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New x-ray and extreme ultraviolet (XUV) light sources gener-
ated by free electron lasers (FELs) in large accelerator facilities or by
tabletop high-harmonic generation (HHG) setups are revolutioniz-
ing the study of elementary molecular events with unprecedented
temporal (100 as) and spatial (sub-nanometer) resolutions. The x-
ray FELs provide hard x-rays (>5 keV) with high flux enabling time-
resolved diffraction to measure time-dependent structural changes
on tiny crystals. Time-resolved nonlinear x-ray spectroscopy using
x-ray pulses or a combination of optical and infrared pulses has
now become a reality. These developments offer new insights into
time-evolving molecular structures, primary photophysical, photo-
chemical, and biological events, and strongly coupled electronic and
nuclear dynamics. A novel time-domain picture of electron corre-
lations is emerging, which will have far reaching implications for
the design of new molecules and materials with tailored function-
alities. The current state of this field is reminiscent of picosec-
ond optical studies in the 1970s or femtosecond optical studies
in the 1980s where rapid development of laser sources enabled
novel experiments and spurred theoretical development of time-
domain spectroscopy. The papers in this special issue provide a
timely overview of state-of-the art experimental and theoretical
chemical physics research using XUV and x-ray photons. This spe-
cial issue should be of interest to experts in this field as well as
to newcomers who wish to get familiar with this rapidly evolving
field.

The experimental papers include gas phase1–6 and condensed
phase studies7–12 conducted using table-top sources and user facili-
ties such as synchrotrons and x-ray free electron lasers. Yong et al.
described how high energy x-ray FEL pulses can monitor the struc-
tural changes pertaining to vibrational motion on the highly excited
anharmonic surfaces of molecules in the gas phase using x-ray

scattering.1 The coupling of electronic and vibrational coordinates
is also probed in the Rydberg states of ammonia by Svoboda et al.
using photoelectron spectroscopy with VUV pulses generated via
higher harmonic generation on the table-top.3 Indeed, the genera-
tion of tailored XUV pulses via HHG is an exciting area of research,
and the work by Tross and Trallero-Herrero provides an example
of using orbital angular momentum of the driving field to study the
process of HHG in molecular nitrogen.2 As the photon flux of x-ray
pulses increases and their pulse length decreases, the study of non-
linear x-ray techniques comes into focus. The papers by Fidler et al.5

and Obaid et al.4 provide examples of moving toward performing
multi-pulse x-ray experiments in the gas phase using table-top and
XFEL sources, respectively. Niozu et al. studied the fundamental
intense x-ray free electron laser–matter interaction, which is crucial
for the developing new applications of X-FEL pulses.6 Time-resolved
x-ray experiments are sensitive to electronic and atomic structural
changes at various length scales in disordered media. March et al.
described a combined high signal-to-noise x-ray spectroscopy using
a third-generation synchrotron source and advanced computational
study to model the role of the solvent during a photochemical reac-
tion scheme.9 Park et al. uncovered new chemical intermediates
and their structures in a solvent-dependent photo-dissociation reac-
tion using time-resolved x-ray solution scattering at a synchrotron.8

Femtosecond VUV reflection and absorption using HHG sources
are described by Biswas et al. and Ash et al. to study electron trans-
port coupled with structural changes following photoexcitation in
materials and molecules, respectively.11,12 An example of multi-keV
table-top laser-plasma source to study structural changes in the solid
state is given by Li et al.10

New theoretical and computational tools required for the inter-
pretation of x-ray experiments at the microscopic level are described
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and applied in several papers in this special issue. The role of coupled
electronic and multimode nuclear wavepacket dynamics is explored
in the simulation of gas and condensed phase RIXS experiments on
methanol by Vaz da Cruz et al.7 The role of coupled electronic states
and nuclear wavepacket dynamics and their manifestation in the
time-resolved x-ray solution scattering signal are studied by Pápai
et al.13 The paper by Simmermacher et al. studies the coupling of
electronic and nuclear coordinates in the theory of ultrafast x-ray
scattering in the gas phase.14 A theoretical framework for the use
of novel photoelectron probes to visualize coupled electronic and
nuclear dynamics is provided by Goetz et al.16 and van den Wilden-
berg et al.15 An accurate description of electronic non-adiabatic
effects and spin–orbit couplings is crucial for interpreting ultrafast
x-ray spectroscopy and scattering signals of ultrafast photoinduced
intersystem crossing and photodissociation of molecular systems.
The works by Komarova et al., Wang et al., Tsuru et al., Faber et
al., and Valentine et al. address this important issue.17–21 Norrel et
al. addressed the importance of accurately accounting for solvation
effects in interpreting time-resolved XAS and measuring absorp-
tion spectra at multiple edges to understand complex photochemical
processes in solution.22 Improved computational techniques (i) for
calculating the discrete and continuum absorption cross sections of
1s electrons are proposed by Tenório et al. and (ii) for strong field
ionization by Hoerner et al.23,24

Several theoretical papers in this issue propose new experi-
mental observables for studying ultrafast electronic and structural
changes.25–29 Yamazaki et al. proposed the use of femtosecond
Coulomb explosion imaging to reconstruct structural dynamics of
molecules in the gas phase.26 Inhester et al. proposed an attosec-
ond imaging technique to study core-hole wavepacket dynamics in
real time.29 Nenov et al. and Zhang et al. proposed nonlinear x-ray
experiments by calculating two-dimensional coherent x-ray spec-
troscopy and double core hole valence-to-core x-ray emission spec-
troscopy.25,28 Both these studies are motivated by the development
of new, coherent, and intense x-ray FEL sources.
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