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ABSTRACT: We demonstrate that two-photon excitations to bipolariton states created by placing several molecules in an optical
cavity can be manipulated by quantum light. Entangled photons can access classically dark bipolariton states by modifying the
quantum interferences of two-photon transition pathways involving different single-polariton intermediate states and time-ordering
of the two photon beams.

Cavity polaritons are hybrid light−matter states that emerge
in the strong coupling regime between material polar-

ization and cavity photon modes. Polaritons have been
experimentally demonstrated as a new means to modify the
electronic, optical, and chemical properties of molecules by
coupling to the vacuum field without external laser driving.1−10

Nonlinear spectroscopic techniques such as pump−probe,
transient absorption, two-dimensional infrared spectroscopy,
and Raman scattering have been used for probing polaritons and
their dynamics in complex molecular systems.2,9,11−15 In other
developments, employing quantum light in nonlinear molecular
spectroscopy has opened up many novel opportunities to
enhance the signal-to-noise ratio, the resolution, and the
selectivity of transition pathways.16−25 Photon entanglement
offers a new and unique control knob that does not exist for
classical laser pulses.
Here we show how to employ nonlinear quantum light

spectroscopy for probing two-photon excitations in polaritonic
systems. We theoretically investigate the combined signatures of
a cavity photon mode strongly coupled to molecules and
entangled photons26 on collective bipolariton resonances. We
study the two-photon absorption (TPA) signal with an
entangled photon pair to a polaritonic system consisting of N
two-level molecules strongly coupled to a single cavity photon
mode. By comparing the TPA spectra with classical and
quantum light, we demonstrate that entangled photons can
create two-photon excitations in polaritonic systems that are

drastically different from the classical two-photon excitations.
Entangled photons can reveal classically dark bipolariton states
by modifying the quantum interference among transtion
pathways leading to TPA. The manipulation of double
excitations in strongly coupled cavity−matter systems by
quantum light can have many potential applications to
polaritonic chemistry, sensing, and microscopy.
Atomic units (ℏ = 1) are used throughout.
Our system, sketched in Figure 1a, is described by the

Hamiltonian H = Hp + HR + HRM. The polariton Hamiltonian

∑ ∑ω σ σ ω σ σ= + + + +
=

† †

=
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describes N two-level molecules strongly coupled to a single
cavity mode with creation (annihilation) boson operators a† (a)
whereas σn

† and σn are the raising and lowering Pauli operators of
the nth molecule, respectively. The probe radiation modes,
described by HR = ∑k,μℏωkbkμ

† bkμ, drive the sample via the
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electric dipole operator in the rotating-wave approximation (in
the interaction picture of Hp + HR)

∑= ̂ + ̂
=

† †H t V t E t V t E t( ) ( ) ( ) ( ) ( )
j

j j j jRM
1,2 (2)

where ∫ ω ω̂ = ω ω∞ ℏ
ϵ

−E t b( ) i d ( )ej j
t

0 2
i

0
is the positive-fre-

quency component of the electric field operator of the jth
photon beam with polarization ej and is the quantization
volume; Vj ∝ ∑nσn and Vj

† denote the lowering and raising
dipole operator, respectively, for all molecules in the direction of
the field polarization, i.e., Vj +Vj

† =−μ·ej. In eqs 1 and 2, we have
assumed the sample size is much smaller than the wavelength of
the cavity mode and the probe photon modes (λ = 413 nm forω
= 3 eV), but the molecular separation is large enough such that a
direct intermolecular coupling can be neglected.
When the polaritonic system is initially in the ground state |g⟩

with no excitation in the molecules and cavity, the TPA signal is
given by the transition probability of arriving at the final
bipolariton states |f⟩ in the double-excitation manifold (see
Figure 1b for the level scheme)

∑ ρ= {| ⟩⟨ | }P t f f t( ) Tr ( )
f (3)

where ρ(t) is the joint density matrix of the molecules, cavity,
and extra radiation modes. As shown in Section S1, the
entangled TPA signal contains four contributions represented
by the time-loop diagrams in Figure 1c
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whe r e ′ ′ = ⟨ ′ ′ ⟩† †C t t t t V t V t V t V t( , , , ) ( ) ( ) ( ) ( )p p p pp 1 2 2 1 1 2 2 14 3 2 1
a nd

′ ′ = ⟨ ̂ ′ ̂ ′ ̂ ̂ ⟩† †G t t t t E t E t E t E t( , , , ) ( ) ( ) ( ) ( )p p p pp
(2)

1 2 2 1 1 2 2 14 3 2 1
are matter

and field correlation functions, respectively; the subscript p =
{p4p3p2p1} signifies the photon beams (ω1 or ω2) that interact
with matter along the time-loop clockwise (p1 interacts first, and
p4 the last). Equation 4 expresses the entangled TPA (ETPA)
signal through a time-convolution of the four-point polariton
and field correlation functions and holds for any factorized initial
state of the polaritonic system and probe field. Cp contains the
third-order response of the probed polaritonic system, whereas
Gp
(2) represents the nonclassical nature of the entangled photon

state and enables manipulation of optical signals through
shaping the photon entanglement.27

If the initial state of the probe radiation modes is pure |Φ⟩, the
ETPA signal can be recast as the modulus square of a transition
amplitude SETPA = ∑f |Tfg|

2 (Section S2) with

∫ ∫∑ ∑ τ

τ

=

⟨ | ̂ ̂ − |Φ⟩

ω

ω τ

≠ −∞

−
∞

T t D t e

e E t E t

( ) d d

0 ( ) ( )

fg
p p e

p p
e

t
t

p p

( )
1

i

0

i
1 1

fg

e

1 2

2 1

1

2 1 (5)

where Dij
(e) ≡ (μfe·ei)(μeg·ej), |0⟩ is the vacuum. The field

transition amplitude further factorizes for classical light
⟨ | ̂ ̂ |Φ⟩ =E t E t E t E t0 ( ) ( ) ( ) ( )p p p p2 1 2 12 1 2 1

; see Table S1 for a

comparison of time-domain and frequency-domain expressions
for classical and quantum light.
We consider entangled photons created by a parametric

down-conversion process whereby a pump photon splits into a
pair of entangled twin-photons by interaction with a second-
order nonlinear crystal. The two-mode squeezed state of the
twin-photon, labeled 1 and 2, reads

∬ ω ω ϕ ω ω ω ω|Φ⟩ = | ⟩† †b bd d ( , ) ( ) ( ) 01 2 1 2 1 1 2 2 (6)

where the joint spectral amplitude ϕ(ω1, ω2) depends on the
entanglement time T, pump photon frequency ωp, and the
central frequencies of the output photon beams ωj

0. For a
monochromatic pump28

ϕ ω ω δ ω ω ω ω= + − Δ T( , ) ( )sinc( /2)1 2 1 2 p 1 (7)

where T is the entanglement time characterizing the transit time
difference of twin photons,Δω1 = ω1 − ω1

0 = −Δω2, and is a
normalization factor (see Section S3). Transforming the joint
spectral amplitude to the time domain and inserting it in eq 5
yields
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where Δe
(n) = ωeg − ωn

0 is the detuning between the transition
energy to the intermediate state and the central frequency of the
photon beam. The prefactor in eq 8 (ω1

0 + ω2
0 − ωfg + iγf)

−1

contains the two-photon resonances. The ETPA transition

pathways are modulated by a factor of − − Δe1 Ti /2e
n( )

, which

depends on the entanglement time T and the detuningΔe
p( )1 . For

long entanglement times, =γ
→∞

− Δ −elim 0T
Ti( i ) /2e

n
e

( )
and eq 8

reduces to the classical form

Figure 1. (a) Setup for probing polaritons with entangled TPA. A pump
photon impinging a second-order nonlinear crystal (NLC) is down-
converted into an entangled photon pair, which is then directed to the
molecules embedded in an optical cavity. (b) The polariton energy level
scheme. (c) Time-loop diagrams for the signal. There are four pathways
depending on the sequence of photons that interact with the polariton
system, represented by curly arrows along the time-loop. |ei⟩ and |ej⟩ run
over the single-polariton states.
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In this limit, the time-correlation of the photon pair is lost: the
arrival of one photon carries no information about the arrival
time of its twin.
It is instructive to consider first a polaritonic system with two

molecules, a and b with ωc = (ωa + ωb)/2, which has three e-
states and four f-states (Figure 2a). The polariton eigenstates are

obtained by diagonalizing the Hamiltonian matrix represented
in terms of the direct product basis |ijn⟩ ≡ |i⟩a⊗ |j⟩b⊗ |n⟩c. The
single-excitation manifold contains the upper and lower
polariton states |e1⟩, |e3⟩ and one dark polariton state |e2⟩. The
Hamiltonian in the single-excitation block spanned by {|gg1⟩, |
eg0⟩, |ge0⟩} (eq S48) leads to the single-polariton eigenstates
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where δ = ωa − ωc and θ π= ∈ [ ]
δ

arctan 0,g2
. The state |e2⟩

lies at the cavity resonance ω ω=e c2
, whereas |e1⟩ and |e3⟩,

ω ω δ= ± + g2e e/ c
2 2

3 1
, are separated by δ + g2 22 2 ≥

g2 2 . At δ = 0, |e2⟩ reduces to the dark exciton state

| ⟩ = | ⟩ − | ⟩− ge egX ( 0 0 )1
2

, and the Rabi splitting reduces to the

cooperative Rabi splitting for a homogeneous system g N2
with N = 2. The splitting increases with the detuning δ.
The double-excitation block Hamiltonian within the rotating-

wave approximation neglecting counter-rotating terms ∑n = 1
N

gn(a
†σn

† + H.c.) in cavity−molecule coupling is spanned by the
basis set |gg2⟩, |eg1⟩, |ge1⟩, |ee0⟩ (eq S42) and contains two
degenerate middle bipolariton states |f 2⟩, |f 3⟩) at 2ωc

η η

η η

| ⟩ = [ − − ] +

| ⟩ = [ − ] +

f

f

0,1/ 2 , 1/ 2 , / 1

, 1,1,0 / 2

2
2

3
2

(11)

where η δ= g/( 2 ). The |f1⟩/|f4⟩ splitting δ + g2 62 2 is

larger than the vacuum Rabi splitting δ + g2 22 2 . For
vanishing cavity−molecule coupling g = 0, |f 2⟩ and |f 3⟩ reduce
to the bare two-atom resonance state |ee0⟩ and the two-cavity
photon state |2⟩c, respectively. At zero detuning, they both
collapse to |X−⟩ even for g ≠ 0. The counter-rotating terms
couple |ge1⟩, |eg1⟩ to the ground state |gg0⟩, which breaks the
degeneracy of |f 2⟩ and |f 3⟩ as shown in Figure 2a.
The classical TPA signal shown in Figure 2b (top) contains

two peaks separated by a splitting much larger than the vacuum
Rabi splitting, which correspond to the lowest and highest
bipolariton states |f1⟩ and |f4⟩. The states |f 2⟩ and |f 3⟩ are two-
photon allowed because the system can undergo a one-photon
transition to |e1⟩ or |e3⟩ (|e2⟩ is dark) and then absorb a second
photon to the final state (see Figure 2c for thematrix elements of
the transition dipole). One would thus expect to observe such
bipolariton resonances in the TPA spectrum. However, these
resonances cancel out by destructive interference of the four
transition pathways (Figure 1c).

The transition amplitude for | ⟩ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ | ⟩ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ | ⟩g e f
photon 1 photon 2

3

(pathway I) has opposite sign to | ⟩⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯g
photon 2

| ⟩ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ | ⟩e f
photon 1

1
(II). These read

μ μ

γ

μ μ

γ
=

Δ −
=

Δ −
T T

i
,

i
f e e g

e e

f e e g

e e

(I) , ,

(1)
(II) , ,

(2)
3 3

3 3

1 1

1 1 (12)

The interference is destructive for bipolariton states with
e i g e n e n e r g i e s ω ω ω≈ +f e e1 3

. F i r s t ,

ω ω ω ω ω+ = ≈ +f e e1 2 3 1
leads to Δ ≈ −Δe e

(1) (2)
3 1

. Addition-
ally, if the matrix elements of the transition dipole satisfy
μ μ μ μ=f e e g f e e g, , , ,2 3 3 2 1 1

, it follows that

+ ≈T T 0(I) (II) (13)

Similarly, the other two transition pathways also cancel out. The
total transition amplitude to |f⟩ vanishes. Consequently, |f 2⟩ and
|f 3⟩ are dark in the classical TPA spectrum. For noninteracting
molecules without the cavity, this interference leads to the
vanishing of collective two-photon resonance,29,29−32 reflecting
the fact that classical light cannot create correlations between
molecules. The picture is very different for polaritons where the
molecules are effectively coupled through the cavity mode
leading to bipolariton resonances in the TPA even with classical
light.
We now discuss how an entangled photon pair modifies the

quantum interference and reveals dark bipolariton states. The

Figure 2. Two-photon absorption signal (TPA) for two two-level
molecules interacting with a single cavity mode. (a) Polariton energy
levels. The cavity photon number ⟨Ψ|a†a|Ψ⟩ is given for each polariton
state |Ψ⟩. (b) TPA with (upper panel) classical light and (lower panel)
entangled photon pair with entanglement time T = 8 fs. The spectra are
normalized to have the same maximum intensity 1. (c) Transition
dipole moment. (d) Entangled TPA versus the entanglement time T.
The middle bipolariton peaks oscillate with T, and its relative intensity
over the upper/lower bipolariton state is higher at short entanglement
times. Hereωa/ωc = 0.8,ωb/ωc = 1.2,ω1

0 =ω2
0 =ωp/2, and ga = gb = 0.14

eV.
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ETPA spectrum for the entanglement time T = 8 fs (Figure 2b,
bottom) differs from the classical signal by two extra bipolariton
resonances around ω ω ω= + = 2 eVe e1 3

. As discussed above,
such states are dark because of destructive interference.
However, entangled photons allow different two-photon
excitation selection rules than classical light. For short

entanglement times, Δ ≪T 1e
n( ) where the arrival of photon 1

implies the arrival of photon 2 within a short period of time. The
transition amplitude eq 8 becomes

∑ ∑π ω ω
ω γ ω ω

=
ϵ − − − ≠

T D
i

2 ( i )fg
fg f e p p

p p
e1

0
2
0

0 1
0

2
0

( )

1 2

2 1
(14)

In this limit, the transition amplitude does not depend on the
detuning between the incoming photon and the intermediate
state and destructive interference can become constructive. This
is reflected in the variation of the ETPA spectrum with the
entanglement timeT shown in Figure 2d. The |f 2⟩ and |f 3⟩ peaks
oscillate with T showing that interference is changing between
destructive and constructive with the entanglement time T. The
relative intensity of |f 2⟩ compared to |f1⟩ and |f4⟩ is most
pronounced for short entanglement times T and decreases with
T.
For a system withN identical molecules, the bipolariton block

Hamiltonian can be decomposed into three subblocks (see
Section S4.B for a detailed analysis of the bipolariton manifold).
As shown in Figure 3b for N = 8, there is one collective

bipolariton, an entangled state involving all molecules plus cavity
photon, that cannot be revealed by classical TPA due to
destructive interference between transition pathways where the
collective UP and LP act as intermediate states. This resonance
can be observed by employing entangled photons. There are

+N N( 1)1
2

bipolaritons and N + 1 single-polariton states for N

two-level molecules coupled to a cavity mode. The reasons why
the TPA signal contains only a few resonances are due to (i) the
large degeneracy of bipolaritons and (ii) the fact that there are
only two bright single-polaritons, UP and LP, in this ideal limit
of identical molecules, meaning that only bipolaritons that are

coupled to UP/LP will be observed. Similar spectra are observed
for N > 8.
We now consider a system with eight molecules with

disordered transition frequencies due to, for example, local
environments ωj = ω0 + σηj. Here, η = (0,1)j is a random

variable with normal distribution and σ is the disorder strength.
The two columns in Figure 4 present the TPA spectrum for two

realizations of ηj. TPA spectra forN > 8molecules exhibit similar
features, despite a larger bipolariton manifold. Entangled
photons induce additional bipolariton resonances than classical
light. A disordered system has many more bright single
polaritons than just the UP and LP as for identical molecules,
and the degeneracies of bipolariton states are lifted. The number
of transition pathways that needs to be taken into account for
one bipolariton is twice the number of bright single-polaritons
because of the time-ordering of the interacting photons. Even for
a single molecule, there are four transition pathways that offer
the opportunity for manipulating the two-photon excitations by
entangled photons.
In summary, we have demonstrated how the TPA signal with

quantum light can be used for probing cavity polaritons. The
TPA spectra with an entangled photon pair and with classical
light are compared for a strongly coupled cavity−molecule
system. We found that while some collective bipolariton
resonances are visible with classical light, many states in the
double-excitation manifold are dark because of destructive
interference among transition pathways. This interference can
be manipulated by entangled light. Classically dark states can
become bright by employing a parametric down-conversion
generated entangled photon pair, which can turn the destructive
into constructive interference.
While polariton chemistry studies have focused on the single-

polariton subspace,11,33−38 bipolaritons contain additional
features such as enhanced splitting39 and cooperative effects.
There are many opportunities for employing nonlinear quantum
light signals20 for probing bipolariton and even higher-lying
polariton states and tracking polariton dynamics. Photon
entanglement offers unique control knobs for probing classical
forbidden states by breaking some selection rules associated
with classical light.20 Future prospects involve investigating the

Figure 3. TPA of N = 8 identical molecules in an optical cavity,
calculated with counter-rotating terms in the cavity−molecule
coupling. (a) Single- and bipolariton eigenstates. (b) Comparison
between the TPA with (upper panel) classical light and with (lower
panel) entangled photons T = 8 fs. Here ω ω= = 1 eV0 c ,

=g N 0.2 eV0 . The upper and lower single-polaritons (UP/LP) act
as intermediate states.

Figure 4. Comparison of the classical TPA and ETPA of N = 8
molecules with disordered transition frequencies in an optical cavity.
The ETPA signal is generated by the twin photons with entanglement
time T = 8 fs. The molecular transition energies are ωj = ω0 + σηj, σ =
0.02 eV. The two columns represent two realizations of η = (0,1)j ,

normally distributed random energies.
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influence of electronic decoherence,40,41 cavity loss, pulse
shaping,42 and chemical reactions.
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S1. EQ. 4 - ENTANGLED TWO-PHOTON-ABSORPTION

The two-photon absorption (TPA) signal is defined by the transition probability to a final state

|f〉. In the interaction picture using H0 = Hp +HR,

Pf (t) = Tr
{
|f〉 〈f | ρI(t)

}
(S1)

where ρI(t) is the density matrix in the interaction picture, and where we have taken into account

that |f〉 〈f | is time-independent in the interaction picture. The Liouville von-Neumann equation

for the joint matter + photon reads

i
d

dt
ρI(t) = [HRM, I(t), ρI(t)]. (S2)

The formal solution to Eq. (S2) is given by

ρI(t) = T e−i
∫ t
t0
LRM, I(t

′) dt′
ρ0 = T e−i

∫ t
t0
HRM, I(t

′) dt′
ρ0T̄ e

i
∫ t
t0
HRM, I(t

′) dt′
. (S3)

S2



where OI(t) = e+iH0(t−t0)Oe−iH0(t−t0) and T (T̄ ) is the time-ordering (reverse time-ordering) op-

erator. Here LRM, I(t)ρ = [HRM, I(t), ρ] is the Liouvillian superoperator.

Using Eq. (S3) in Eq. (S1) leads to

Pf (t) = Tr

{
T̄ ei

∫ t
t0
HRM(s) ds |f〉 〈f | T e−i

∫ t
t0
HRM(s) ds

ρ0

}
, (S4)

where we have used the cyclic invariance of the trace Tr {AB} = Tr {BA}. To simplify the notation,

we have suppressed the subscript I for interaction picture operators, i.e., O(t) ≡ OI(t). Initially,

the system is uncorrelated with the external field, ρ0 = |g〉 〈g|⊗ρR(0). Expanding the exponentials

in Eq. (S4) to second-order in the radiation-matter coupling and retaining the terms leading to

two-photon absorption yields

Pf (t) =
∑
p

∫ t

t0

dt2

∫ t2

t0

dt1

∫ t

t0

dt′2

∫ t′2

t0

dt′1 〈g|Vp4(t′1)Vp3(t′2)|f〉 〈f |V †p2(t2)V †p1(t1)|g〉G(2)
p (t′1, t

′
2, t2, t1)

(S5)

where G
(2)
p (t′1, t

′
2, t2, t1) =

〈
Ê†p4(t′1)Ê†p3(t′2)Êp2(t2)Êp1(t1)

〉
is a field correlation function. Equa-

tion (S5) can be represented by the time-loop diagram depicted in Fig. 1c. The subscript

p = p4p3p2p1 denotes the sequence of photons (ω1/ω2) that interact with the system along the

time-loop clockwise. There are four pathways corresponding to p = { 1221, 1212, 2121, 2112 }, see

Fig. 1c. Since Pf (t) = 0 for f -states outside the double-excitation manifold, we can sum over all

polariton states, which leads to the final compact expression for the ETPA signal

SETPA =
∑
p

∫ t

t0

dt2

∫ t2

t0

dt1

∫ t

t0

dt′2

∫ t′2

t0

dt′1Cp(t′1, t
′
2, t2, t1)G

(2)
p (t′1, t

′
2, t2, t1) (S6)

where Cp(t′1, t
′
2, t2, t1) =

〈
Vp4(t′1)Vp3(t′2)V †p2(t2)V †p1(t1)

〉
is the four-point dipole correlation function,

and where we have used I =
∑

f |f〉 〈f |.

S2. EQ. 5 - SUM-OVER-STATES EXPRESSION FOR THE TRANSITION AMPLITUDE

For initially pure two-photon state ρR(0) = |Φ〉 〈Φ|, the ETPA signal can be recast as the

modulus square of a transition amplitude SETPA =
∑

f

∣∣Tfg∣∣2. The transition amplitude for the

entangled two-photon absorption reads

Tfg =
∑
p1,p2

∫ t

t0

dt2

∫ t2

t0

dt1 〈f |V †p2(t2)V †p1(t1)|g〉 〈0|Êp2(t2)Êp1(t1)|Φ〉 (S7)

Using the many-body eigenstates of the polariton Hamiltonian { | i〉, i = 0, 1, · · · } sorted in as-

cending order of energy {ωi }, the raising dipole operator V †n can be written as [1]

V †n (t) = −
∑
i<j

eiωjitµji · en |j〉 〈i| . (S8)

S3



where µji = 〈j|µ|i〉 is the dipole matrix element. Inserting Eq. (S8) into Eq. (S7) yields Eq. (5)

in the main text

Tfg(t) =
∑
p1 6=p2

∑
e

D(e)
p2p1

∫ t

t0

dt2e
iωfet2

∫ t2

t0

dt1e
iωegt1Φp2p1(t2, t1) (S9)

where Φp2p1(t2, t1) = 〈0|Êp2(t2)Êp1(t1)|Φ〉 is proportional to the amplitude of detecting photon p1

at t1 and photon p2 at t2. Intuitively, the matter can be taken as a photon detector with a complex

inner structure.

It is useful to have the frequency-domain expression for the transition amplitude. The two-

photon amplitude in the time domain can be written as

Φp2p1(t2, t1) =

∫∫
dω2dω1e

−iωp1 t1e−iωp2 t2Φp2p1(ωp2 , ωp1) (S10)

where Φp2p1(ω2, ω1) ≡ 〈0|Êp2(ω2)Êp1(ω1)|Φ〉, Êj(t) =
∫

dωÊj(ω)e−iωt, and Êj(ω) = i
√

ω
2ε0V bj(ω).

Inserting Eq. (S10) into Eq. (S9) leads to the frequency-domain expression for the transition am-

plitude (up to a global phase)

Tfg =
∑
e

∫∫
dω1 dω2

1

ωfg − iγf − ω1 − ω2

D(e)
12

〈
0
∣∣∣ Ê1(ω1)Ê2(ω2)

∣∣∣Φ〉
ωeg − ω2 − iγe

+D
(e)
21

〈
0
∣∣∣ Ê2(ω2)Ê1(ω1)

∣∣∣Φ〉
ωeg − ω1 − iγe


(S11)

S3. THE TWIN-PHOTON WAVEFUNCTION

We consider the following twin-photon wavefunction produced by parametric down conversion

(PDC) [2, 3]

φ(ω1, ω2) = NA(ω1 + ω2)sinc
(
∆kL/2

)
(S12)

where L is the crystal length, ∆k = kp − (k1 + k2), A(ω1 + ω2) =
(

1
σ
√
π

)1/2
exp

(
− (ω1+ω2−ωp)2

σ2

)
is

the normalized pump pulse envelope with bandwidth σ, sinc(x) = sin(x)/x, N the normalization

constant. For a narrow-band pump σ → 0, the spectral envelope

A(ω1 + ω2) ≈ δ(ω1 + ω2 − ωp) (S13)

which reflects energy conservation in the PDC process. In type-II down-conversion where e1 and

e2 are orthogonal, we can expand the wave vector in a Taylor series around the central frequency

kj(∆ωj + ω0
j ) ≈ kj(ω0

j ) + v−1
j ∆ωj , (S14)
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and the phase-matching condition may be approximated to linear order as

∆kL/2 =
1

2
(∆ω1T1 + ∆ω2T2) (S15)

where ∆ωj = ωj − ω0
j , and the transit time difference Tj = L/vp − L/vj for j = 1, 2 with vj =

∇kjωj(k0
j ) is the group velocity. With Eqs. (S15) and (S13), The PDC two-photon wavefunction

generated from a monochromatic pump becomes Eq. (7)

φ(ω1, ω2) = N δ(ω1 + ω2 − ωp)sinc

(
∆ω1T

2

)
(S16)

where T = T1 − T2 is the entanglement time characterising the arrival time delay between the two

photons.

In the time domain, the two-photon wavefunction reads

φ(t1, t2) ≡
∫

dω1

∫
dω2e

−iω1t1−iω2t2φ(ω1, ω2) =
2πN
T

e−iω
0
1t1−iω0

2t2Π

(
t1 − t2
T

)
(S17)

where the rectangular function Π (x) = 1 for −1
2 < x < 1

2 and 0 otherwise and ω0
i is the central

frequency of the i-th beam. Equation (S17) reflects the time-correlation between the entangled

photons: the arrival time of each photon is random, but they must arrive together within the

entanglement time. Note that the two photons are not time-ordered (ω1 can come before or after

ω2) as in the quantum light generated by atomic cascade [4].

S3.A. The correlation amplitude

Here we establish the connection between the two-photon correlation amplitude Φ and the

two-photon wavefunction φ. The two-photon correlation amplitude can be obtained by

Φ21(ω2, ω1) =

∫∫
dω′1 dω′2φ(ω′1, ω

′
2) 〈0|Ê2(ω2)Ê1(ω1)a†1(ω′1)a†2(ω′2)|0〉

= −
√
ω2ω1

2ε0V

∫∫
dω′1 dω′2φ(ω′1, ω

′
2) 〈0|a2(ω2)a1(ω1)a†1(ω′1)a†2(ω′2)|0〉

(S18)

For distinguishable photons,

〈0|a2(ω2)a1(ω1)a†1(ω′1)a†2(ω′2)|0〉 = δ(ω1 − ω′1)δ(ω2 − ω′2). (S19)

Then

Φ21(ω2, ω1) = −
√
ω2ω1

2ε0V
φ(ω1, ω2) (S20)

and in the time-domain

Φ21(t2, t1) ≈ −
√
ω0

2ω
0
1

2ε0V
φ(t1, t2) (S21)
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where we have invoked the slowly varying approximation

√
ω2ω1

2ε0V
≈
√
ω0

2ω
0
1

2ε0V
. (S22)

Similarly,

Φ12(ω2, ω1) = −
√
ω2ω1

2ε0V
φ(ω2, ω1), (S23)

and

Φ12(t2, t1) =

∫∫
dω2dω1e

−iω2t1e−iω1t2Φ12(ω1, ω2) ≈ −
√
ω0

2ω
0
1

2ε0V
φ(t2, t1) (S24)

These relations allow us to obtain the correlation amplitude from the two-photon wavefunction.

1. Indistinguishable photons

The distinguishing characteristics by polarization or arrival time in the entangled photons can

be eliminated such that they become indistinguishable [5].

For indistinguishable photons, we can suppress the photon index such that

〈0|a(ω2)a(ω1)a†(ω′1)a†(ω′2)|0〉 = δ(ω1 − ω′1)δ(ω2 − ω′2) + δ(ω1 − ω′2)δ(ω2 − ω′1). (S25)

Then

Φ21(ω2, ω1) = Φ12(ω2, ω1) = −
√
ω2ω1

2ε0V
(
φ(ω1, ω2) + φ(ω2, ω1)

)
. (S26)

It follows that Φ12(t2, t1) = Φ21(t2, t1) meaning that the transition amplitudes associated with

pathways involving the same intermediate state but a different photon sequences coincide. This

implies that matter cannot distinguish the interacting photons.

S3.B. Uncorrelated photons

For uncorrelated single photons, the two-photon wavefunction can be factorized as

φ(ω1, ω2) = φ1(ω1)φ2(ω2), (S27)

and so is the detection amplitude Φ̃p2p1(t, t′) ≡ 〈0|ap2(t)ap1(t′)|Φ〉 representing the probability

ampliutude of observing photon p1 at time t′ and photon p2 at time t,

Φ̃p2p1(t, t′) ≡ 〈0|ap2(t)|φp2〉 〈0|ap1(t′)|φp1〉 . (S28)
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The detection amplitude is proportional to the correlation amplitude under the approximation in

Eq. (S22). The single-photon state reads

|φj〉 =

∫
dωjφj(ωj)b

†
j(ωj) |0〉 (S29)

where the vaccum corresponds to the modes associated with j-th photon. Inserting Eq. (S29) into

Eq. (S28) leads to

Φ̃12(t1, t2) = 〈0|b1(t1)|ϕ〉 〈0|b2(t2)|χ〉

=

∫
dω

∫
dω1e

−iωt1ϕ(ω1) 〈0|b1(ω)a†1(ω1)|0〉
∫

dω′
∫

dω2χ(ω2)e−iω
′t2 〈0|b2(ω′)a†2(ω2)|0〉

= φ1(t1)φ2(t2)

(S30)

where φ(t) =
∫

dωe−iωtφ(ω). Similarly,

Φ̃21(t1, t2) = φ1(t2)φ2(t1) (S31)

Insering Eqs. (S30) and (S31) into Eq. (S9) leads to the transition amplitude for uncorrelated

photons

Tfg =

√
ω0

1ω
0
2

2Vε0

∑
e

∫∫
dω1 dω2

φ1(ω1)φ2(ω2)

ω1 + ω2 − ωfg + iγf

 D
(e)
12

ωeg − ω2 − iγe
+

D
(e)
21

ωeg − ω1 − iγe

 (S32)

If the two photons are narrowband with central frequencies ω0
j such that

φ(ω1) ≈ φ(ω0
1)δ(ω1 − ω0

1) (S33)

the transition amplitude reduces to

Tfg =

√
ω0

1ω
0
2

2Vε0
1

ω0
1 + ω0

2 − ωfg + iγf
φ1(ω0

1)φ2(ω0
2)
∑
e

(
D

(e)
12

1

∆
(2)
e − iγe

+D
(e)
21

1

∆
(1)
e − iγe

)
(S34)

S3.C. Coherent states

If the photons are in coherent states corresponding to the semiclassical light, the detection

amplitude is given by

φp2p1(t, t′) = 〈φp2 |ap2(t)|φp2〉 〈φp1 |ap1(t′)|φp1〉 (S35)

The difference between the coherent state and the single-photon state is that annihilation of an

photon does not change the photon state in the former whereas it projects the photon state to the

vacuum for the latter.
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Coherent states can be generally defined as

|φj〉 = eαA
†
j−α

∗
jAj |0〉 (S36)

where A†j ≡
∫∞

0 dωA(ω)b†j(ω) is a single-photon creation operator. For a single photon mode,

Aj(t) = bj(ω). (S37)

This corresponds to a monochromatic light. For a continuum of modes,

A†j =

∫
dωφj(ω)b†j(ω) (S38)

where φj(ω) is the normalized spectral envelope. It follows that Eq. (S35) becomes

φ21(t, t′) =

∫
dω2e

−iω2tα2φ2(ω2)

∫
dω1e

−iω1t′α1φ1(ω1) (S39)

Realizing that the expectation value of the electric field operator is given by

Ej(ω) = i

√
~ω

2ε0V
αjφj(ω), (S40)

Eq. (S39) becomes

Φ21(t, t′) =

∫
dω2e

−iω2tE2(ω2)

∫
dω1e

−iω1t′E1(ω1) = E2(t)E1(t′). (S41)

Equation (S41) implies that the detection amplitude is simply the product of the electric fields,

consistent with a semiclassical picture of photon detection theory [6].

The two-photon transition amplitude can be then obtained by inserting Eq. (S41) into Eq. (S34)

Tfg(t) =
∑
p1 6=p2

∑
e

D(e)
p2p1

∫ t

t0

dt2e
iωfet2Ep2(t2)

∫ t2

t0

dt1e
iωegt1Ep1(t1) (S42)

The corresponding frequency-domain expression reads

Tfg =
∑
e

∫∫
dω1 dω2

E1(ω1)E2(ω2)

ωfg − iγf − ω1 − ω2

 D
(e)
12

ωeg − ω2 − iγe
+

D
(e)
21

ωeg − ω1 − iγe

 . (S43)

Thus, we have obtained the classical two-photon absorption amplitude from a fully quantum me-

chanical treatment. For monochromatic fields Ej(ωj) = Ejδ(ωj − ω0
j ), Eq. (S43) reduces to

Tfg =
∑
e

E1(ω0
1)E2(ω0

2)

ωfg − iγf − ω0
1 − ω0

2

 D
(e)
12

∆
(2)
e − iγe

+
D

(e)
21

∆
(1)
e − iγe

 . (S44)
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TABLE S1. Expressions for two-photon-absorption signal with quantum and classical light. The photon

indexes p2p1 = { 21, 12 } depending on which photon interacts with the matter first.

Time domain

classical light Tfg(t) =
∑
p1 6=p2

∑
eD

(e)
p2p1

∫ t
t0

dt2e
iωfet2Ep2(t2)

∫ t2
t0

dt1e
iωegt1Ep1(t1)

quantum light Tfg(t) =
∑
p1 6=p2

∑
eD

(e)
p2p1

∫ t
t0

dt2e
iωfet2

∫ t2
t0

dt1e
iωegt1Φp2p1(t2, t1)

Frequency domain

classical light Tfg = −
∑
p1 6=p2

∑
e

∫∫
dω1 dω2

E1(ω1)E2(ω2)
ωfg−iγf−ω1−ω2

(
D(e)

p2p1

ωeg−ωp1−iγe

)
quantum light Tfg = −

∑
e

∑
p2 6=p1

∫∫
dω1 dω2

1
ωfg−iγf−ω1−ω2

(
D

(e)
p2p1
〈0 |Ep2

(ωp2
)Ep1

(ωp1
) |Φ〉

ωeg−ωp1
−iγe

)

1. Classical light with the same spectral function with quantum light

If the classical light have the same spectral function as in the quantum light,

Ej(ωj) = E0
j

T

2π
sinc

(
∆ωjT/2

)
. (S45)

Using the identity
∫ +∞
−∞ sinc

(
ωT/2

)
e−iωt dω = 2π

T Π
(
t
T

)
, the pulse envelope reads

Ej(t) = E0
j e
−iω0

j tΠ

(
t

T

)
(S46)

Inserting Eq. (S46) into Eq. (S42) leads to the two-photon transition amplitude with two rectan-

gular pulses (t0 → −∞, t→∞)

Tfg = E0
2E

0
1

∑
p1 6=p2

∑
e

D(e)
p2p1

∫ ∞
−∞

dt2e
i(ωfe−ω0

p2
)t2Π

(
t2
T

)∫ t2

−∞
dt1e

i
(
ωeg−ω0

p1

)
t1Π

(
t1
T

)

= E0
2E

0
1

∑
p1 6=p2

∑
e

D(e)
p2p1

∫ T/2

−T/2
dt2e

i(ωfe−ω0
p2

)t2 1

i∆
(p1)
e

(
ei∆

(p1)
e t2 − e−i∆

(p1)
e T/2

)

= −E0
2E

0
1

∑
p1 6=p2

∑
e

D(e)
p2p1

2isinc
(
(ωfg − ω0

1 − ω0
2)T/2

)
ωeg − ω0

p1

+
e−i(ωeg−ω0

p1
)T/22isinc

(
(ωfe − ω0

p2)T/2
)

ωeg − ω0
p1


(S47)

We have assumed that the pulse duration is shorter than the lifetime, i.e., T � γ−1
e . The first

term contains the two-photon resonance condition and thus represents the TPA process whereas

the second term contains two single-photon resonances representing a sequential excitation. As

shown, for the uncorrelated light, varying the spectral width 1/T does not allow modifying the

transition amplitude for each transition pathways.
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S4. THE BLOCK DIAGONAL POLARITON HAMILTONIAN

S4.A. Two molecules with different transition frequencies

1. Single-polariton block

For N = 2 molecules, the subspace Hamiltonian in single-polariton subspace reads

H(1) =


ωc g0 g0

g0 ωa 0

g0 0 ωb

 (S48)

where g0 is the single-molecule coupling strength.

2. Two-polariton block

The two-polariton block Hamiltonian spanned by the basis |gg2〉 , |eg1〉 , |ge1〉 , |ee0〉 reads

H(2) =


2ωc

√
2g0

√
2g0 0

√
2g0 ωa + ωc 0 g0
√

2g0 0 ωb + ωc g0

0 g0 g0 ωa + ωb


(S49)

Solving det
(
ω −H(2)

)
= 0 yields the polariton energies ω = 2ωc ±

√
δ2 + 6g2

0, 2ωc.

S4.B. Two-polariton block for N identical molecules

We now consider N identical molecules with transition frequency ω0 and coupling gj = g0. To

understand the structure of the two-polariton states, it is convenient to introduce the collective

exciton operators

X†j =
1√
N

N∑
n=1

eikjnσ†n, j = 0, 1 · · · , N − 1, (S50)

where kj = 2πj/N, j = 0, 1, · · · , N − 1. The collective exciton operators satisfy the commutation

relations

[Xi, X
†
j ] = − 1

N

∑
n

ei(ki−kj)nσzn = δij −
2

N

∑
n

ei(ki−kj)nσ†nσn (S51)
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Since these are different from the boson commutation relations, the excitons cannot in general

be considered as bosons. In the low excitation limit of many molecules, i.e.,
∑N

n=1 σ
†
nσn � N ,

Eq. (S51) becomes [
Xi, X

†
j

]
= δij +O(N−1) (S52)

and the collective excitons are approximately bosons.

The upper and lower polaritons are admixtures of the bright exciton state |X0〉 = X†0 |G〉, where

|G〉 is the ground state for all molecules, and the cavity mode, with an enhanced splitting 2g0

√
N .

The double-excitation manifold contains N(N+1)
2 + 1 states. The polariton Hamiltonian can be

recasted in terms of the collective exciton operators

Hp = ω0

N−1∑
j=0

X†jXj + ωca
†a+ g0

√
N
(
X†0a+X0a

†
)
. (S53)

The double-excitation space can be decomposed into three subspaces spanned, respectively, by

{ | 2〉, | X01〉, | X0X0〉 =

√
N − 1

N

(
X†0

)2
| g〉 } , (S54)

{ | XjX0〉, | Xj1〉, j 6= 0 }, and { | XjXk〉, j, k 6= 0 }. The first block comes from excitations of bright

excitons and cavity photons and contains three two-polariton states. The subblock Hamiltonian

reads

H =


2ωc g0

√
2N 0

g0

√
2N ω0 + ωc g0N/

√
N − 1

0 g0N/
√
N − 1 2ω0

 . (S55)

Eigenvalues of this Hamiltonian Eq. (S55) leads to a pair of upper and lower two-polaritons and

one middle two-polariton

|fM〉 =

[√
2(N − 1)

3N − 2
, 0,

√
N

3N − 2

]
(S56)

at 2ωc. The enhanced coupling between |2〉 and |X01〉 due to the presence of cavity photons is

responsible for the enhanced upper and lower two-polariton splitting.

In addition to this splitting, there is another polariton pair from the second subspace involving

dark exciton excitation and cavity photons. The Hamiltonian in this subblock spanned by states

|Xj1〉 and |XjX0〉 is given by (for each j)

H =

 ω0 + ωc g
√

N−2
N

g
√

N−2
N 2ω0

 (S57)
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where g = g0

√
N . The splitting is slightly reduced compared to the vacuum Rabi splitting by

a factor of
√

N−2
N . Such states are not dipole connected to the upper and lower polaritons, and

cannot be observed in the TPA. The third block involves only dark exciton excitations.
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