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Four-wave mixing (FWM) of optical fields has been extensively
used in quantum information processing, sensing, and memories.
It also forms a basis for nonlinear spectroscopies such as tran-
sient grating, stimulated Raman, and photon echo where phase
matching is used to select desired components of the third-order
response of matter. Here we report an experimental study of the
two-dimensional quantum noise intensity difference spectra of
a pair of squeezed beams generated by FWM in hot Rb vapor.
The measurement reveals details of the χ(3) susceptibility dressed
by the strong pump field which induces an AC Stark shift, with
higher spectral resolution compared to classical measurements
of probe and conjugate beam intensities. We demonstrate how
quantum correlations of squeezed light can be utilized as a spec-
troscopic tool which unlike their classical counterparts are robust
to external noise.

quantum spectroscopy | multidimensional spectroscopy | squeezed light

Quantum light and its statistics (1–13) provide powerful tools
for the study of properties of matter that are hard to

retrieve with classical light. Novel spectroscopic and sensing
techniques based on quantum light sources (14) can reveal infor-
mation about complex material systems that is not accessible by
simply varying the frequencies or time delays of classical light
pulses (15, 16). The state of quantum light provides most valu-
able control parameters. The matter response imprinted in the
quantum light statistics can be retrieved by measuring higher-
order correlation functions of the photon number. Spectroscopic
measurements with entangled photons provide a unique obser-
vation window for the material response by accessing as well
as controlling exciton distributions and transport processes (17),
and the charge density in diffraction imaging (18, 19). Apart from
their novel matter information, quantum light measurements
have higher signal-to-noise ratio (20), and allow to shift opti-
cal measurements to desired frequency regimes where optical
equipment is more readily available (21).

Here we focus on a class of quantum spectroscopy measure-
ments of the multimode correlated squeezed light generated
by four-wave mixing (FWM) (4, 22–27). Squeezed light can be
broadly defined as a state of light whose quadrature amplitudes
of the electric and magnetic fields are squeezed, that is, whose
quantum uncertainty in one quadrature is smaller than that of a
coherent state, typical for lasers. Fig. 1A shows the standard FWM
setup used for squeezed light generation, which become a pow-
erful spectroscopy tool. After an FWM process, the probe (blue
line) and conjugate (yellow line) beams are multimode squeezed
and they can be detected by, for example, a classical intensity mea-
surement. Following the approach outlined in ref. 28, we have
calculated the probe and conjugate transmitted intensities,

〈N̂pr 〉'G〈N̂0〉, 〈N̂c〉' (G − 1)〈N̂0〉, [1]

where G(−ωpr ,−ωc ; 2ωpu) = cosh2[|χ̃(3)(−ωpr ,−ωc ; 2ωpu)|] is
the FWM gain governed by a third-order susceptibility χ̃(3)

dressed by the strong pump field (see Materials and Methods),
and 〈N̂0〉= |α|2 is the average photon number of the input probe
beam. Rather than detecting classical field intensities, one can
measure quantum fluctuations of the relative squeezing spectra
defined by

SN ≡
Var(N̂pr − N̂c)

〈N̂pr 〉+ 〈N̂c〉
=

1

2G − 1
, [2]

which can be reduced to below the shot noise limit (SNL),
providing a notable quantum advantage in weakly absorbing
materials. To observe quantum squeezing of the probe and con-
jugate beams, we measure their intensity difference noise power
spectrum and compare it with its corresponding SNL. The extent
of quantum squeezing is given by the degree to which the inten-
sity difference noise power is lower than SNL. As shown in Fig.
1A, the output probe and conjugate beams are sent to two sil-
icon photodetectors (D1 and D2, respectively). We can then
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Fig. 1. (A) The experimental layout. A strong classical pump beam (red line) and a weak probe (yellow line) (in a coherent state with |α| ∼ 600 which
corresponds to 10-µW power) are crossed in an 85Rb vapor cell at a small angle. The probe beam is amplified, and a new conjugate beam (blue line)
is generated on the other side of the vapor cell. The phase matching is given by 2kpu = kpr + kc, where subscripts indicate pump, probe, and con-
jugate beams. The probe and conjugate beam intensities can be either measured separately (classical measurement) or combined on an S to reveal
the noise spectra of the intensity difference (Eq. 2) (quantum measurement). HWP, half-wave plate; PBS, polarization beam splitter; BS, beam split-
ter; AOM, acousto-optic modulator; PZT, piezoelectric transducer; GL, Glan−Laser polarizer; GT, Glan−Thompson polarizer; D1 (D2), photodetector; OS,
oscilloscope; yellow lines, signal beam; blue lines, idler beam; red lines, pump beam. (B) Level scheme for the FWM process. Since the pump beam
drives both electronic transitions g−e and s−e, while the probe (conjugate) interacts only with e−s (e−g), i indicates the case where initial state of
the vapor is ground state g, while ii corresponds to the case when s is initially populated. (C) The 85Rb-level scheme in the presence of the strong
pump.

obtain the direct current (dc) and radio frequency (rf) compo-
nents of the photocurrents. The rf components from the two
ports are subtracted by using an rf subtractor (S) and then
analyzed with a spectrum analyzer (SA). The subtracted result
constitutes their intensity difference noise power spectrum. To
obtain the corresponding SNL, we use a coherent beam with a
power equal to the total power of the output beams. We then
divide it into two beams with a 50:50 beam splitter and send
the obtained beams into the two previously used photodetec-
tors to get the noise power of the differential photocurrent,
which gives the corresponding SNL. By scanning the pump
and probe frequencies across several hundred megahertz, one
can obtain a two-dimensional (2D) spectrum containing valu-
able matter information. While, in the standard FWM squeezed
light generation scheme, the squeezing occurs between single
modes at fixed frequencies, here the pump and probe frequencies
scanned over the broad range ensure a multimode squeezing.
While this measurement is not novel, but the spectroscopic
advantage is certainly unique. By scanning the pump and probe
pulse frequencies across several hundred megahertz, one obtains
a 2D spectrum containing valuable matter information. In the
standard FWM squeezed light generation scheme, the squeez-
ing occurs between single modes at fixed frequencies; here,
in contrast, the pump and probe frequencies scanned over
the broad range ensure a multimode squeezing. A pertur-
bative theoretical analysis provides a simple account of the
squeezing measurements in SiV− color centers in diamond
(29) (see SI Appendix, section S1). Note that, in contrast
with techniques where the quantum light sources are directed
at the material to probe its response (14), here the gener-
ation of quantum light combined with quantum detection of
squeezing serves as a probe of the nonlinear response of
matter.

Results
Experimental Scheme. We consider an FWM process based on
the double-Λ level scheme shown in Fig. 1B. Two lower hyper-
fine states g (F = 2) and s (F = 3) are separated by 3.035 GHz,
while the upper states e1 (F = 3) and e2 (F = 2) are sepa-
rated by 361.58 MHz. At vapor temperature 113 ◦C, both g
and s states are almost equally populated. The FWM may take
place starting from either the g or s states as shown by level
schemes i and ii , since the strong pump beam interacts with both
g−e and s−e transitions. In diagram i , the pump first drives
the g−e transition, while the probe drives the e−s transition.
Another pump photon promotes the system via the s−e tran-
sition, while the conjugate beam generated by the FWM brings
the system back to its ground state via e−g transition. The book-
keeping of the field−matter interactions is shown in diagram
ia in SI Appendix, Fig. S1. One can describe diagram ii sim-
ilarly by exchanging states g↔ s and probing with conjugate
beams. Due to the strong pump (180 mW), all four transitions,
g − e1,2 and s − e1,2, show an AC Stark splitting which results in
the transition frequency detunings ω(±)

ejm = δejm/2±Ω′ejm , where

Ω′ejm =
√
δ2ejm/4 + Ω2

ejm , δejm =ωpu −ωejm is the detuning and
Ωejm =µejmεpu , j = 1, 2, m = g , s is a Rabi frequency corre-
sponding to the pump field amplitude εpu for a given transition
dipole moment µejm (Fig. 1C). The following two points should
be noted. First, the pump should be strong enough to induce an
AC Stark splitting, thus doubling the number of measured reso-
nances. Peaks missed by classical intensity measurements clearly
show up in the squeezing detection, thanks to the higher signal-
to-noise ratio. Second, in the absence of losses, both intensity
and squeezing measurements carry identical information associ-
ated with the FWM gain. This is no longer the case when optical
losses exist. The squeezing measurement is robust to external
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noise added to the pump and therefore to all the output fields
of the FWM process. However, classical measurements become
unstable and hard to interpret under these conditions.

Experimental Results. We start with a classical measurement of
the transmission intensities of the probe and conjugate beams
given by Eq. 1. In standard treatments of FWM-generated
squeezed light fields, all transitions are kept off-resonant with
respect to matter, and χ(3) can be replaced by a frequency-
independent prefactor. Here, in contrast, we are interested in
resonant properties of the nonlinear response which can be
measured through the probe or conjugate intensities. Fig. 2A
demonstrates that, for a weak pump (100 mW), the 2D gain spec-
tra (Eq. 1) displayed vs. one-photon detuning δ1 =ωpu −ω(0)

pu

with the reference frequency arbitrarily fixed by the experi-
mental setup is ω(0)

pu = 377109.2 GHz and two-photon detuning
δ2 =ωpu −ωpr −ωsg shows a total of four peaks which can be
described by ωpu −ωpr =ω

(µ)
eqg −ω

(ν)
eps , µ, ν=±, p, q = 1, 2. Two

central peaks denoted 2 and 3 correspond to the two-photon
resonances corresponding to µ=−, ν= + with p = q = 1 and
p = q = 2, respectively. Two weaker side peaks denoted as 1 and
4 correspond to µ= ν=−, p = q = 1 and µ= ν= +, p = q = 1,
respectively. A similar pattern is observed for the conjugate
beam in Fig. 2B. The quantum squeezing signal SN (Eq. 2) repre-
sents the relative noise corresponding to the degree of squeezing
between the probe and conjugate fields. It is defined as a ratio
of the relative intensity noise to the sum of the individual beams
shot noise figures. SN is depicted on a log scale −10 log(2G − 1)
in Fig. 2C. The use of a log scale for quantum measurement (1)
is natural since the noise spectra are normalized to unity for clas-
sical fields. Therefore, the noise of the quantum fields must be
below one, which can be better visualized in a log scale. While
the number and positions of peaks remain similar to the classical

measurement, their shapes and relative intensities are different.
For instance, peaks 1 and 4, which are barely visible in the gain
spectra, are well pronounced in the squeezing signal. Note that
the noise spectra in Fig. 2C are not identical to the classical sig-
nals of Fig. 2 A and B. To make a fair comparison, we used a
logarithmic scale for the SN measurement using classical gain
from Fig. 2D, which is shown in SI Appendix, Fig. S3. It contains
the same number of peaks as a nonlogarithmic classical probe
gain in Fig. 2D, highlighting the difference between squeezed
measurement (Eq. 2) and the classical gain measurements (Eq.
1), providing a different observation window onto the suscepti-
bility χ̃(3) composed of the terms given by Eq. 5 and derived in
SI Appendix, section S1.

As the pump intensity is further increased to 180 mW, the
AC Stark shift grows, and the four peaks described above are
shifted accordingly, as seen in Fig. 2 D and E. However, the
squeezing spectra undergo more dramatic changes. In addi-
tion to the original four peaks 1 through 4, Fig. 2F contains
four additional peaks (Table 1). This additional information
is accessible only by a strong field and quantum squeezing
detection, and is missed by classical detection. This arises
since the quantum squeezing measurement is higher order in
field−matter interactions and thus is not polluted by linear pro-
cesses which may preclude the detection of weaker resonances.
When optical losses are included, the signal-to-noise ratio
of such higher-order correlation measurements is significantly
increased.

To rationalize the experimental observations of Fig. 2, we
developed a microscopic theoretical model for the χ̃(3) suscepti-
bilities, including the AC Stark shifts due to the strong pump.
Here the matter response is governed by a χ̃(3) susceptibil-
ity dressed by a strong pump field, which is different from the
standard weak field susceptibility χ(3). Details are presented in

Fig. 2. Experimental 2D spectra of the classical and quantum signals. Eq. 3 displayed vs. the one-photon −δ1 =ωpu−ω(0)
pu where ω(0)

pu = 377,109.2 GHz and
two-photon δ2 =ωpu−ωpr −ωsg detunings (A) probe and (B) conjugate photon numbers, and (C) squeezing Eq. 4 , for the weak 100-mW pump. (D−F)
Same as A−C but for a strong 180-mW pump. Color lines indicate positions of the AC Stark-shifted resonances calculated using Eq. 5.
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Table 1. Resonant structure of the susceptibility in Eq. 5
depicted in Fig. 2 highlighting the sign of the AC Stark shifts

Peak no. µg νg λg µs νs p q Diagram

1 — — — — — 1 1 iia, iib
2 + + + — — 2 2 iia, iib
3 — — — + + 1 1 ia, ib
4 + + + + + 2 2 ia, ib
5 + — + — — 2 2 iia, iib
6 + — — + + 1 1 ia
7 + + + — — 1 1 iia, iib
8 — + + — — 2 2 iia

SI Appendix, section S2. We maintain a nonperturbative treat-
ment of the strong classical pump, while retaining the lowest-
order perturbation expansion in the probe and conjugate beams.
Eq. 5 reveals the resonant pattern of the susceptibility. We
include optical losses during the propagating through the mate-
rial cell after the FWM process described by Eqs. 6 and 7. These
losses occur when the strong pump field−driven transitions s→
ej (g→ ej ), j = 1, 2 undergo a spontaneous or stimulated emis-
sion with frequency matching the probe (conjugate) field. We
thus obtain, for the classical measurement (28) (see SI Appendix,
section S3),

〈N̂pr 〉' ηprG〈N̂0〉, 〈N̂c〉' ηc(G − 1)〈N̂0〉. [3]

The corresponding noise figure is given by

SN = 1 +
2(G − 1)(G(ηpr − ηc)2− η2c )

ηprG + ηc(G − 1)
. [4]

Fig. 3A shows the 2D spectra of the simulated probe gain for the
strong 180-mW pump. All four peaks shown in Fig. 2D are repro-

duced with good agreement with experiment. The 1D segments
of the spectra vs. single-photon detuning δ1 for a given two-
photon detuning δ2 =−30, 0, and 50 MHz depicted by dashed
white lines are displayed separately in Fig. 3 B, C, and D, respec-
tively, and show good agreement between theory and experiment
(30). The corresponding squeezing measurement is shown in two
dimensions in Fig. 3E together with 1D cross-sections depicted
in Fig. 3 F−H. All eight peaks are well reproduced by the the-
ory. In addition, the quantum regime (negative noise spectra)
shown in Fig. 3G indicates the correct magnitude of the noise
figure in both quantum (squeezing) and classical regimes. To
demonstrate the merits of quantum over classical detection, we
added a random time modulation of the input probe beam inten-
sity by utilizing a Mach−Zehnder interferometer as shown in
Fig. 4. The red line shows the squeezing, while blue and yellow
correspond to classical separate intensity measurements of the
conjugate and probe fields, respectively. While the output fields
intensity is proportional to the input intensities, the variance
of the intensity difference is governed by the sum of variances
of the individual classical fields, which is then governed by the
sum of the probe and conjugate field intensities. Thus, the over-
all noise contribution from classical fields will add up. On the
other hand, the variance of the photon number difference of
the quantum fields is different due to nonzero covariance due to
quantum correlations shared between the fields, which reduces
the photon number difference below classical noise levels (23).
The corresponding squeezing measurement is then governed
only by the gain of the FWM. Therefore, the same noise reduc-
tion achieved by quantum measurement may not be reached
by using classical measurements. This conclusion holds when
squeezing is below the shot noise as shown in Fig. 4A (corre-
sponding to the dark blue area in Fig. 2C) as well as in the
opposite limit, when noise is above the shot noise level as seen
in Fig. 4B. A similar effect was observed in entangled pho-
ton spectroscopy, where the spectroscopic information has been
obtained in the presence of an external noise such as background

Fig. 3. Calculated 2D probe gain spectra Eq. 3 (A) with 1D slices (red line, theory; black dots, experiment) displayed vs. δ1 evaluated at (B) δ2 =−30 MHz,
(C) δ2 = 0 MHz, and (D) δ2 = 50 MHz. (E–H) Same as A–D but for the noise figure in Eq. 4. Rb gas parameters used in simulations are taken from ref. 28. The
values of the coefficient of determination (R2) defined in SI Appendix, Eq. S22 in Fig. 3 B–E, G, and H are 0.41, 0.92, 0.72, 0.85, 0.58, and 0.51, respectively
(see SI Appendix, section S4).
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Fig. 4. (A) Experimental time evolution of the signals due to random time
modulation of the input probe intensity. Output probe intensity Eq. 3 (yel-
low), conjugate (blue), and squeezing Eq. 4 (red) evaluated at δ1 = 0.9 GHz
and δ2 = 6 MHz. (B) Same as A but at δ1 = 0.5 GHz and δ2 = −10 MHz.
The red arrow indicates that the red dot lines correspond to the axis of
“Noise Power”; the yellow arrow indicates that the blue and yellow traces
correspond to the axis of “Intensity.”

thermal radiation, added at the detection level (20). In our
scheme, the noise is added to the input pump field prior to
the FWM, and thus the noise is present throughout the FWM
process in all four fields involved, and yet the quantum measure-
ment’s resolution is stable. Note that the improvement of the
SNR due to quantum correlations is not universal and is only
applicable for certain parameter regimes. In particular, Fig. 2F
shows regions of the negative signal (highlighted by the dark blue
color), where quantum correlations yield squeezing SN < 0. As
has been shown in the two-photon detuning dependence of SN
demonstrated in earlier works (31), the region of quantum cor-
relations results in a higher SNR for squeezing measurement,
compared to regions of classical correlations SN > 0. Fig. 2F
shows a more general dependence with respect to both one-
and two-photon detunings. Nevertheless, the correlated mea-
surement is robust against the noise in both quantum (Fig. 4A)
and classical (Fig. 4B) regions of parameters.

Discussion
We have carried out multidimensional FWM spectroscopy
with squeezed light detection in hot Rb vapor. We find that
quantum squeezing measurements provide additional valu-
able information compared to classical intensity measurements,
through higher-order matter correlations. When optical losses

are included, the spectra show different resonance patterns and
provide a most valuable probe of the third-order response. A
theoretical model provides an adequate microscopic account
of the experiments. Our simulations allow to extract the
actual model parameters from the AC Stark shift between the
peaks corresponding to µ, ν=±. For instance, one can obtain
the relative strengths of the dipole moments |µe2g |/|µe1g | '
|µe1s |/|µe2s | '

√
8. This is consistent with the D1 line 52S1/2→

52P1/2 π-transitions. Here the dipole moments expressed in
multiples of 〈J = 1/2|er |J ′= 1/2〉' 2.99ea0, where a0 is Bohr
radius, are given by µe1g =−µe2s =−1/

√
27, µe2g =µe1s =√

8/27. We can further obtain the dephasing rate character-
izing the linewidth given by γe ∼ γs ≈ 10Γ' 57.5MHz, γg 'Γ
(where Γ is the natural linewidth of the D1 transition). Squeezed
light quantum spectroscopy is robust against external noise
and yields sub-shot noise signals. Quantum light generated
by the FWM process serves as a useful source for quantum
spectroscopy and magnetic field sensors (32), complementing
spontaneous parametric down-conversion sources. Our results
suggest quantum sensing applications with multiphoton corre-
lated light sources with an unprecedented level of microscopic
detail beyond classical measurements.

Materials and Methods
Details of the Experiment. A cavity-stabilized Ti:sapphire laser is used. A
polarization beam splitter is used to divide the laser into two beams. One
beam serves as the pump beam with frequency ωpu which is vertically polar-
ized. The other beam passes through an acousto-optic modulator to get
the probe beam at frequency ωpr . The horizontally polarized probe beam
is weak (about 20 µW) and is equally divided into two by a 50/50 beam
splitter. These two beams are used to construct a Mach−Zehnder interfer-
ometer, which is used to introduce intensity noise to the FWM process. A
piezoelectric transducer is placed in the Mach−Zehnder interferometer to
introduce intensity noise. The 85Rb vapor cell is 12 mm long and the tem-
perature of the 85Rb vapor cell is stabilized at 113◦C. At the center of the
vapor cell, the waist of pump beam is about 620 µm, and the waist of probe
beam is about 330 µm. Combined by a Glan−Laser polarizer, the pump and
the probe beams are crossed in the center of the 85Rb vapor cell. The angle
between the signal and pump beams is about 7 mrad. The residual pump
beam after the FWM process is eliminated by a Glan−Thompson polarizer.
The output probe and conjugate beam with frequency ωc = 2ωpu−ωpr are
sent to two silicon photodetectors (D1 and D2, respectively). The detector’s
transimpedance gain is 105 V/A, and quantum efficiency is 96%. After the
output beams are received by the detectors, we can obtain the dc and rf
components of the photocurrents. The dc components from the two ports
are sent to an oscilloscope to measure the intensity gain of the system. The
rf components from the two ports are subtracted from each other by using
an rf S and then analyzed with an SA. The SA is set to a 30-kHz-resolution
bandwidth and a 300-Hz video bandwidth.

Theoretical Methods. The third-order susceptibility that enters the FWM
gain is derived by second-order perturbation theory with respect to probe
and conjugate fields, while the pump field is treated nonperturbatively.
The corresponding diagrams and details of the derivations are shown in
SI Appendix, section S1. The third-order susceptibility has four terms, χ̃(3) =∑

k

∑
µg ,νg ,λg ,µs ,νs

Akχ̃
(3)
kµgνgλgµsνs

, where Ak are normalization functions

that depend on the propagation length inside the sample and other exper-
imental parameters, k runs over the diagrams k = ia, ib, iia, iib shown in
SI Appendix, Fig. S1, and µm, νm, and λm indicate the AC Stark-shifted
branches of the transition resonances µg,µs, νg, νs,λg =±. The first two
terms can be written as

χ̃
(3)
ia =

2∑
i,j=1

µgeiµ
∗
eis
µsejµejg(ω

(λg )
eig
− iγe)

(Ω′2ejg
+ γ2

e )(∆
µgµs
ij + iγs)(∆

νgνs
ij + iγe)

,

χ̃
(3)
ib =

2∑
i,j=1

µgeiµ
∗
eis
µsejµejg(ω

(λg )
eig
− iγe)

(Ω′2ejg
+ γ2

e )(∆
µgµs
ij − iγs)(∆

νgνs
ij − iγe)

, [5]

where ∆
µgµs
ij =ωpu−ωpr +ω

(µg)
eig
−ω(µs )

ejs
, and γl, l = s, e are the dephasing

rates of the atomic levels. The corresponding expressions for diagrams iia
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and iib can be obtained by replacing ωpr→ωc and g↔ s. A summary of the
resonant structure of the susceptibility is shown in Table 1.

Note that the discrepancy in the linewidth broadening in simulations
in Fig. 3 compared to experimental results of Fig. 2 is caused by a simpli-
fied model which does not take into account inhomogeneous broadening.
The input/output relations for the field operator in the presence of the
optical losses accumulated during the propagation after FWM (28) are
given by

âpr→
√
ηpr âpr +

√
1− ηpr x̂pr ,

âc→
√
ηcâc +

√
1− ηc x̂c, [6]

where ηr = cos(|χ̃(1)
r |)

2, r = pr, c and the noise operators x̂ satisfy the
standard boson commutation rules [x̂r , x̂†r ] = 1. The corresponding sus-
ceptibility of the losses due to the spontaneous/stimulated emission is
given by

χ̃
(1)
r = Br

∑
j=1,2

µmejµejmδejm

2Ω′2ejm

, [7]

where m = s for r = pr and m = g for r = c and Br is a normalization function
that depends on the propagation length inside the vapor cell and other
experimental parameters. In simulations shown in Fig. 3, both Ak and Br are

used as fitting parameters. Spectra of the noise are shown in SI Appendix,
Fig. S4.

Data Availability. The data that support the plots within this paper are
available at Open Science Framework: https://osf.io/5kt96/.
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Fig. S1. Diagrams representing the third order susceptibility for the level scheme in Fig. 1b.

Supporting Information Text

S1. Perturbative treatment of weak fields

The field/matter interaction Hamiltonian is

HFWM =
∫
drµeg(Ec(t, r) + Epu(t, r)) + µesEpr(t, r), [S1]

where the classical pump field Epu(t, r) = Epue−iωput+ikpu·r and the probe and conjugate are quantum fields given by

Ej(t, r) =
√

2π~ωj
V

(âje−iωjt+ikj ·r + â†je
iωjt−ikj ·r), j = pr, c [S2]

We use classical fields to calculate susceptibility components in Eqs. (S11)- (S12), while the quantum nature of the fields is
utilized for input-output relations in Eqs. (S13) - (S14) which lead to Eqs. (1) – (2) of the main text. The applicability of
classical fields to calculate susceptibility components is a standard procedure. Some discrepancies in susceptibilities at single
photon level may be observed, which is not the case for many-photon squeezed light. Lowering and raising operators commonly
used with dipole interaction Hamiltonian and two- and three-level quantum system also apply in this case. We thus replace the

operators of the probe and conjugate fields by their respective expectation values: Epr =
√

2π~ωpr

V
〈âpr〉 and Ec =

√
2π~ωc
V
〈âc〉.

The third-order perturbative approach is visualized by the loop diagrams shown in Fig. S1. In diagrams ia and ib the initial
state is the ground state g, whereas in diagrams iia and iib s is the initial state. At high temperatures both g and s state are
almost equally populated. The Schrodinger equation for the state amplitudes

|ψ(t)〉 = [cg(t)|g〉+ cs(t)|s〉]ei(ωpu−ωe)t + ce(t)e−iωet|e〉 [S3]

is given by

ċg = −iδegcg − iΩ∗egce − iΩ∗cei(ωc−ωpu)tce,

ċs = −iδescs − iΩ∗esce − iΩ∗prei(ωpr−ωpu)tce,

ċe = −iΩegcg − iΩescs − iΩce−i(ωc−ωpu)tcg − iΩpre−i(ωpr−ωpu)tcs, [S4]

where δem = ωpu − ωem, m = g, s, Ωc = µegEc, Ωpr = µesEpr, and for brevity we omitted the subscript of the e state in
detunings δem and Rabi frequencies Ωem treating e1 and e2 in a similar fashion. Initial conditions fo Eq. (S4) are cg(t0) = 1,
ce(t0) = cs(t0) = 0 for ia, ib diagrams and cs(t0) = 1, cg(t0) = ce(t0) = 0 for iia, iib diagrams. Instead of simply reading the
signal form the diagrams in Fig. S1 we deliberately indicate some important steps which will be further used in the strong
pump case. We focus on diagram ia. Other diagrams can be treated similarly. To derive third order susceptibility we define a
signal first, which according to the diagram ia is given as a transmission of the conjugate beam:

Sia(t) = Im[E∗c (t)P (3)
ia (t)], [S5]

where third order polarization is given by

P
(3)
ia (t) = µegc

(3)
e (t)c(0)∗

g (t). [S6]
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Fig. S2. Calculated perturbative 2D spectra of the probe Eq. (1) with gain governed by perturbative susceptibilities given by Eqs. (S11) - (S12) displayed vs one - δ1 and
two-photon δ2 detunings - (a), conjugate - (b) and squeezing - (c).

For the weak pump field perturbative orders are taken for all three fields: pump, probe and conjugate. Zeroth order
term c

(0)
g (t) = e−iδeg(t−t0). Third order amplitude c(3)

e can be calculated in a sequence of 3 steps according to field-matter
interactions in diagram ia:

c(3)
e (t) = −iδes

∫ t

t0

dt′c(2)
s (t′), [S7]

where

c(2)
s (t′) = −iΩ∗pr

∫ t′

t0

dt′′ei(ωpr−ωpu)t′′c(1)
e (t′′), [S8]

where

c(1)
e (t′′) = −iΩeg

∫ t′′

t0

dt′′′c(0)
g (t′′′). [S9]

Solving Eqs. (S7) - (S9) and taking the limit t0 → −∞ we obtain

P
(3)
ia (t) = χ

(3)
ia (−ωpr,−ωc; 2ωpu)E2

puE∗pre−i(2ωpu−ωpr)t [S10]

where

χ
(3)
ia (−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(2ωpu − ωpr − ωeg + iγe)(ωpu − ωpr − ωs + iγsg)(ωpu − ωeg + iγe)
. [S11]

Similarly we obtain for other diagrams:

χ
(3)
ib (−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(ωc − ωeg − iγe)(ωc − ωpu − ωsg − iγs)(ωpu − ωeg + iγe)
,

χ
(3)
iia(−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(2ωpu − ωc − ωes + iγe)(ωpu − ωc − ωgs + iγs)(ωpu − ωes + iγe)
,

χ
(3)
iib (−ωpr,−ωc; 2ωpu) =

∑
e

|µeg|2|µes|2

(ωpr − ωes − iγe)(ωpr − ωpu − ωgs − iγs)(ωpu − ωes + iγe)
, [S12]

where dephasing rates have been added phenomonologically. The total susceptibility thus is given by χ(3) =
∑

k
Akχ̃

(3)
k , where

Ak are normalization functions that depend on the propagation length inside the sample and other experimental parameters,
k runs over the diagrams k = ia, ib, iia, iib. Note, that we included normalization constant into the susceptibility itself, for
brevity. The quantum state of light generated via FWM is given by |ψFWM 〉 = U |ψ〉0 where |ψ〉0 is the incoming state of light
before the FWM. The unitary evolution operator U = exp

(
χ(3)â†prâ

†
c/2− h.c.

)
, where we utilized the quantum nature of the

probe and conjugate fields by bringinig back their original operator form.
The corresponding input-output relation is given by

âpr = U†âpr0U = cosh(s)âpr0 + eiθ sinh(s)â†c0, [S13]

â†c = U†â†c0U = e−iθ sinh(s)âpr0 + cosh(s)â†c0, [S14]
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where s = |χ(3)|. The corresponding photon number of the probe, conjugate, and noise figure are given by Eqs. (1) - (2) of the
main text and depicted in Fig. S2a, b, and c, respectively. The 2D spectrograms indicate four peaks equivalent to δ1 = 0,
δ1 = −ωs, and δ2 = 0. There are no Stark shifts associated with the strong field observed in experiment. We notice, that the
probe gain is of the order of 1 which results in the absence of amplification and low (10−2) level of the conjugate gain. The
corresponding squeezing is also small and positive (classical). It is therefore clear, that stronger pump is required to observe
high gain and low noise figure.

S2. Strong pump

When the pump is strong, perturbation theory can be only applied to the probe and conjugate fields. In this case, nonlinear
polarization is given by

P
(3)
ia (t) = µegc

(1)
e (t)c(0)∗

g (t), [S15]

where zeroth order amplitude c(0)
g satisfy the following system of equations:

ċ(0)
g = −iδegc(0)

g − iΩ∗egc(0)
e ,

ċ(0)
e = −iΩegc(0)

g [S16]

Here we make one important ansatz. Since the AC Stark shift due to the strong pulse affects mostly two peaks 2 and 3 (see Fig.
2), we treat pump-driven transitions g − e and s− e separately. This allows to consider closed two sets of equations involving a
pair of amplitudes only. As our results indicate, this ansatz allows to obtain reasonable agreement between peak positions. In
this case, solution of Eq. (S16) reads

c(0)
g (t) = e−

1
2 δeg(t−t0)

[
cos Ω′eg(t− t0)− i δeg2Ω′eg

sin Ω′eg(t− t0)
]
, [S17]

where Ω′eg =
√
δ2
eg/4 + Ω2

eg and we assume real Rabi frequency Ω∗eg = Ωeg. Note, that the standard Rabi oscillations given by
Eq. (S17) occur with both Stark shifted energies ω(±)

eg = δeg/2± Ω′eg. The corresponding c(0)
e amplitude is given by

c(0)
e = Ωeg

2Ω′eg

(
e−iω

(+)
eg (t−t0) − e−iω

(−)
eg (t−t0)

)
. [S18]

The solution for the first order amplitude c(1)
e satisfies the following

ċ(1)
s = −iδesc(1)

s − iΩ∗esc(1)
e − iΩ∗prei(ωpr−ωpu)tc(0)

e ,

ċ(1)
e = −iΩesc(1)

s . [S19]

Eq. (S19) can be solved exactly analytically. After a bit of algebra one can collect all the necessary terms and obtain an
expression for the susceptibility ia and similarly for ib given by Eq. (3).

S3. Optical losses

Similar to the weak pump case, one can account for the optical losses associated with the elastic scattering of the pump into
the photon with probe and conjugate frequencies. We define the optical loss coefficient in terms of the linear susceptibility:

ηr = cos(|χ̃(1)
r |)2, r = pr, c, [S20]

where χ̃(1)
r originate from the linear polarization:

P (1)
c (t) = µegc

(0)
e (t)c0∗

g (t) [S21]

Using Eq. (S17) and Eq. (S18) one obtains expression for χ̃(1)
c (−ωc;ωpu) given by Eq. (5). Similarly one can obtain

χ̃
(1)
pr (−ωpr;ωpu). The importance of the optical losses in experiment can be visualized if one would take a straightforward

approach and plot the noise spectra in the absence of the optical losses in Eq. (2) using the data of Fig. 2d. The result shown
in Fig. S3 indicates that there is no new information about the system. Rather noise spectra shown in Fig. S3 repeats Fig. 2d
with a slightly different scaling. In contrast, real experimental data of the noise figure in Fig. 2f indicates new information
accessible only in the presence of the optical losses.

S4. Coefficient of determination

We have calculated the coefficient of determination (R2) defined as

R2 = 1−
∑

i
(yi − fi)2∑
i
(yi − ȳ)2 , [S22]

where yi is the experimental value (black dots in Fig. 3), i=1,. . . ,N . N is the number of the experimental values. ȳ is the
mean value of experimental values. fi is the corresponding theory value of yi (red line in Fig. 3). Based on Eq. (S22), the
values of the coefficient of determination (R2) in Fig. 3b, c, d, f, g, h are 0.41, 0.92, 0.72, 0.85, 0.58, 0.51, respectively. We
added the corresponding values in the caption of Fig. 3.
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Fig. S3. Noise figure Eq. (2) in the absence of the optical losses for the gain G taken from Fig. 2d.
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Fig. S4. 2D Spectra Eq. (S20) of the optical losses for the probe ηpr and conjugate ηc beams with susceptibilities given by Eq. (5).
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