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In chemistry, biology and materials science, the ability to access interatomic interactions and 

their dynamical evolution has become possible with the advent of femtosecond lasers1. In 

particular, the observation of vibrational wave packets via optical (UV-visible-IR) spectroscopies 

has been a major achievement as it can track the motion of nuclei within the system2–4. 

However, optical spectroscopies only detect the effect of the interatomic vibrations on the 

global electronic surfaces. New tuneable, pulsed and polarized sources of short-wavelength 

radiation, such as X-Ray Free electron lasers, can overcome this limitation, allowing for chemical 

and, of primary importance in biochemistry, enantiomeric selectivity. This selectivity may be 

complemented by taking into account the chemical shifts of atoms belonging to different 

molecular moieties.   

In biochemical reactivity, such as protein-target (enzymes, RNA, micro RNA) interactions the low-

frequency regime (< 300 cm-1) of the vibrational spectrum is mainly responsible for and the most 

affected by the biological function, as it reflects the global and continuous changes in the  

molecular geometry5.  Furthermore, there is a need to detect and map the motion of light atoms, 

such as C, N, O, involved in molecular vibrations with periods as slow as a few 10’s of ps (i.e. 

vibrational frequencies down to below few cm-1), as this allows to address various binding 

processes and, thereby, achieve site-specificity. Steady-state and ultrafast vibrational terahertz 

(THz) to infrared (IR) spectroscopies, are the most common methods used to access ground state 

vibrational modes, but they are limited to dipole-allowed vibrational transitions, while 

disentangling near-degenerate vibrational modes can be challenging. Steady-state Raman 

spectroscopy is characterised by weaker signals and it also obeys selection rule, in addition to the 

requirement of an efficient suppression of the elastic peak at low frequencies6,7. One approach 

for accessing low frequency modes in the time-domain is impulsive stimulated Raman scattering 

(ISRS)8. It exploits the fact that the very short pump pulse is spectrally broad, encompassing 

several vibrational levels of the ground electronic state and therefore stimulating Raman 

transitions to the ground state, which thereby create a coherent superposition of vibrational 

states, i.e. a ground state wave packet. Monitoring the wave packet dynamics in the time domain 

can circumvent the limitations caused by the finite spectral resolution of steady-state 

spectroscopies. Low frequency modes then become easier to detect because of their long 

oscillation periods. While this is of great value for getting insights into, e.g., the structure of 

protein/nucleic acid complexes, optical radiation is not element-specific. Adding atomic level 

specificity would bring the advantage of identifying which elements are involved in the 
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conformational rearrangements during the formation of complexes and to unravel dynamical 

aspects of the interactions between residues and bases involved in bio-recognition. 

This is possible using short-wavelength (hard X-rays to extreme ultraviolet) radiation that can be 

tuned to specific core-transitions of the various atomic elements. In recent years short-

wavelength spectroscopies have successfully been extended into the ultrafast regime9, allowing 

the observation of vibrational wave packets around specific atoms in molecular systems10. 

Femtosecond X-ray absorption or emission spectroscopy can map the time evolution of 

interatomic vibrations with element-selectivity but this approach is limited to systems containing 

heavy atoms that have relatively low frequency modes, and efficiently absorb or scatter hard X-

rays.10,11  

Another important aspect for biological systems is enantiomeric selectivity. Most biological 

molecules are chiral, i.e. they exist in two different forms, called enantiomers, that have the same 

chemical composition but are mirror images of each other. However, biological activity is 

generally homo-chiral and therefore distinguishing between enantiomers is a central issue in 

pharmacology, toxicology and medicine. The method most commonly used to detect enantiomers 

is circular dichroism (CD) spectroscopy, which exploits the fact that light polarized into a circular 

wave is absorbed differently by left-handed and right-handed enantiomers. In the spirit of 

monitoring the evolution of biological systems, sub-picosecond to nanosecond time-resolved CD 

optical spectroscopies have been implemented in various spectral regions,12–14 in order to study 

the absorption bands of amino-acid residues, nucleobases and peptide chains14,15. Extending 

these capabilities to core-level spectroscopies allows to discriminate biological activities (binding, 

reactivity) with atomic-specificity within a selected enantiomer. Simulations have shown that X-

ray CD signals of molecular systems vary with the electronic coupling to substitution groups, the 

distance between the X-ray absorbing element and the chiral centre, as well as geometry and 

chemical structure16. Combining CD spectroscopy with element-selectivity of light atoms such as 

C, N, O is particularly attractive for the study of biological systems.17 Since the core transitions of 

these elements lie between 280 eV (C) and 530 eV (O), this calls for ultrashort sources of circularly 

polarized soft X-ray pulses. Table-top sources based on High Harmonic Generation are not 

routinely implemented in this photon energy range, and the control of their polarization has still 

to be demonstrated. 18,19 On the other hand, circularly polarized soft X-ray pulses can routinely be 

generated at the FERMI free electron laser in the region of the carbon K-edge20.  
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Here we demonstrate an element-specific ultrafast soft X-ray absorption experiment that allows 

to visualize and disentangle low-frequency nearly degenerate vibrational modes involving specific 

Carbon atoms in a racemic mixture of Ibuprofen (IBP, 4-isobutyl-2-phenylpropionic acid). We 

furthermore demonstrate how polarization control of the EUV pulses adds enantiomeric 

selectivity, tying it together with the element-selectivity and mode-specificity.  

IBP is an over-the-counter anti-inflammatory non-steroidal drug that is widely used.21 In the solid 

racemic mixture, the two enantiomers, labelled (S+)- and (R-), form a cyclic dimer through 

intermolecular hydrogen bonds between the carboxyl groups of two adjacent molecules22, as 

shown in Figure 1a. The conformational stability of this dimeric arrangement has been revealed 

by X-ray diffraction and Raman scattering.23 IBP was first used as a racemic mixture but later, 

focus of the pharmaceutical industries shifted to the (S+)-ibuprofen when it was found that this 

form enhances the effect of analgesia in animals (including humans), more rapidly than the (R-)-

enantiomer does. The bio-activity of the two enantiomers, and in particular the cross-monomer 

allosteric inhibition, in which S-IBP can competitively block the action of one monomer of the 

cyclo-oxygenase (COX) enzyme, composed by two equal halves, is however not fully understood.24  

Recent low-frequency Raman studies25 have attributed spectral features around 25 cm-1 to 

intermolecular vibrations.  We repeated these measurements (see § S5.2 for details) and 

reproduced the results, while a weak additional band appears at ~28 cm-1 (see Figure S8). We 

further recorded Fourier Transform Infrared (FTIR) spectra of the samples (see § S5.2 for details), 

which also exhibit the presence of a feature between 20 and 30 cm-1 (see Figure S9). To interpret 

the Raman spectrum, we used Density Functional theory (DFT) calculations described in § S4.1. 

These reveal that the lowest frequency Raman band consists of three near-degenerate 

intermolecular vibrational modes (Table 1), which characterise different conformations of the 

global dimeric structure as depicted in Figure 1 (an animation is given in the SI). The lowest 

frequency mode (ω1 = 21.5 cm-1), is more localized on the S-dimer and involves a rotation of the 

benzene ring around the 2-5 axis, i.e. a torsional deformation of both the phenyl ring and the 

isobutyl group (Figure 1b). The ω2 = 22.6 cm-1 mode involves an out-of-plane twisting (the plane 

defined by the carboxylic groups) accompanied by a C=CH3 stretch (Figure 1c). Similar to the 

lowest frequency mode, in the R-dimer (Figure 1d), the mode at ω3 = 28.8 cm-1 involves large 

displacements of the same molecular groups, in the form of a rotation of the benzene ring around 

the 18-21 axis and the close isobutyl group. Low-frequency vibrational wave packets, made out 
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by the three low-lying ω1 to ω3 modes, can be generated by ISRS on crystallized ibuprofen and are 

probed here by carbon K-edge absorption spectroscopy.  

The experimental scheme used in the present study is shown in Figure 2. An ultrashort pulse at 

4.7 eV (263.8 nm) with temporal and spectral full widths at half maximum (FWHM) of ~80 fs and 

~40 meV, respectively, excites the system resonantly in order to enhance the cross section of the 

ISRS process (see §S.2 for details). A soft X-ray probe pulse (~30 fs duration and ~250 meV FWHM) 

is then used to monitor the changes in transmission across the carbon K-edge absorption. A 

reference steady-state carbon K-edge spectrum of the system was recorded for left (LC) and right 

circularly (RC) polarized light on a pure S-IBP sample. The procedure to scan point by point across 

the C K-edge spectrum with the FEL is described in § S2. The spectra are shown in Figure 3a and 

they exhibit clear differences. In particular, the spectrum obtained using LC light shows an 

enhanced absorption at the edge (285-286 eV) compared to the RC counterpart, while above 287 

eV, the RC light has a higher absorption. The difference between these two spectra is shown in 

Figure 3b, and it represents the Carbon K-edge circular dichroism of the system.  

In order to better grasp the contribution of each carbon atom in the K-edge spectra, we have 

simulated them using quantum chemical calculations at the cc-pVDZ/RASSCF(9/8) level (details 

are given in § S4). The calculations were performed for four different active spaces (AS’s) until 

convergence was reached (see § S4.3). Table S2 gives the K-edge energies of the different carbon 

atoms as numbered in Figure 1a, while Figures S6 and S7 show their energies and oscillator 

strengths in the form of stick diagrams for the different AS’s. AS3 is taken as the most reliable AS 

because it shows results comparable to AS2 but is larger than the latter.   A rigid shift of 6.4 eV 

was applied to the core transition energies in order to match the experimental spectra. The 

elements that come close to the edge energy around 285 eV are atoms (17,3) and (23, 7), (24, 8), 

(25, 9), (28, 12) and (29, 13). This labelling refers to the identical atoms in the two enantiomers. 

The energy difference between the different C atoms is ascribed to the K-edge chemical shift due 

to different local environments around the atoms (see § S4.3 for details). However, of these only 

(28,12) near ~285.7 eV and (17,3) near ~285 eV have an appreciable oscillator strength (Figure 

S7). In Figure 3a, we reproduce the stick diagram due to these atoms. Therefore, with energy-

resolution we can selectively single out specific atoms in the system, which have appreciable 

oscillator strength. Adding the probe circular polarization further adds the selectivity to the 

enantiomer to which the atom belongs. Therefore, the combined use of photon energy and 

polarization extends the site-selectivity by permitting to access a specific atom of the molecule. 
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In the present case, the selected atoms belong to the regions of the molecule most affected by 

the highlighted dimer vibrations (see Figures 1 b-d and animation in the SI), which efficiently 

modulate the absorption of the investigated atoms, in the time-resolved signal10,26.  

Figure 4 shows the time evolution of the signal upon impulsive excitation of the system at ~4.7 

eV and for different soft X-ray probe photon energies and polarizations. All traces reveal periodic 

intensity modulations (5 - 10 % amplitude of the transmission signal) around a mean value of the 

transmission. The data in panel a) were obtained at a probe energy of 285.7 eV and with RC 

polarized light. Panels b) and c) show time scans acquired using a probe photon energy of 285.0 

eV with LC and RC polarization, respectively. Panels a) and b) exhibit a clear modulation with a 

sine dependence, as expected for Raman-induced processes27, and a ~1.5 ps period. Despite the 

lower signal-to-noise (S/N) ratio, a periodic modulation can still be distinguished in panel (c), but 

it is quickly damped. The lower S/N in the latter case is due to the fact that the CR absorption 

signal at 285 eV is weak and it rides on a background of increasing continuum absorption, which 

extends towards higher photon energies (see Figure 3a). This should be contrasted with the CL 

signal at the same energy. The three traces were fitted to damped sinusoidal functions (described 

in § S3), which yield the frequencies and damping constants given in tables 1 and S3. These 

frequencies are in agreement with both the calculated and measured lowest Raman peaks, 

despite the large error bars.  The damping times of these three modes correspond to 10 to 20 cm-

1 spectral widths, which explains why they could not be resolved in the steady-state Raman 

spectrum, where a high instrumental resolution may be washed out by the intrinsic line width. 

See e.g. § S5.1. 

It is remarkable that despite the ability to generate and a priori observe wave packets of modes 

up to ~300 cm-1 with our pump-probe cross-correlation, the experiment seems selective to only 

low-frequency modes. Indeed, modes up to 300 cm-1 (and beyond) have been reported by non-

resonant Raman spectroscopy25,28. In resonance Raman scattering, the modes that show up on 

the ground state surface are the templates of those generated in the excited one. If the latter 

undergoes few selective deformations, only these will show up in the spectrum29. This scenario is 

confirmed by a recent calculation of the resonance Raman spectrum of the IBP monomer under 

4.663 eV excitation30, which shows signals in the <50 cm-1 range, while no further resonance 

Raman activity appears before 400 cm-1. Thus, the choice of the pump energy determines, which 

modes are excited. These happen to be the low-frequency ones, which most affect the global 

deformations of the dimer. In our experiment, the combination of element- and enantiomeric-
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selectivity identifies which atoms are most responsive to these modes, and the oscillations seen 

in Figure 4 are likely due to both an energy and an intensity modulation of the selected C-atoms. 

Indeed, the molecular orbital (MO) character of the core levels transitions discussed in § S4.3, 

implies that they are prone to geometry changes of the molecule which affects the value of the 

transition energies and oscillator strengths. This is also more the case with low frequency 

vibrations, which modify the entire molecular edifice, than with high frequency ones that 

generally have small amplitudes and are more localised.  

The present result suggests a strategy to observe the atoms that are most affected by vibrational 

modes in a given enantiomer and call for more systematic investigations.  This also pave the way 

for the direct investigation of the drug/target intermolecular vibrational dynamics, with the 

potential to understand the marked differences in biological activities of  enantiomers, or easily 

follow the dynamic of metal complexes in medical applications31. More generally, such detailed 

level of understanding may lead to new design strategies of bioactive molecules such as 

vibrational/deformational engineering by the use of isotopes to modify the vibrational behaviour 

of an identified atom or molecular moiety but keeping unaltered the electronic properties. Finally, 

an actinic pulse could be added to the present super-selective pump-probe approach, triggering 

photoactive reactions and tracking the behaviour of selected atoms during the chemical process.  
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Table 1: parameters of the fit of the temporal traces using damped sine functions (see § S3 for 
details). The low frequency steady state Raman spectrum exhibits only one band centered 
around 25 cm-1 whose width increase from ~5 cm-1 at 100 K to ~10 cm-1 at 300 K 25. 

Probe energy/polarization Frequency (cm-1) Damping constant (ps) Calculated (cm-1) 

285 eV   CL 23.9 ± 1.1 1.7± 1 21.5 

285 eV CR 29 ± 0.7 2.8 28.8 

285.7 eV CR 24.3 ± 0.9 2.5 ± 2 22.6 

 

 

 

 

Figure 1 –a) The Ibuprofen dimer with the numbering of carbon atom. Panels b to c show the three 
intermolecular modes of the dimer (see animation in the SI). The structures appearing in contrasted and 
semi-transparent colours, correspond to the minimum and maximum deformations for the calculated 
intermolecular modes of the dimer. 
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Figure 2 – a) Pulse scheme of the experiment with the relevant energy levels: The 4.7 eV pump pulse 
(cyan arrows) generates a coherent superposition of vibrational levels in the HOMO by impulsive 
stimulated Raman scattering (ISRS). These modes are then probed with element-selectivity by the soft 
X-ray pulse (blue arrows) tuned to the carbon K-edge. b) the experimental lay-out. A 786 nm 
femtosecond laser pulse is split and delivered to an optical parametric amplifier (OPA) where it is up 
converted to generate the ~4.76 eV pulse that initiate the Free Electron Laser process, as well as a 
frequency-tripling to generate the 4.7 eV pump pulse. The seeded electron bunch is propagated through 
a chain of apple II undulators, allowing control of the polarization and energy of the soft X-ray photons.  
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Figure 3 – a) Steady-state Carbon K-edge absorption spectrum of S-IBP recorded with circularly left (blue 
trace) and right (red trace) polarized light. The sticks represent the calculated transition position and 
relative strengths. Black sticks are the transitions investigated in the present work. Grey sticks are other 
Carbons core transitions. b) Steady-state Carbon K-edge X-ray circular dichroism (XCD) signal calculated 
as the difference of the L and R spectra shown in panel a), normalized by their sum. Insets in panel b) 
show the selected atoms by the corresponding probe wavelength and their numbering. Numbers in 
brackets refer to the S enantiomer. 

 

 

Figure 4 – Time-resolved X-ray transmission signal of the racemic IBP sample measured using probe 
pulses of : a) 285.7 eV with circular right polarization: b) 285 eV with circular left polarization and; c) 285 
eV with circular right polarization. Red lines are fits to the data with damped sinusoidal functions whose 
parameters are given in table 1 (See SI for further information).  
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