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Quantum Susceptibilities in Time-Domain Sampling
of Electric Field Fluctuations

Matthias Kizmann, Andrey S. Moskalenko,* Alfred Leitenstorfer, Guido Burkard,
and Shaul Mukamel*

Electro-optic sampling has emerged as a new quantum technique enabling
measurements of electric field fluctuations on subcycle time scales. In a
second-order nonlinear material, the fluctuations of a terahertz field are
imprinted onto the polarization properties of an ultrashort probe pulse in the
near infrared. The statistics of this time-domain signal are calculated,
incorporating the quantum nature of the involved electric fields right from the
beginning. A microscopic quantum theory of the electro-optic process is
developed adopting an ensemble of noninteracting three-level systems as a
model for the nonlinear material. It is found that the response of the nonlinear
medium can be separated into a conventional part, which is exploited also in
sampling of coherent amplitudes, and quantum contributions, which are
independent of the state of the terahertz input. Interactions between the
three-level systems which are mediated by terahertz vacuum fluctuations are
causing this quantum response. Conditions under which the classical
response serves as a good approximation of the electro-optic process are also
determined and how the statistics of the sampled terahertz field can be
reconstructed from the electro-optic signal is demonstrated. In a
complementary regime, electro-optic sampling can serve as a spectroscopic
tool to study the pure quantum susceptibilities of matter.

1. Introduction

Nonlinear optics with laser light serves as one of the fundamen-
tal tools in modern experimental physics. In three-wave mixing
spectroscopy, for example, materials are examined by irradiat-
ing them with optical fields and measuring the light emitted
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into a new direction. The spectral and
temporal shape as well as the amplitude
and phase of the incoming fields can be
varied to study different effects. These
options lead to a wide range of classical
techniques such as, for example, coher-
ent anti-Stokes Raman,[1] photon echo[2]

and 2D femtosecond spectroscopy.[3] Ex-
ploiting strong coherent states of laser
light justifies a classical treatment of the
electric fields. The corresponding pro-
cesses inside a material are then de-
scribed by a classical response in terms
of causal nonlinear susceptibilities.[4–6]

Such a scenario involving quantum mat-
ter and classical fields underlies the area
of classical nonlinear optics. In contrast
to classical fields, quantum fields ex-
hibit a larger number of degrees of free-
dom. This fact allows to exploit phenom-
ena such as quantum superposition[7]

and entanglement[8,9] in order to enhance
classical spectroscopic tools.[10]

Usually, the nonlinear susceptibili-
ties are calculated separately from the

electric fields involved and then inserted into an effective Hamil-
tonian describing the nonlinear interaction.[5,6] This descrip-
tion requires that all light fields remain in a classical limit
and correlations between them may be neglected. Theories re-
lying on effective Hamiltonians can also accurately describe the
interaction between quantum fields and nonlinear matter in
an off-resonant regime. Nonlinear processes such as four-wave
mixing[11] or parametric downconversion[12–14] far from reso-
nance are typically exploited to generate nonclassical states of
light. In the vicinity of resonant transitions, the classical suscep-
tibilities alone fail to accurately describe the response of non-
linear matter to quantum fields. Here, the physics is most ade-
quately described by quantum susceptibilities that are influenced
by higher-order fluctuations of the nonlinear medium.[15–17]

In its standard application, electro-optic sampling represents a
typical example for classical nonlinear optics. Here, a short near-
infrared probe pulse is used to sample the trace of a classical ter-
ahertz (THz) transient with subcycle temporal resolution.[18–20]

The fields interact in a second-order 𝜒 (2) nonlinear crystal and the
polarization of the near-infrared probe changes proportionally to
the local THz amplitude. This technique was recently extended
into the quantum domain by applying it to THz fields with van-
ishing mean values such as, for example, vacuum fluctuations.
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Figure 1. Setup for electro-optic sampling and level scheme of the molecules constituting the nonlinear medium. a) Experimental setup consisting
of a nonlinear electro-optic medium (EOM), a waveplate inducing a phase shift of 𝜃 along its fast axis, a Wollaston prism (WP) separating the two
polarization directions and two photon detectors Ds and Dz. An intense e⃗z-polarized coherent near-infrared (NIR) probe pulse (blue) p,z is applied to
probe a co-propagating quantum THz field ÊTHz,s polarized in the perpendicular e⃗s direction. Êp,s denotes the induced e⃗s-polarized NIR quantum field.
b) Model for the molecules representing the EOM, comprising three levels i, j = g, g′, f with transition frequencies 𝜔ij and lifetime broadenings 𝛾ij.

The probe is sampling the statistics of the input on subcycle time
scales by imprinting it onto its polarization state.[21,22] The strik-
ing advantage of electro-optic sampling in comparison to stan-
dard homodyne detection[23] relies on providing information on
the fluctuations of THzfields directly in the time domain, in com-
plete analogy to its classical counterpart.[24–26] A slightly extended
configuration also allows to characterize the spatio-temporal cor-
relations of THz fields[22,27] and might provide a useful spectro-
scopic tool to access, for example, the linear dielectric function of
materials without requiring any incoming photons.[28] Theoreti-
cal models have so far relied on a macroscopic description of the
second-order nonlinear interaction inside the crystal based on a
classical susceptibility 𝜒 (2).[29,30] Here, the sampling of a classical
THz field is straightforwardly extended to the quantum regime.
We investigate the limitations of this approach and demonstrate
when quantum effects of the nonlinear response must be taken
into account.
To this end, a time-domain quantum electrodynamic theory

of electro-optic sampling is developed. A system of three-level
noninteracting molecules is employed to model the nonlinear
medium and to calculate its frequency response in amplitude
and phase. We demonstrate how fluctuations of the phase-
dependent quadratures of the generated electro-optic signal
can be measured and that a full quantum tomography of the
generated signal is feasible. Our theory focuses on the nature of
the nonlinear electro-optic response and pinpoints under which
conditions a straightforward reconstruction of the quantum
fluctuations is possible. Two types of quantum corrections are
identified: quantum susceptibilities and cascading processes
which lead to an effective intermolecular interaction mediated
by THz fluctuations. Previous theories[29,30] did not include these
effects. We show that the ultrashort temporal duration of the
probe pulse leads to time-ordering for the cascading processes
that squeeze the generated near-infrared field for certain phase
shifts. Conditions under which electro-optic sampling might
be employed as a spectroscopic tool to study quantum suscep-
tibilities are explored. Finally, we describe how the probability
distribution of the bare THz fluctuations can be reconstructed
from the measured probability distribution of the electro-
optic signal and find that quantum corrections can affect this
reconstruction.

2. The Setup

The geometry of the setup and the level scheme exploited to de-
scribe the nonlinear medium are sketched in Figure 1a,b, respec-
tively.
We assume an effective three-level electro-optic medium

(EOM), depicted in Figure 1b that exhibits a second-order non-
linear susceptibility tensor with a zincblende-type symmetry. The
EOM ismodeled by a large number of independent quantum sys-
tems which we term molecules. An intense near-infrared (NIR)
probe field in a strong multimode coherent state |{p,z}⟩ with
a large amplitude p,z(𝜔) = ⟨{p,z}|Êp,z(𝜔)|{p,z}⟩ and a terahertz
(THz) field ÊTHz,s() are sent into the EOM. These beams are lin-
early polarized along the e⃗z and e⃗s directions, respectively. While
propagating through the nonlinear medium, the two fields un-
dergo sum- (SFG) and difference-frequency generation (DFG).
Both three-wave mixing processes generate an e⃗s-polarized weak
contribution to Êp,s. A waveplate then shifts the two polarization
components of the NIR field after the EOM by the angle 𝜃 with
respect to each other, effectively mixing the two contributions
(see Section S1, Supporting Information). The light is then sent
through a Wollaston prism which separates the two polarization
directions. Finally, the number of photons in these beams, N̂′

s and
N̂′

z, are measured with the detectors Ds and Dz, respectively. The
electro-optic signal is defined by their difference,

̂(𝜃) = N̂′
z − N̂′

s = C ∫
∞

0
d𝜔 1

ℏ𝜔

[
P(𝜃)Ê†

p,z(𝜔)Êp,s(𝜔) +H.c.
]

(1)

where C = 4𝜋𝜀0Ac0 with A being the effective transverse area de-
termined by the beamwaist of the probe field, c0 the speed of light
in vacuum, 𝜀0 the vacuum permittivity and P(𝜃) =

√
− cos 𝜃 +

i
√
2 cos(𝜃∕2). A phase shift by 𝜃 = 𝜋∕2 or 𝜃 = 𝜋 is induced by

a quarter- or half-wave plate, respectively[31] (see Figure 1a).
The mean value of the electro-optic signal ̂(𝜃) is proportional

to that of the sampled THz field.[18,32–34] The temporal profile of
an electrical transient can therefore be sampled bymeasuring the
mean value of ̂(𝜃) for different delay times between the probe
and the THz field. To achieve subcycle temporal resolution, the
NIR probe field must be shorter than the characteristic period
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of the input field. To gain insight into the quantum character of
light, highermoments of the electric field are of interest.[21,29,30,35]

To access them experimentally, the statistics of ̂(𝜃) needs to be
collected. The relative likelihood of each measurement result 
builds up a histogram representing the probability distribution
P( , 𝜃) equivalently to standard balanced homodyne tomography.
Theoretically, P( , 𝜃) is given by (see Section S1, Supporting In-
formation)

P( , 𝜃) =
⟨
: 1√

2𝜋N
e−
(−̂(𝜃))2

2N :

⟩

= 1√
2𝜋N

∞∑
k=0

1

(2N)k∕2k!
Hk

(∕√2N
)

× exp
(
− 2

2N

)⟨
: ̂k(𝜃) :

⟩
(2)

where N = C ∫ ∞
0 d𝜔|p,z(𝜔)|2∕ℏ𝜔 is the mean number of pho-

tons of the probe,Hk(x) is the kth-order Hermite polynomial and
the colons denote normal ordering.

3. Superoperator Representation of Classical and
Quantum Nonlinear Susceptibilities

In this work, we want to ignore corrections to the probabil-
ity distribution related to the mean value of the signal ⟨: ̂(𝜃) :⟩
since they only provide information about the classical charac-
teristics of the THz input. Instead, we focus on the normally-
ordered second moment of the signal, °C = ⟨: ̂2(𝜃) :⟩. The vari-
ance of ̂(𝜃) is given by ⟨̂2(𝜃)⟩ = N + °C, where N is the shot
noise of the probe. Moreover, we consider the sampling of THz
vacuum fluctuations since they represent a natural resource in
the experiment and the physics remains maximally transparent.
An expression for °C that describes the sampling of arbitrary
quantum fields is derived in Section S2, Supporting Informa-
tion. We employ the superoperator formalism[4] which offers a
compact quantum treatment of both the matter system and the
electric fields to derive a microscopic expression for °C. Within
this framework, we associate plus- and minus-type superopera-
tors with any ordinary operator Â which are defined by their ac-
tion on an arbitrary operator X̂ ; Â+X̂ = 1

2
{Â, X̂} = 1

2
(ÂX̂ + X̂Â)

and Â−X̂ = [Â, X̂ ] = ÂX̂ − ÂX̂ . The evolution of the system is
determined by the dipole light-matter interaction Hamiltonian
Hint(t) = −

∑
𝛼=z,s ∫V d3r 𝜀𝛼(r⃗, t)̂𝛼(t) where V denotes the volume

of the electro-optic medium. The corresponding superoperator
Ĥint,−(t) is given by[15]

Ĥint,−(t) = −
∑

𝛼=z,s ∫V d3r
[
𝜀𝛼,+(r⃗, t)̂𝛼,−(t) + 𝜀𝛼,−(r⃗, t)̂𝛼,+(t)

]
(3)

where we have used the fact that the dipole and the electric
field operators commute. Here, 𝛼 = z, s represents the two pos-
sible mutually perpendicular polarizations, 𝜀𝛼(r⃗, t) = Êp,𝛼(r⃗, t) +
ÊTHz,𝛼(r⃗, t) +H.c. is the sum of all relevant field modes and
̂𝛼(t) = V̂𝛼(t) + V̂†

𝛼
(t) denotes the dipole operator in the interac-

tion picture with V̂𝛼 = 𝜇𝛼,gg′ |g⟩⟨g′| + 𝜇𝛼,gf |g⟩⟨f | + 𝜇𝛼,g′f |g′⟩⟨f | and
𝜇𝛼,ij as the dipole moment for the j → i transition (i, j = g, g′, f ).
The normally-ordered second moment of the electro-optic sig-

nal °C is calculated from the time-dependent density matrix of
the entire system of field and matter 𝜌

°C ≡ ⟨: ̂2(𝜃) :⟩ = tr
{
: ̂2(𝜃) :  exp

(
− i

ℏ
∫ ∞
−∞ dtĤint,−(t)

)
𝜌in

}
(4)

Here, 𝜌in = 𝜌field ⊗ 𝜌mat denotes the initial densitymatrix given by
a direct product of the densitymatrices for field andmatter and 
represents the time-ordering operator for the superoperators. We
assume 𝜌field = |{p,z}⟩⟨{p,z}|⊗ |0s⟩⟨0s|, that is, the electric field
consists of a multimode coherent state in the e⃗z-polarized NIR
range and the electromagnetic vacuum in both the e⃗s-polarized
NIR and THz ranges. Thematter system consists of an ensemble
of noninteracting molecules initially in the ground state. Since
the trace operation is invariant under cyclic permutation, we can
let the time evolution according to the interactionHamiltonian in
Equation (3) act on : ̂2(𝜃) :. The trace can then be factorized into a
product of traces over the field and thematter degrees of freedom.
The matter trace is given by a time-ordered product of n Green’s
functions of superoperators for the (n + 1)th-order perturbation
term in Ĥint,−(t), resulting in the nth-order susceptibility.
We define the second-order susceptibility

𝜒
(2)
+rs

(
−(𝜔2 + 𝜔1);𝜔2,𝜔1

)
= 1

𝜀0ℏ
2
∫ ∞
0 ∫ ∞

0 dt2dt1e
i𝜔2t1ei𝜔1(t1+t2)

×Tr
{̂+(0)̂r(−t1)̂s

(
−t1 − t2

)
𝜌mat

}
(5)

where r, s = ± indicate the type of superoperator dipole opera-
tors and the subscript (+rs) denotes the sequence of the time-
ordered superoperators of the dipole operators ̂(t) (an explicit
formula for the susceptibilities is given in Section S2, Support-
ing Information). Note that the last interaction with the dipole
operator has to be of the “+” type since the expectation value in
Equation (5) would otherwise be given by a trace over a com-
mutator which vanishes due to the invariance of the trace un-
der cyclic permutation. Earlier interactions can be of either the
“+” or the “−” type. They are accompanied by the opposite su-
peroperator interaction for the corresponding field [see Equa-
tion (3)]. The various sequences of superoperator interactions
can be used to differentiate between classes of second-order
susceptibilities.
Usually, nonlinear susceptibilities are calculated assuming

interaction with classical electric fields. Second-order processes
lead to a classical susceptibility of the form 𝜒

(2)
+−−, that is, n

“−”-type dipole operator interactions, followed by a “+”-type
interaction for the nth-order susceptibility. Accordingly, the
sequence of superoperator interactions for the fields is given by
its conjugate (n “+”-type and one “−”-type interaction). These
types of susceptibilities are also denoted causal since the matter
system interacts with two fields (first two “+”-type interactions)
and generates a new field (last “−”-type interaction). Another
class of second-order susceptibilities is given by 𝜒

(2)
++− where

the corresponding sequence of superoperator interactions for
the electric fields is (− − +). Here, the nonlinear medium first
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Figure 2. Diagrams representing the leading contributions to electro-optic sampling of THz vacuum fluctuations [Equation (6)] for two molecules a and
b. Each diagram depicts interactions between the electric field modes and the density matrix of the matter system. The vertical arrows indicate the time
evolution of molecules a and b from the past (bottom) to the present (top), respectively. The red wavy lines denote an interaction with either ÊTHz,s or

Ê†THz,s, the blue zigzag arrows pointing to the left (right) represent interactions with Ê†p,s (Êp,s) and the straight blue arrows pointing to the left (right)
denote interactions with the coherent probe field ∗

p,z (p,z), respectively. The ± signs next to the horizontal arrows denote the type of superoperator
interaction for the corresponding field mode. I) A process that can be described by classical susceptibilities. This diagram is the only one captured by
the classical treatment. IIa–c) Processes that involve quantum susceptibilities due to two “−”-type interactions of molecule b with Êp,s and ÊTHz,s. IIIa,b)
Cascading processes that can be described by classical susceptibilities but are not captured by the classical treatment described in the main text. The
diagrams depicted here survive the rotating wave approximation (RWA). For a detailed calculation and the full set of diagrams see Section S2, Supporting
Information.

interacts with the field mode associated with the respective
“−”-type dipole operator interaction and then generates two
fields through spontaneous fluctuations described by the two
“+”-type dipole operator interactions. No clear time ordering for
the generation of the two fields can be established. Therefore,
this susceptibility as well as any kind of susceptibilities with
more than one “−”-type interaction for the fields should be
denoted quantum or noncausal susceptibilities.[17]

4. Normally-Ordered Second Moment of the THz
Vacuum Field

In this section, we calculate the normally-ordered second mo-
ment °C. Since both the NIR Êp,s and the THz ÊTHz,s field modes
are initially in the vacuum state, each of them must interact at
least twice to give a nonvanishing contribution to Equation (4).
Therefore, we need to have two interactions with Êp,z, Êp,s, and

ÊTHz,s, each. It is now mandatory to expand the exponential in
Equation (4) to sixth order in Ĥint,−. Linear contributions may

be neglected. Due to the large number of molecules, the dom-
inant contribution to the signal comes from pairs of molecules
each interacting three times with the dipole operator. We are thus
considering two second-order processes instead of a single fifth-
order process. The probe will be treated classical because of its
strong coherent amplitude, that is, we only take into account in-
teractions of the form Êp,z,+ since Êp,z,− vanishes for a classical
field. This approximation does not apply to the quantum fields
Êp,s and ÊTHz,s. The leading diagrams for °C that survive the ro-
tating wave approximation (RWA) are given in Figure 2. Note
that the RWA has not been applied in our calculations which are
based on Equation (3) and include the full set of diagrams given
in Section S2, Supporting Information. In Figure 2I, the pair of
molecules that generate the signal interact with the THz vacuum
through ÊTHz,s,+. In this case, the time ordering of these two inter-
actions is immaterial and the nonlinear processes are completely
independent of each other. In contrast, the remaining diagrams
describe shared fluctuations between two molecules that involve
the commutator of two THz field modes. The first interaction
with ÊTHz,s,− on molecule b, for example, emits a THz photon
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Figure 3. Visualization of the three different types of responses. a) The probe p,z (blue) and the THz vacuum ÊTHz,s (red) interact with two molecules

(spheres) to generate the NIR field Êp,s (violet). The two processes happen independently of each other and belong to the classical response ffI in
Equation (7). b) The probe interacts with one molecule to generate both a THz and a NIR field. The generated THz field together with the probe then
interacts with a second molecule to generate an additional NIR field. The first 𝜒 (2) process is described by quantum susceptibilities and the response
is given by Equation (9). c) The probe and the NIR vacuum interact with one molecule to generate a THz field. The generated THz component together
with the probe then interacts with a second molecule to generate a NIR field. These are cascading processes which are described by Equation (11).

which is then absorbed by molecule a through the interaction
with ÊTHz,s,+. Therefore, the intermolecular time ordering of these
interactions with the THz field is crucial. It leads to an effective
interaction between molecules a and b that is mediated by the
THz vacuum fluctuations. These processes can only be under-
stood in the joint space of both molecules. We note that initially
and in the final state, all molecules are uncoupled. The coupling
exists during the interaction process initiated by the probe field,
where an excited molecule can transfer its excitation to another
molecule via the THz vacuum. No classical field is generated at
any point during this process. We split the normally-ordered sec-
ond moment °C of the electro-optic signal into three contribu-
tions

°C = °CI + °CII + °CIII (6)

which will be discussed in detail below.
The first contribution °CI is given by

°CI =
(N𝜔𝗉L

c0

)2

∫
∞

0
d ℏ
C

[
1 + sinc2

(
2L∕c0

)] ||D(, 𝜃)||2 (7)

where 𝜔p = ∫ ∞
0 d𝜔|p,z(𝜔)|2∕ ∫ ∞

0 d𝜔(1∕𝜔)|p,z(𝜔)|2 is the aver-
age detected frequency and L is the length of the nonlinear
medium along the propagation direction. In the following, 𝜔 and
denote frequencies in the NIR and THz range, respectively. We
have further introduced the gating functionD(, 𝜃) which depends
on the classical susceptibilities 𝜒 (2)

+−−

D(, 𝜃) = 1
2
∫ ∞
0 d𝜔f ∗+ (𝜔, , 𝜃)

×
(
𝜒
(2)∗
+−−(−𝜔;−,𝜔 + ) + 𝜒

(2)∗
+−−(−𝜔;𝜔 + ,−)

)
− 1

2
∫ ∞
0 d𝜔f−(𝜔, , 𝜃)

×
(
𝜒
(2)
+−−(−𝜔; ,𝜔 − ) + 𝜒

(2)
+−−(−𝜔;𝜔 − , )

)
(8)

with the autocorrelation functions f±(𝜔, , 𝜃) = P(𝜃)∗
p,z(𝜔)p,z(𝜔 ±

)∕ ∫ ∞
0 d𝜔|p,z(𝜔)|2. The leading diagram to this contribution is

depicted in Figure 2I. Here, both molecules interact indepen-
dently with the THz vacuum and the matter response can be
described in the single-molecule space. In that sense, the THz
vacuum may be treated as a classical field in analogy to the

response of conventional electro-optic sampling which is why
the matter response is given by classical susceptibilities 𝜒 (2)

+−− [cf.
Equation (5)]. Figure 3a provides a visual representation of these
processes. The same result may be also obtained by calculating
the third-order correction to the electro-optic signal ̂(𝜃) in
Equation (1) and squaring it [see the result for arbitrary THz
fields in Equation (B7) of Section S2, Supporting Information].
°CI represents the classical contribution to the normally-ordered
second moment °C and always remains positive. These are the
only processes that depend on the state of the THz field and are
actually sampling its fluctuations [cf. Equation (B7) in Section S2,
Supporting Information]. We thus have a quantum extension of
classical electro-optic sampling which not only provides access to
the temporally resolved mean value of the THz input but also its
fluctuations.
The other two contributions °CII and °CIII in Equation (6) con-

stitute genuine quantum corrections. Here, the first interaction
of thematter systemwith the THz field is given by the superoper-
ator ÊTHz,s,−, generating a THz field which propagates further and
interacts with a second molecule according to ÊTHz,s,+. This pro-
cess leads to an intermolecular time ordering of the two 𝜒 (2) pro-
cesses and an effective intermolecular interaction which is only
understandable in the two-molecule space. The intermolecular
time ordering is reflected in interference terms that may also re-
duce the fluctuations of the electro-optic signal. Contributions of
this type involve the commutator of the THz field operators and
are independent of their state. They therefore represent byprod-
ucts of the nonlinear interaction that do not provide any informa-
tion on the THz input.
°CII is given by

°CII =
(

N𝜔𝗉L

c0

)2 ∫ ∞
0 d ℏ

C

[
1 + sinc2

(
2L∕c0

)]
×ℜ

{
D(, 𝜃)Dq(, 𝜃)

}
−
(

N𝜔𝗉L

c0

)2 ∫ ∞
0 d ℏc0

CL

[
3 + sinc2

(
2L∕c0

)]
×ℑ

{
D(, 𝜃)Dq(, 𝜃)

}
(9)

where ℜ{⋅} and ℑ{⋅} denote the real and imaginary part, re-
spectively. Here, the classical gating function D(, 𝜃) is given in

Laser Photonics Rev. 2022, 2100423 © 2022 Wiley-VCH GmbH2100423 (5 of 9)

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Equation (8) and the gating function Dq(, 𝜃), which depends on
quantum susceptibilities, is given by

Dq(, 𝜃) = ∫ ∞
0 d𝜔f+(𝜔, , 𝜃)

×
(
𝜒
(2)
++−(−;−𝜔,𝜔 + ) + 𝜒

(2)
+−+(−;𝜔 + ,−𝜔)

)
+ ∫ ∞

0 d𝜔f+(𝜔, , 𝜃)

×
(
𝜒
(2)
++−(−𝜔;−,𝜔 + ) + 𝜒

(2)
+−+(−𝜔;𝜔 + ,−)

)
+ ∫ ∞

0 d𝜔f ∗− (𝜔, , 𝜃)

×
(
𝜒
(2)∗
++−(;−𝜔,𝜔 − ) + 𝜒

(2)∗
+−+(;𝜔 − ,−𝜔)

)
+ ∫ ∞

0 d𝜔f ∗− (𝜔, , 𝜃)

×
(
𝜒
(2)∗
++−(−𝜔; ,𝜔 − ) + 𝜒

(2)∗
+−+(−𝜔;𝜔 − , )

)

(10)

Dq involves quantum susceptibilities of the form 𝜒
(2)
++− and 𝜒

(2)
+−+

[cf. Equation (5)]. Figure 3b demonstrates these types of pro-
cesses. The leading diagrams are depicted in Figure 2IIa–c. Ob-
serving features related to these susceptibilities therefore assures
that a genuinely nonclassical field was involved in the responsible
nonlinear process.
Finally, °CIII is given by

°CIII =
(

N𝜔𝗉L

c0

)2 ∫ ∞
0 d ℏ

C

[
1 + sinc2

(
2L∕c0

)]
×ℜ {D(, 𝜃)Dcasc(, 𝜃)}

−
(

N𝜔𝗉L

c0

)2 ∫ ∞
0 d ℏc0

CL

[
3 + sinc2

(
2L∕c0

)]
×ℑ {D(, 𝜃)Dcasc(, 𝜃)}

(11)

where the gating function Dcasc(, 𝜃) which depends on the classi-
cal susceptibilities 𝜒 (2)

+−− is given by

Dcasc(, 𝜃) =
1
2
∫ ∞
0 d𝜔f+(𝜔, , 𝜃)

×
(
𝜒
(2)
+−−(−;−𝜔,𝜔 + ) + 𝜒

(2)
+−−(−;𝜔 + ,−𝜔)

)
+ 1

2
∫ ∞
0 d𝜔f ∗− (𝜔, , 𝜃)

×
(
𝜒
(2)∗
+−−(;−𝜔,𝜔 − ) + 𝜒

(2)∗
+−−(;𝜔 − ,−𝜔)

)
(12)

°CIII constitutes a quantum correction even though the gating
function Dcasc(, 𝜃) only involves classical susceptibilities of the
type 𝜒 (2)

+−−. Here, we deal with cascading processes where for ex-
ample a photon is emitted into the THz vacuum by molecule
b and then reabsorbed at molecule a. Figure 3c gives a visual
representation of this kind of processes. The leading diagrams
are shown in Figure 2IIIa,b. The cascading processes can also
be obtained within an effective Hamiltonian since they only in-
volve classical susceptibilities. Equation (11) contains two terms.
In the first, energy conservation holds for each single 𝜒 (2) process
whereas in the second, energy is conserved only for both 𝜒 (2) pro-
cesses combined.

5. Simulation Results for the Three-Level Model

To illustrate the difference between the classical and quantum
response of matter, we have calculated them for the three-level
scheme shown in Figure 1b and a length L of 10 𝜇m for the non-
linearmedium.We assume a rectangular spectral envelope of the
probe field with a center frequency of 𝜔c∕(2𝜋) = 255 THz and
a spectral width of €𝜔∕(2𝜋) = 150 THz. Therefore, the probe is
off-resonant with respect to both transition frequencies while the
THz vacuum can include frequencies resonant with the g → g′

transition. Figure 4a depicts the normally ordered second mo-
ment °C in Equation (6) together with its three components: the
classical response °CI, the response described by the quantum
susceptibilities °CII and the response according to the cascading
processes °CIII. °CI samples the THz vacuum fluctuations which
are uncorrelated with the shot noise of the probe. Therefore, it
can only enhance the fluctuations of the electro-optic signal. In
contrast, both quantum corrections can also lead to a reduction of
the noise due to the effective interaction between the molecules
mediated by the THz vacuum. Interestingly, there are certain
phase shifts 𝜃 where one of the three contributions is dominant.
Figure 4a,c demonstrate that for a quarter-wave plate (𝜃 = 𝜋∕2)
the quantum contributions are small compared to the classical
response while for a half-wave plate (𝜃 = 𝜋), the quantum con-
tribution °CII constitutes almost the entire electro-optic signal.
Outcomes for intermediate phase shifts are dominated by the cas-
cading contribution °CIII. The fact that both the classical and the
cascading contributions almost vanish in the half-wave plate con-
figuration (𝜃 = 𝜋) is remarkable and suggests that electro-optic
sampling could also be used as a spectroscopic tool to study the
pure quantum susceptibilities of different materials.
As demonstrated in Figure 4b, the quantum susceptibilities in-

volved in the gating functionDq almost vanish in the off-resonant
case. However, the cascading processes[36] described by the gat-
ing function Dcasc still constitute a significant contribution even
if all fields involved are off resonance with respect to the transi-
tion frequencies of thematerial. Figure 4b shows the off-resonant
normally-ordered second moment °C in Equation (6) where we
have now assumed a three-level model with transition frequen-
cies 𝜔, ≪ 𝜔′

g′g ,𝜔
′
fg. The cascading processes can lead to substan-

tial corrections for intermediate phase shifts of 𝜋∕2 < 𝜃 < 𝜋 and
𝜋 < 𝜃 < 3𝜋∕2. These corrections are given by the second term in
Equation (11). They are thus originating fromprocesses where an
energy excess or deficiency is created in the first 𝜒 (2) process only
to be compensated by the second 𝜒 (2) process. This exchange of
energy between the two nonlinear steps can only happen within
a certain distance determined by the frequency of the generated
THz field. This fact also explains why the second term in Equa-
tion (11) scales just linearly with the length of crystal. The pres-
ence of this effect is therefore owed to the short length of the
crystal and the broadband nature of the sampling.
In previous experiments,[21,22] electro-optic sampling was car-

ried out with a phase shift of 𝜃 = 𝜋∕2. Interestingly, Figure 4b
shows that while the cascading processes result in distinct contri-
butions for various phase shifts, they can be neglected and thus
remain hidden in this configuration so that the classical treat-
ment provides a good approximation. However, their presence
can be inferred, for example, if spectral filtering is introduced
into the measurement according to Figure 5a where only half of
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Figure 4. Normally-ordered second moment ff of the electro-optic signal calculated according to Equations (7), (9), and (11) for different phase shifts
𝜃. a) ff according to the level scheme shown in Figure 1b. The blue line depicts ff for the full quantum treatment given by Equation (6). It is given by the
sum of the classical contribution ffI [black line, cf. Equation (7)], the contribution stemming from the quantum susceptibilities ffII [dashed orange line,
cf. Equation (9)] and the cascading contribution ffIII [dashed green line, cf. Equation (11)]. b) Off-resonant case with 𝜔, ≪ 𝜔′

g′g
,𝜔′

fg
. The length L of the

nonlinear mediumwith respect to the strength of the nonlinear susceptibilities is chosen such that the maximal value of ff can still be regarded as a small
correction to the shot noise. In this case, a maximum contribution of 0.2N was adopted. c) Ratio of the absolute strength of the quantum contribution|ffII| to the combined absolute strengths of each contribution G = |ffI| + |ffII| + |ffIII| for the level scheme shown in Figure 1b. The normally-ordered
second moment ff is almost entirely determined by the quantum contribution ffII for the half-wave plate configuration, given by 𝜃 = 𝜋.

Figure 5. Spectral filtering in electro-optic sampling and effects of the cascading processes. a) Spectral filtering in the gating function. For 𝜔̃∕(2𝜋) =
217.5 THz, the lower half of the probe spectrum is detected while 𝜔̃∕(2𝜋) = 292.5 THz constitutes a measurement of the upper half of the probe
spectrum. b) Comparison of the normally-ordered second moment ff according to Equation (13) between the classical treatment (black line), where
only ffI is taken into account, and the full quantum treatment (blue line) involving also the cascading processes.

the probe spectrum is exploited for detection. The corresponding
electro-optic signal is given by

̂cut(𝜔̃) = C ∫
𝜔̃+€𝜔∕4

𝜔̃−€𝜔∕4
d𝜔 1

ℏ𝜔

[
iÊ†

p,z(𝜔)Êp,s(𝜔) +H.c.
]

(13)

where the frequency window is centered at 𝜔̃. Figure 5a depicts
the spectral cut for 𝜔̃ = 𝜔c − €𝜔∕4, which generally begins in the
lower half of the probe spectrum at 𝜔̃ − €𝜔∕4 and ends in the
upper half at 𝜔̃ + €𝜔∕4. Figure 5b illustrates how the normally-
ordered secondmoment °C based on Equation (13) changes upon
varying the position of 𝜔̃. To gain an additional insight, we now
compare °C to the case when the cascading processes are ex-
cluded from the calculation. Note that these contributions add
noise in the lower half of the probe spectrum while subtract-
ing noise in the upper half. The corresponding contributions are
cancelled out almost completely when the entire probe spectrum
is detected.

We next use the results for °C to calculate the first correc-
tion due to the THz field to the probability distribution in Equa-
tion (2), which is given by

P( , 𝜃) = 1√
2𝜋N

exp
(
− 2

2N

)(
1 + 1

2N2

(2 − N
)
°C

)
(14)

The correction to the bare probability distribution of the probe
is represented by a single-photon state of the e⃗s-polarized NIR
field scaling linearly with the normally-ordered second moment
of the electro-optic signal °C in Equation (6). Figure 6a com-
pares the contour plot of the probability distribution in Equa-
tion (14) to that for the bare shot noise of the probe and the
probability distribution obtained by only considering the classi-
cal contribution °CI. Here, the polar angle does not represent 𝜃,
which corresponds to the phase shift induced by the waveplate
shown in Figure 1a, but rather the corresponding phase shift
𝜑 = arccos(

√
− cos 𝜃) induced in the electro-optic signal itself,

which is given by ei𝜑(𝜃) = P(𝜃) [cf. Equation (1)]. The noise added
by the classical contribution °CI turns the rotationally symmetric
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Figure 6. Statistics of the measured electro-optic signal ̂(𝜃) [cf. Equation (1)] and reconstructed statistics of the THz vacuum. a) Contour plot of the
probability distribution of the electro-optic signal ̂(𝜃(𝜑)). The blue line depicts the probability distribution according to Equation (6), the black line
shows the probability distribution resulting from the classical treatment, and the black dashed line depicts the probability distribution of the shot noise
of the probe. b) Reconstructed statistics of the THz vacuum with Enorm = c0

L𝜔p𝜒
(2)
+−−

. Note that the nonlinearity is independent of the frequency entries

in the off-resonant case and can be treated as a constant prefactor. The blue line in the inset depicts the probability distribution of ̂(𝜃 = 𝜋∕2) and the
dashed black line corresponds to the shot noise of the probe. Deconvolution of the two should provide the statistics of the THz vacuum.

probability distribution for the shot noise of the probe into an el-
lipse with the long axis along the direction of 𝜑 = 𝜋∕2. The quan-
tum correction givenmainly by the cascading processes °CIII then
rotates the long axis of this ellipse and squeezes the generated
NIR field Êp,s for phase shifts of 0.8𝜋 ≲ 𝜑 ≤ 𝜋.
Ellipsometry enables a full tomography of the generated NIR

field Êp,s, as in standard balanced homodyne detection.[37] We
now discuss whether the statistics of the THz field itself can
be reconstructed from the statistics of the generated NIR field.
Figure 6b shows this type of reconstruction for a phase shift of
𝜑 = 𝜋∕2. In this case, the quantum corrections to °C are negligi-
ble and the fluctuations added on top of the shot noise aremainly
given by the classical contribution °CI which samples the fluc-
tuations of the THz field and is therefore uncorrelated with the
shot noise. Here, the probability distribution of the THz input is
given by a simple deconvolution of the probability distribution
in Equation (14) with the Gaussian probability distribution for
the shot noise of the probe. In contrast, the quantum correction
dominated by the cascading processes °CIII introduces an addi-
tional contribution for other phase shifts that is independent on
the state of the THz field and cannot be understood as simply
sampling the THz vacuumfluctuations. The cascading processes
lead to interference with the e⃗s-polarized NIR field Êp,s and there-
fore with the shot noise. A simple deconvolution of the probabil-
ity distribution for the corresponding phase shifts 𝜑 would fail to
give the correct statistics of the THz vacuum.

6. Conclusion

We have employed the superoperator formalism to develop a
microscopic theory for time-domain electro-optic sampling of
electric field fluctuations. Three contributions to the electro-
optic signal variance were identified: a classical contribution
reproducing the results of previous theoretical models[29] and
two quantum responses. One part originates from a contribution

stemming from quantum susceptibilities and another one from
cascaded nonlinear processes. The quantum corrections strongly
depend on the intermolecular time-ordering of the THz interac-
tions in the 𝜒 (2) processes. Here, an effective interaction between
the molecules mediated by the THz vacuum fluctuations is
established. To demonstrate the difference between the classical
and quantum responses, we compared the respective phase-
dependent electro-optic contributions for an effective nonlinear
medium described by a system of three-level noninteracting
molecules. For a configuration involving a quarter-wave plate,
we found that the quantum corrections to the normally-ordered
second moment of the electro-optic signal vanish. In this case,
the electro-optic signal is described by the conventional response
also used for classical electro-optic sampling. For other phase
shifts, however, the quantum response significantly influences
the measured statistics and can also lead to a reduction of the
fluctuations below the shot-noise limit of the probe field. For the
configuration with a half-wave plate, the classical as well as the
cascading processes can be suppressed completely, opening up
the possibility to use electro-optic sampling as a novel spectro-
scopic tool to study quantum susceptibilities. The contribution
due to the cascading processes should already be observable with
slight changes in present experimental setups by either intro-
ducing spectral filtering or studying the electro-optic signal for
certain phase shifts in the ellipsometry part. Finally, we describe
how the probability distribution of the THz vacuum can be re-
constructed from the one of the electro-optic signal as has been
achieved experimentally.[21] We note that a reconstruction for
other phase shifts would need to take into account the additional
quantum contributions. We have shown that the ellipsometry
enables detection of the probability distribution of the generated
NIR field for phase shifts within an interval of length 𝜋, thus
providing a full quantum tomography of its state. A method for
reconstructing the statistics of the THz input for arbitrary phase
shifts would pave a way for quantum tomography of nonclassical
fields with subcycle temporal resolution. Our theory provides a

Laser Photonics Rev. 2022, 2100423 © 2022 Wiley-VCH GmbH2100423 (8 of 9)

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

firm basis for addressing the challenging issue of the extraction
of these statistics under realistic experimental conditions.
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