(𝑡 + 𝜏)𝑈(𝑡 + 𝜏)𝜌𝜇𝜙𝑎
(0; 𝑡, 𝑡)]  51 

+𝑅2tr[Ƭ�̂�𝑅
⟊(𝑡 + ∆)�̂�𝐿(𝑡 + ∆)𝑈(𝑡 + ∆)𝜌𝜇𝜙𝑎

(0; 𝑡 + 𝜏 − ∆, 𝑡 + 𝜏 − ∆)]  52 



−𝑅𝑇tr[Ƭ�̂�𝑅
⟊(𝑡 + 𝜏)�̂�𝐿(𝑡 + ∆)𝑈(𝑡∗)𝜌𝜇𝜙𝑎

(0; 𝑡 + 𝜏 − ∆, 𝑡) + ℎ. 𝑐. ] (S6) 53 

Here Ƭ is the Liouville space time ordering operator, 𝑈(𝑡) = exp [−
𝑖

ħ
∫ 𝑑𝑡′𝑡

−∞
𝐻𝜇𝜙,−(𝑡′)] is the 54 

time evolution operator and 𝑡∗ = max{𝑡 + 𝜏, 𝑡 + 𝛥} . Double excitations proportional to ∝55 

𝑅𝑇⟨𝑉†𝑉†𝑉𝑉⟩  are neglected. The density operator 𝜌𝜇𝜙𝑎
(𝑡1; 𝑡2, 𝑡3) = 𝜌𝜇(𝑡1) ⊗ 𝜌𝜙𝑎

(𝑡2, 𝑡3) 56 

where the (reduced) single photon density matrix after tracing the ′𝑏′ photon out is given by, 57 

𝜌𝜙𝑎
(𝑡1, 𝑡2) = 𝑒−𝑖𝜔𝑝𝑡1|𝜙(𝑡1)⟩⟨𝜙(𝑡2)|𝑒𝑖𝜔𝑝𝑡2 , (S7a) 58 

|𝜙(𝑡)⟩ =
1

√2𝜋
∫ 𝑑𝜔 𝜙(𝜔, 𝜔𝑝 − 𝜔)𝑒𝑖𝜔𝑡�̂�⟊(𝜔)|0𝑎⟩ (S7b) 59 

The first two terms of Eq. (S6) are invariant to the exchange 𝜏 ↔ 𝛥. They hold information 60 

that can be obtained by photon counting prior to the interference of the upper branch, which 61 

can be used in order to eliminate their contribution when desired. The key feature of this 62 

expression resulting from the time ordering operator, is the last term of Eq. (S6). The dipole 63 

operators are taken at two different times separated by a control parameter 𝛥. Furthermore, 64 

it is clear from Eqs. (S7a), (S7b) that the field coherence plays a significant role. One can 65 

𝑂±𝐴 = 𝑂𝐴 ± 𝐴𝑂and the last line of Eq. (S6) are recast as, 66 

〈Ƭ�̂�𝑅
⟊(𝑡1)�̂�𝐿(𝑡2)exp [−

𝑖

ħ
∫ 𝑑𝑡′𝑡∗

−∞
𝐻𝜇𝜙,−(𝑡′)]〉𝜙𝑎

=
1

4
〈Ƭ[�̂�+

⟊(𝑡1)�̂�+(𝑡2) +67 

�̂�+
⟊(𝑡1)�̂�−(𝑡2)]exp [−

𝑖

ħ
∫ 𝑑𝑡′𝑡∗

−∞
𝐻𝜇𝜙,−(𝑡′)]〉𝜙𝑎

 (S8) 68 

assuming 𝑡1 > 𝑡2 and ⟨⋯ ⟩𝜙𝑎
 is done with respect to the reduced density matrix. The term 69 

with 𝑉− acting from the left vanishes since the trace of the commutator is zero. In this case, to 70 

lowest order when interactions occur during the interval 𝑡1 < 𝑡′ < 𝑡2, observables such as 71 

⟨𝑉+𝑉+𝑉−𝑉−⟩, ⟨𝑉+𝑉−𝑉−𝑉+⟩ and ⟨𝑉+𝑉−𝑉+𝑉−⟩ denoted as generalized susceptibilities contribute to 72 

the coincidence signal. These contributions have no classical analogue and correspond to 73 

moments of molecular quantum fluctuations induced by the field, where (+) stands for a 74 

fluctuation, and (−) an interaction. Note that this signal bears a strong resemblance to the 75 

spontaneous incoherent signal studied in [4,11] with one important difference, the time 76 

difference between measured interactions is entirely controlled by the experimentalist. In 77 

contrast, spontaneous signals require integration over the interaction time. 78 



This signal scrambles the time ordering and gives rise to novel quantum observables, thus 79 

providing novel matter observables denoted as generalized susceptibilities. These go beyond 80 

the present study. 81 

Supplementary Note 3. The broadband HOM spectrometer 82 

When a broadband pump is used, performing Schmidt decomposition to the time-energy 83 

entangled photons is particularly useful. 84 

 Schmidt decomposition of broadband pump 85 

In the case of an ultrashort pump, it is convenient to present the photon-pair using the 86 

Schmidt decomposition, whereby the amplitude takes the form  [13,14], 87 

𝛷(𝜔𝑎, 𝜔𝑏) = ∑ √𝜆𝑛𝑛 𝜓𝑛(𝜔𝑎)𝜙𝑛(𝜔𝑏). (S9) 88 

The single-photon amplitudes obey the coupled integral equations [9], 89 

𝜓𝑛(𝜔) =
1

𝜆𝑛
∫ 𝑑𝜔′𝜅𝑎(𝜔, 𝜔′)𝜓𝑛(𝜔′),

𝜙𝑛(𝜔) =
1

𝜆𝑛
∫ 𝑑𝜔′𝜅𝑏(𝜔, 𝜔′)𝜙𝑛(𝜔′),

 (S10) 90 

where the kernels are given by tracing over the counter photon, 91 

𝜅𝑎(𝜔, 𝜔′) = ∫ 𝑑𝜔𝑏𝛷(𝜔, 𝜔𝑏)𝛷∗(𝜔′, 𝜔𝑏)

𝜅𝑏(𝜔, 𝜔′) = ∫ 𝑑𝜔𝑎𝛷(𝜔𝑎, 𝜔)𝛷∗(𝜔𝑎, 𝜔′)
 (S11) 92 

and can be interpreted as a single photon spectral correlation. We further define Schmidt 93 

temporal-modes 𝑢𝑛(𝑡) =
1

√2𝜋
∫ 𝑑𝜔𝜓𝑛(𝜔)𝑒−𝑖𝜔𝑡  and 𝑣𝑛(𝑡) =

1

√2𝜋
∫ 𝑑𝜔𝜙𝑛(𝜔)𝑒−𝑖𝜔𝑡  which will 94 

be used below. 95 

The broadband HOM signal 96 

We now examine the ultrafast variant of this experiment. Using Eq. (13) followed by Schmidt 97 

decomposition defined in Eqs. (S9) – (S11) and the pulse-modes we obtain, 98 

𝑃𝑎𝑏(𝜏, ∆; {𝜔}𝑛) = 𝑃0 {𝑇2|∑ √𝜆𝑘𝑣𝑘(𝑡)�̃�𝑘(𝑡 + 𝜏)𝑘 |
2

+𝑅2|∑ √𝜆𝑘𝑣𝑘(𝑡 + 𝜏 − ∆)�̃�𝑘(𝑡 + ∆)𝑘 |
2

−99 

𝑅𝑇[(∑ √𝜆𝑘𝑣𝑘
∗(𝑡)�̃�𝑘

∗ (𝑡 + 𝜏)𝑘 )(∑ √𝜆𝑚𝑣𝑚(𝑡 + 𝜏 − ∆)�̃�𝑚(𝑡 + ∆)𝑚 ) + 𝑐. 𝑐. ]} (S12) 100 



where �̃�𝑘(𝑡) = 𝑢𝑘(𝑡) ∗ 𝜒(𝑛)(𝑡). The coincidence probability clearly reflects that only pulse-101 

modes of the upper branch (𝑢𝑘)  are modulated by the matter response function. The 102 

noninteracting pulse modes (𝑣𝑘) are therefore not modulated by the response function and 103 

can be used to employ mode selection techniques. This fact can be useful when single modes 104 

are detectable to study the response function one mode at a time. This cab be employed by 105 

quantum state tomography [3] after the interaction with the matter. One benefit from this 106 

procedure is improved frequency resolution, similar to the protocol demonstrated in [15] for 107 

spatial modes. By reweighting the modal contributions of the combined signal, more dense 108 

frequency information can be revealed along the lines of the explanation below. 109 

Post-measurement pulse-shaping 110 

When the twin state is fully characterized (in the absence of matter), complete knowledge of 111 

the Schmidt weights 𝜆𝑛 can be achieved. Using the completeness and closure relations for the 112 

basis sets {𝜓𝑛} this knowledge may be used for post measurement pulse-shaping. The 113 

completeness of 𝜓𝑛 reads, 114 

𝛿(𝜔 − 𝜔′) = ∑ 𝜓𝑛𝑛 (𝜔)𝜓𝑛
∗ (𝜔′). (S13) 115 

Suppose one is interested in a pulse envelope given by 𝐴(𝜔) which is not achievable 116 

experimentally. Since the weights of each mode is known, a simple reweighting can achieve a 117 

desired pulse envelope. Multiplying Eq. (S13) from the left and right by 𝐴(𝜔′) and integrating 118 

w.r.t. 𝜔′  yields 𝐴(𝜔) = ∑ 𝑎𝑛𝜓𝑛(𝜔)𝑛  where 𝑎𝑛 = ∫ 𝑑𝜔′ 𝜓𝑛
∗ (𝜔′)𝐴(𝜔′) . Summing the post-119 

measurement results mode by mode with the corresponding weights results in the desired 120 

𝐴(𝜔). One example of such resummation is by assuming the weights 𝑎𝑛 = 𝜓𝑛
∗ (𝜔𝑠) which can 121 

be used to scan the signal using a tunable narrowband profile with variable frequency 𝜔𝑠. 122 

When infinite number of modes are available, the pulse envelope converges to delta 123 

distribution 𝐴(𝜔) →  𝛿(𝜔 − 𝜔𝑠). 124 

Supplementary Note 4. Mach-Zehnder Interferometric Spectroscopy 125 

We now consider the setup of Fig. S1 in which the incoming photons (not necessarily 126 

entangled in this scenario) first interfere, here both photons interact with the matter. We 127 

assume that only the second BS in Fig. S1 in translated by ±𝛥, posterior to the interaction 128 

with the matter. It is straightforward to generalize the resulting expressions to include 129 

additional shift in the first BS. We monitor photon counting difference as a function of the 130 



shift parameter 𝛥. The input-output relation for the field operators after the first and second 131 

BS is given with a single- and double prime notations respectively, 132 

�̂�𝑎″
(+)(𝑡) = √𝑇�̂�𝑎′

(+)(𝑡) − 𝑖√𝑅�̂�𝑏′
(+)(𝑡 + 𝛥),

�̂�𝑏″
(+)(𝑡) = √𝑇�̂�𝑏′

(+)(𝑡) − 𝑖√𝑅�̂�𝑎′
(+)(𝑡 − 𝛥),

 (S14) 133 

immediately after the second BS. When both beam splitters have the same transmission 134 

coefficients, The field operator prior to the interaction with matter is given in terms of the 135 

incoming field by �̂�𝑎′
(+)(𝑡) = √𝑇�̂�𝑎

(+)(𝑡) + 𝑖√𝑅�̂�𝑏
(+)(𝑡). Note that we place the beam-splitters 136 

facing the opposite branch to cancel unwanted added relative phases according to the Fresnel 137 

convention, hence the relative minus sign in the reflection coefficient. 138 

 139 

Fig. S1 Mach-Zehnder interferometric spectroscopy setup. Two incoming photons are 140 

mixed at a beam splitter. One arm contains the molecular sample, while the other passes 141 

through a phase element 𝝋[ω]. After mixing both arms on a beam splitter the resulting 142 

coincidence detection between detectors  𝐷𝑎  and 𝐷𝑏 is measured. 143 

We obtain the number difference between the two ports ⟨�̂�𝑏″(𝑡 + 𝛥) − �̂�𝑎″(𝑡)⟩ for a balanced 144 

BS (𝑇 = 𝑅 =
1

2
) where ⟨�̂�(𝑡)⟩ = ⟨�̂�𝑅

(−)(𝑡)�̂�𝐿
(+)(𝑡)⟩. Using Eq. (S14) the photon difference signal 145 

is given by, 146 

𝑆(𝑡, ∆) = ⟨�̂�𝑏″(𝑡 + 𝛥) − �̂�𝑎″(𝑡)⟩-2Im〈Ƭ�̂�
𝑎′,𝐿

(−) (𝑡)�̂�𝐿(𝑡 + 𝛥)exp [−
𝑖

ħ
∫ 𝑑𝑡′𝑡∗

−∞
𝐻𝜇𝜙,−(𝑡′)]〉 (S15) 147 



where √2𝐻𝜇𝜙(𝑡) = �̂�𝑏′
(−)(𝑡)�̂�(𝑡) + �̂�𝑏′

(+)(𝑡)�̂�†(𝑡)  and √2�̂�𝑏′
(+)(𝑡) = �̂�𝑏

(+)(𝑡) − 𝑖�̂�𝑎
(+)(𝑡)  is the 148 

combined field that is coupled to the matter. Eq(S15)  bears strong resemblance to the one 149 

introduced in [11] for 𝛥 = 0. However, there are two fundamental differences. First, there is 150 

a phase difference between the field in the definition of the signal and the one in the coupling 151 

Hamiltonian. Second, Eq. (S15) depends on the additional controlled time difference 𝛥. 152 

In this setup, it would be useful to employ either a multimode squeezed state or entangled 153 

pair initial state of the probe. Both are two-photon states and provide a rich optimization 154 

playground for quantum enhancement of metrology applications. Eq. (S15) essentially 155 

measures phase difference between the two incoming beams. The number-phase uncertainty 156 

may be exploited to demonstrate the measurement accuracy as a function of controlled 157 

variables such as the squeezing parameters or entanglement time. 158 

 159 

 160 
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