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Protein secondary structure discrimination is crucial for understanding their biological
function. It is not generally possible to invert spectroscopic data to yield the structure.
We present a machine learning protocol which uses two-dimensional UV (2DUV) spec-
tra as pattern recognition descriptors, aiming at automated protein secondary structure
determination from spectroscopic features. Accurate secondary structure recognition is
obtained for homologous (97%) and nonhomologous (91%) protein segments, ran-
domly selected from simulated model datasets. The advantage of 2DUV descriptors
over one-dimensional linear absorption and circular dichroism spectra lies in the cross-
peak information that reflects interactions between local regions of the protein. Thanks
to their ultrafast (∼200 fs) nature, 2DUV measurements can be used in the future to
probe conformational variations in the course of protein dynamics.

ultrafast spectroscopy j biochemistry j physical chemistry j theoretical chemistry

Protein structures hold the key to deciphering their versatile biological functions (1).
Tremendous experimental progress has been made in protein structure determination
(2–4). Artificial intelligence has shown enormous potential for determining protein
structures. Very recently, DeepMind has successfully predicted protein three-
dimensional structure from sequences of amino acids using a machine learning (ML)
model (5, 6). These approaches provide limited information about how the conforma-
tions of a protein vary in the course of many important dynamic processes, including
matter transport across membrane proteins, ligand binding, and protein folding. Since
dynamical characteristics of proteins ultimately shape their function (7), it is essential
to incorporate protein dynamics information into the ML training in order to identify
the relevant conformations at ambient conditions.
Optical signals provide a window into a variety of response properties of matter.

Combined spatial and temporal resolved techniques provide a versatile set of tools for
characterizing protein structures and dynamics in ambient conditions (8, 9). The inter-
pretation of protein spectra based on protein structure and quantum chemistry calcula-
tions is a formidable task, requiring the solution of dynamic structures from sizable
spectra dataset. Developing ML protocols for connecting protein spectra and confor-
mations is highly desirable. There is a growing effort in applying data-driven ML
approaches toward automated connection of molecular spectra to structures (10–13).
This has motivated us to pursue ML protocols for predicting infrared and UV-visible
(UV-vis) absorption spectra of proteins from their structures (14–16). Structure inver-
sion (i.e., direct retrieval of protein structures from spectra) is more challenging and
not well developed. Only limited information about matter is projected onto the sub-
space spanned by the transition energies and intensities available. In conventional spec-
troscopy measurements, much of the rich information regarding the high-dimensional
configuration space of matter is not accessible. Therefore, determining three-
dimensional structure of molecules from one-dimensional (1D) spectroscopic features
(e.g., peaks and line shapes) is essentially a dimension augmentation process. Conven-
tionally, accumulative chemistry knowledge and theoretical simulations are required to
reveal protein structures from spectra. It is hard to connect the complexity of protein
structure and dynamics using 1D spectra signals as descriptors in ML. Descriptors con-
taining multidimensional information about protein structures (both global and local)
are required to accomplish this task.
Two-dimensional (2D) four-wave mixing spectroscopies, which measure the coupling

between optical transitions in the system of interest, can provide much more detailed
information about molecular structures and dynamics than their 1D counterparts (17).
Because 2D spectroscopies probe time-resolved responses of both global and local struc-
tures of the system, they are widely used to accomplish this task (18–22). The 2D spec-
troscopies project the response information onto a 2D feature space and can reach higher
resolution than 1D signals. The rich information carried by 2D spectra makes the
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automated interpretation of signals very challenging. Since ML is
most suitable for processing high-dimensional, nonlinear datasets
with clear underlying principles, developing an effective ML
model that can allow secondary structure recognition from 2D
spectra would be a key step toward protein structure inversion
from spectra.

Results and Discussion

We used three datasets (Fig. 1A): 1) the original set (I), with seg-
ments with secondary structures of α-helix, β-sheet, and others
(including 310-helix, π-helix, bend and coil) harvested from
molecular dynamics (MD) trajectories of natural proteins bovine
deoxyhemoglobin (BH; PDB ID: 1HDA) (23) and lentil lectin
(LL; PDB ID: 1LES) (24); 2) the homologous set (II), with seg-
ments from human deoxyhemoglobin (PDB ID: 1A3N, homol-
ogous to BH) (25) and pea lectin (PDB ID: 1BQP, homologous
to LL) (26); and 3) the nonhomologous set (III), with segments
taken from 498 other proteins (PDB IDs listed in SI Appendix,
Table S4). The linear absorption (LA), circular dichroism (CD),
and 2DUV spectra of each segment were simulated by using an
exciton model in the SPECTRON code (27). The three datasets
contain 147,993 structure-spectra samples in total. Details of the
dataset construction are described in Materials and Methods and
SI Appendix.
Because 1D and 2D spectra provide curves and grayscale

images, respectively, of distributions of response intensities in
the frequency domain, we applied convolutional neural net-
works (CNNs)—a well-established pattern recognition ML
technique—to process these electronic spectra as sequences and
images, respectively, based on which the structural correlations

of these spectral patterns are examined (SI Appendix, Figs. S1
and S2). Using 2DUV spectra as input, the average secondary
structure discrimination accuracy attained 95.1, 97.0, and
91.3% for protein segments extracted from the same protein
(dataset I), from homologous protein (dataset II), and from
nonhomologous protein (dataset III), respectively. 2DUV
shows significant advantages for achieving our goals compared
to 1D LA and CD spectra. This superior performance can be
ascribed to the exciton coupling information contained in the
cross-peaks of 2DUV spectra. This information is combined
with excitation energies and intensities and convoluted into 1D
line shapes in LA and CD. Gradient-weighted class activation
mapping (grad-CAM) analysis confirms the importance of the
cross-peak patterns in 2DUV for secondary structure discrimi-
nation (28).

As shown in Fig. 2A, the 1D LA spectra (green lines) of pep-
tide segments with different secondary structures are similar,
with slight differences in peak widths and positions. This spec-
tral similarity can be attributed to the congestion by signals
from multiple chromophores, making the 1D spectra poorly
resolved for structure discrimination. CD spectra are more
informative than LA. Due to its sensitivity to exciton interac-
tion patterns governed by the relative distances and orientations
of chromophores, CD has long been used for protein secondary
structure characterization (29). However, the CD signals are
the differences between the absorption intensities of the oppo-
site circular polarized incident waves, resulting in much broader
and shifted peaks, as shown by the purple lines in Fig. 2A.

2DUV simultaneously represents electronic transitions (diag-
onal peaks) and their couplings (off-diagonal peaks) in a 2D
space, giving much higher resolutions and directly illustrating

Fig. 1. Machine discrimination schemes to recognize peptide secondary structures. (A) Three sets of proteins, denoted as original (I), homologous (II), and
nonhomologous (III), were used to prepare the peptide segment dataset. Using only dataset I, the pretrained model underfits the correlation between sec-
ondary structures and spectra; the performance is greatly improved by incorporating data from the other two datasets via transfer learning. The horizontal
dashed lines in the bar plots denote accuracies of 90%. (B) Flowchart to generate the LA, CD, and 2DUV spectra of each peptide segment extracted from
different proteins.
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the subtle distinctions in exciton couplings due to structural
variations. As shown in Fig. 2B, the 2DUV spectra are much
richer and, thus, more informative than the corresponding lin-
ear spectra (Fig. 2A). The simulation of 2DUV spectra requires
statistical averaging of spectral patterns of individual structures,
which erodes some fine features (21, 27). Moreover, 2DUV
spectra of segments with the same secondary structure might
possess variable spectral patterns, as shown in Fig. 2B. The
three randomly selected samples from each of the secondary
structure categories have different 2DUV patterns even for
segments with the same secondary structure, which further
complicates the analysis. It is not obvious how to extract repre-
sentative spectral patterns for different secondary structures,
which is required in order to establish the spectrum-structure
correlation for secondary structure discrimination.
Our goal is to construct ML models that correlate the chemi-

cal and spectral information carried by the spectroscopic signals
with protein secondary structures. In the first step, we con-
structed two 1D CNN models for LA and CD and a 2D CNN
model for 2DUV to extract structure-spectra correlations. The
models were first trained with the original dataset I, which was
randomly split into the training, validation, and test sets with
size ratios of 7:1:2. The hyperparameters—including the size of
filters, learning rates, dropout ratios, and the kernel size of max
pooling—were optimized using the grid search method (SI
Appendix, Tables S1 and S2). Fig. 3 depicts the accuracies of
secondary structure discrimination of models with various com-
binations of hyperparameters. For each type of model, hyper-
parameters such as the dropout ratio, the filter size, and the
learning rate adopt a series of widely scattered values. A model
was then trained and tested with each combination of hyper-
parameters (connected with lines), and its accuracy was
reported as the color of the connecting lines. According to the
color bar in Fig. 3, red lines reflect high accuracies near unity,
while blue lines reflect accuracies lower than 90%. It is evident
that models fed with 2DUV (Fig. 3C) perform much better
than those fed with LA (Fig. 3A) and CD (Fig. 3B): the 1D

model trained with LA spectra (Fig. 3A) achieved overall accu-
racies of 86∼91% in secondary structure discrimination, while
the model trained with CD spectra (Fig. 3B) performs slightly
better, reaching 87∼93% accuracies. In contrast, the 2D CNN
models trained with 2DUV spectra show robust high perfor-
mance of near 100% accuracy, independent of the choice of
hyperparameters, as shown in Fig. 3C. The significantly higher
performance of the 2D CNN models compared to the 1D
models indicates that in addition to the electronic transition
energies, intensities, and chiral characteristics included in the
1D spectra, the couplings between them—which are revealed
only by the 2DUV spectra—are crucial for secondary structure
discrimination.

An important measure of the algorithm performance is its
transferability (i.e., how the model performs on datasets other
than the training set). We therefore examined the pretrained
models discussed above on two new datasets: the homologous
(II) and nonhomologous (III) sets. The models’ performance
on the three datasets are shown by the confusion matrices in SI
Appendix, Fig. S3. The vertical and horizontal axes denote the
true and model-predicted labels, respectively. Although the pre-
trained models perform well on the original set (SI Appendix,
Fig. S3A), the discrimination accuracies significantly decrease
for datasets II and III (SI Appendix, Fig. S3 B and C). Specifi-
cally, the average accuracy of the LA (CD) model decreases
from 98.2 (98.9) to 78.2% (66.8%), while the accuracy of the
2DUV model decreases from 100 to 98.4%. The average accu-
racies of the pretrained LA, CD, and 2DUV models further
drop to 72.6, 73.1, and 66.4%, respectively. The lower dis-
crimination for datasets containing new structures is expected,
since the pretrained model used only spectrum-structure corre-
lations of segments extracted from the BH and LL proteins.
Spectral patterns arising from new chromophore environments
in different proteins are hard to recognize.

To extend the knowledge learned from dataset I, we
employed the transfer learning technique to finetune the pre-
trained models. In this protocol, the convolution modules (i.e.,

Fig. 2. The 1D/2DUV spectroscopy and schematic view of the neural network for protein structure recognition. (A and B) The LA (A, green), CD (A, purple),
and 2DUV (B) spectra of three randomly selected peptide segments with α-helical (first row), β-sheet (second row), and other (third row) secondary struc-
tures. (C) Schematic view of the architecture of the CNNs for secondary structure recognition from 2DUV spectra.
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the convolution and max pooling layers) were held fixed, while
the following fully connected dense layers were allowed to
change (Fig. 2C). For all the 1D and 2D models, 500, 500,
and 2,000 samples from datasets I, II, and III, respectively,
were randomly selected. All models perform better than the
pretrained ones when applied on datasets II and III. As shown
in Fig. 4C, the 2D model experiences the most significant
improvement, with an average accuracy of 91.3% (compared

with 66.4% of the pretrained model). The performances of the
LA and CD models were also improved by the transfer learn-
ing; specifically, the average accuracy of the LA model was
improved from 72.6 to 88.0%, and that of the CD model was
improved from 73.1 to 86.7%.

Even though the discrimination accuracies of the LA and
CD models significantly improve with transfer learning, these
models still underperform compared to the 2DUV model with

Fig. 3. Parallel coordinate plots of the hyperparameter optimization. (A and B) The 1D (LA and CD) CNNs. (C) The 2D (2DUV) CNN.

Fig. 4. Confusion matrices of the CNN models after transfer learning to recognize secondary structures of protein segments. The vertical and horizontal
axes denote the true and model-predicted categories, respectively. Each matrix element represents the ratio of samples with corresponding categorical
labels. Near-unity diagonal values reflect high recognition accuracies. (A) The original set I. (B) The homologous set II. (C) The nonhomologous set III.
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3∼5% average accuracy. The transferability to homologous data-
set II is similar, as shown in Fig. 4B: the 2D model attained an
average accuracy of 97.0%, which is much better than that of
the models using LA (91.1%) or CD (76.3%) spectra. To sum-
marize, either in the pretrained case or after transfer learning, the
2D model significantly outperforms its 1D counterparts.
The superiority in discriminating peptide secondary structures

of the 2D compared with 1D models can be attributed to the
intrinsic dimensionality advantage of the 2D spectra, where not
only the excitons themselves, but also the couplings between
these excitons, are given by the cross-peaks. As illustrated in the
simple transition dipole coupling model, the coupling strength is
sensitive to the distance and the relative orientation of the chro-
mophores (i.e., the peptide bonds) (30). This structural depen-
dence of the electronic coupling is then represented as cross-peak
intensities in the 2DUV spectra (27). On the other hand,
2DUV also carries information buried in the LA spectra, which
can be demonstrated by plotting the diagonal slice into 1D
curves. The low performance of LA and CD spectra in discrimi-
nating secondary structures indicates that the exciton energy-
intensity pairs in a 1D space are insufficient to construct reliable
structure-spectrum correlation, which results in ambiguities in
spectrum-based structure discrimination. The exciton coupling
information in the 2D signals is crucial for this task.
To understand why the 2DUV information is crucial for sec-

ondary structure discrimination, we have generated the grad-
CAMs for typical segments (28). A grad-CAM is reconstructed
from the gradients of the class target score with respect to the
feature maps of the last convolution layer, which is a measure
of the relative importance of the neuros in classification. The
grad-CAM is a heatmap that demonstrates the region(s) of a
2DUV spectrum crucial for structure discrimination. It can
also be viewed as a visual explanation of what the CNN model
learned about the object. Fig. 5 depicts the 2DUV spectra and
corresponding grad-CAMs of three randomly selected segments
with each secondary structure category. It is evident that for all
the samples shown in Fig. 5, the most important spectral
features for secondary structure discrimination lie in the off-
diagonal region (i.e., the cross-peaks caused by exciton cou-
pling), which is absent in 1D LA and CD spectra. Compared
to other secondary structures (Fig. 5C), for α-helices (Fig. 5A),
the important spectral features lie below the diagonal line in
the far UV range (52,000∼54,000 cm�1) and correspond to

the strong coupling between peptide excitations along the helix
(21). As shown in Fig. 5B, two aspects are primarily responsible
for the discrimination as β-sheets: the signals near the diagonal
line in the far UV range and the clean diagonal blocks below
52,000 cm�1 and above 55,000 cm�1. These two 2DUV fea-
tures suggest that single peptide excitations are more character-
istic for β-sheets, and fewer excitons were strongly shifted by
exciton coupling of their intrinsic resonance. Both arguments
imply that strong coupling between peptide excitations is less
common in β-sheets than in α-helices.

In summary, we have developed 1D and 2D CNN models
using three datasets (the original set I, the homologous set II,
and the nonhomologous set III) containing the LA, CD, and
2DUV spectra of nearly 148,000 protein segments to discrimi-
nate the secondary structures of peptide segments from 1D LA/
CD or 2DUV spectra. With the aid of transfer learning, the
2D CNN models attained average discrimination accuracies of
95.1, 97.0, and 91.3% for the three sources of protein seg-
ments with decreasing homology to the original BH and LL
protein. Compared to the 2D models trained on structure-
2DUV correlations, the 1D models using LA or CD did not
attain sufficient accuracy for secondary structure discrimina-
tion. The grad-CAM heatmaps revealed the important spectral
regions that are crucial for secondary structure discrimination.
The superiority of the 2D models stems from the exciton cou-
pling information explicitly contained in the 2DUV spectra
cross-peaks, which may not be retrieved from 1D spectra. Tak-
ing advantage of 2DUV spectroscopic features as descriptors, a
ML protocol was able to automatically discriminate protein sec-
ondary structure motifs, paving the way for optical-spectroscopic
monitoring, real-time structure-determination of proteins, and
protein structure inversion from spectra.

Materials and Methods

Protein Segment Datasets. To construct the original dataset I, the BH (PDB
ID: 1HDA) (23) and LL (PDB ID: 1LES) (24)—consisting primarily of α-helices and
β-sheets, respectively—were selected. The experimentally resolved three-
dimensional structures in the Research Collaboratory for Structural Bioinformatics
(RCSB) protein data bank (31) were adopted as the initial structures, followed by
MD equilibrations (details in SI Appendix). Structure snapshots were harvested
every 1,000 fs along the MD trajectories to avoid structural coherence. Each
snapshot was scanned with the Define Secondary Structure of Protein (DSSP)
(32) algorithm to extract peptide segments with pure secondary structure motifs

Fig. 5. (Left) 2DUV spectra and corresponding grad-CAM of three randomly selected segments: (A) α-helical, (B) β-sheet, and (C) other secondary structures.
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(i.e., 28,556 α-helices, 32,439 β-sheets, and 26,998 others [87,993 in total]).
The homologous set (II) and the nonhomologous set (III) were constructed with
a similar procedure, with both sets consisting of 30,000 peptide segments
(10,000 for each of α-helix, β-sheet, and others).

Multiscale Simulation of Peptide Electronic Spectra. For each of the
extracted peptide segments, the LA, the CD in the UV-vis region, and the
2DUV spectra were calculated using multiscale simulation schemes. As shown in
Fig. 1B, each snapshot was treated by the exciton Hamiltonian with electrostatic
fluctuations (EHEF) method (21) to construct the Frenkel exciton Hamiltonian
and the transition electric/magnetic dipole moments. The solvation effects and
intraprotein perturbations to the electronic transitions of peptide chromophores
were properly incorporated by the EHEF scheme. In the meantime, using the
sequencing information from the DSSP scan, the corresponding blocks of exciton
Hamiltonian and transition dipoles for each peptide segment were extracted.
This electronic structure and response information was then fed to the SPECTRON
code (27) to simulate the LA, CD, and 2DUV spectra for each segment.

The signals were collected in the 42,000∼58,000 cm�1 (238∼172 nm) fre-
quency regime, where the peptide bond π! π� and n! π� transitions domi-
nate the UV spectra, along with weaker contributions from the Bb, Ba, and La
transitions of the aromatic side chains (33–35). Here, we have applied a very
small broadening factor of 250 cm�1 in generating the spectra with Lorentzian
line shapes, so as to avoid the long tails of Lorentzian line shapes and the strong
overlaps between different photo-response signals (which might cause ambigu-
ity in data analysis). Future work will be done with Gaussian line shapes to test
the convergency of our results. The LA and CD spectra were recorded with a fre-
quency resolution of 10 cm�1, resulting in a 1600 × 1 representation of the
spectra. The 2DUV spectra were simulated by a kI four-wave mixing procedure,
with all pulses having parallel polarizations (27). The signals were collected with
resolutions of 1,000 cm�1 in both the Ω1 and Ω3 dimensions (see SI
Appendix, section S1 for details), resulting in a 161 × 161 representation for
each 2DUV spectrum. In the end, for each segment in datasets I, II, and III, an
LA spectrum, a CD spectrum, and a 2DUV spectrum were generated. The peptide
segments, together with the electronic spectra, comprise the dataset (∼148,000
samples) used in this work.

CNN Models and Spectra Descriptors. The discrimination of the peptide sec-
ondary structures from their LA, CD, or 2DUV spectra is expressed as a supervised
classification problem: the model takes the spectral data as input and discrimi-
nates the secondary structure of the corresponding segment. We concentrate on
the two most common secondary structures, α-helix and β-sheet, as two catego-
ries and categorize all the other secondary structures as “other.” Thus, the model
maps the spectral data to one of the three categories.

We have used 1D CNNs to correlate the LA and CD spectra with secondary
structures (SI Appendix, Fig. S1). The models consist of an input layer that
directly adopts the linear spectra with dimensions of 1600 × 1; the input layer
is followed by two convolution modules, each containing a convolution layer
with the rectified linear unit activation (36) and a max pooling layer. A dropout
layer is used to regularize the output of the convolution module and pass it to
two fully connected dense layers. The classification targets were output by a final

softmax layer. Backpropagation and the Adam optimizer (37) were employed to
train the model.

Similar to the linear spectra, a 2D CNN was used to discriminate second-
ary structures form the 2DUV spectra. The difference lies in the convolution
module, where three convolution modules were used, each containing a
convolution layer and a max pooling layer. The 2DUV signals SðΩ1,Ω3Þ
were normalized as

�SðΩ1,Ω3Þ ¼ SðΩ1,Ω3Þ � μ

σ
, [1]

where μ and σ are the average and SD of the signals of the whole training set,
respectively. The normalized signals were then clipped to the �2, 2½ � interval,
which contains more than 97% of the spectral patterns. The renormalization and
clipping of the original data accelerate the ML analysis by a factor of 2 without
affecting qualitative conclusions. This renormalization simply rescales the abso-
lute intensities using a single set of factors (μ and σ) and does not change the
relative intensities between samples; tests on the original spectra generate the
same results. Benchmarks conducted with spectral images at lower resolutions
(of 81 × 81 and 41 × 41) have produced, qualitatively, the same results.

Transfer Learning to Improve Transferability. We have simulated some
practical scenarios of secondary structure discrimination from spectra, where
knowledge of only a few “typical” systems were available. These can be extended
to achieve broader scopes. Here, we used the original dataset (I) to construct
spectra-secondary structure correlations (the pretrained model) and generalized
this knowledge by the transfer learning technique to other proteins (i.e., the
homologous [II] and the nonhomologous [III] datasets). To refine the pretrained
model, we kept the convolution modules fixed, tuning the following layers with
new datasets consisting of randomly selected samples from datasets I, II, and III.

Data Availability. All protein PDB IDs used in this work are listed in
SI Appendix; previously published models and data are available in DCAIKU
(http://dcaiku.com:13000/).
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S1. Simulation of 2DUV spectra 

2DUV photon echo spectra were simulated using four coherent broad band ultrafast 

ultraviolet pulses, with wavevectors 𝒌𝒌1,𝒌𝒌2,𝒌𝒌3, and 𝒌𝒌4. The signals are detected in the 

direction 𝒌𝒌4 = −𝒌𝒌1 + 𝒌𝒌2 + 𝒌𝒌3  with varying time delays 𝑡𝑡1 , 𝑡𝑡2  and 𝑡𝑡3 . The second 

time delay 𝑡𝑡2 was set to zero, so that the photon echo signals depend on 𝑡𝑡1 and 𝑡𝑡3. 

2D frequency-domain signals were then obtained by performing 2D Fourier transforms:  

(𝑡𝑡1, 𝑡𝑡3) → (𝛺𝛺1,𝛺𝛺3). All pulses have the same linear polarization. We used Gaussian 

pulses centered at 52000 cm-1 (~190 nm) with a full width at half maximum (FWHM) of 

3000 cm-1. Signals in the frequency range 42000-58000 cm-1 (~238-172 nm) were 

calculated to generate the linear absorption (LA) and 2DUV spectra. 

 

 

  



 

 

S2. Details of the CNN classifier 

1. 1D CNN for LA and CD processing 

The 1D CNN models for LA and CD processing adopt the same architecture (Fig. 

S1): start from an input layer, followed by N convolutional modules and a drop out layer, 

then a fully-connected model, a drop out layer and finally a softmax output layer. The 

number of convolutional modules and the number of filters/channels therein were 

optimized with the grid search method. Each group of the CNN filters was followed by 

a max pooling layer with pooling window size varies from 2 to 20, which was also 

optimized with grid search. 

The input layer has the dimension of 1601 × 1 , corresponds to the intensity 

sequence in the range 42000~58000 cm-1 with the step size of 100 cm-1. The drop out 

rates were set to 0.25 for all the drop-out layers. The options of hyperparameters 

optimized with the grid search method were listed in Table S1. 

2. 2D CNN for 2DUV processing 

The 2D CNN models for 2DUV processing (Fig. S2) consists of an input layer, 

followed by N convolutional modules and a drop out layer, then a fully-connected model, 

a drop out layer and finally a softmax output layer. The number of convolutional 

modules and the number of filters/channels therein were optimized with the grid search 

method. Each group of the CNN filters was followed by a max pooling layer with pooling 

window sizes varies from 2 to 20, which was also optimized with grid search. 

The input layer has the dimension of 161 × 161 , corresponds to the 2DUV 

intensity distribution with respect to Ω1 and Ω3 in the range 42000~58000 cm-1 with 

the step size of 1000 cm-1. The drop out rates were set to 0.55 for all the drop-out 



 

 

layers. The options of hyperparameters optimized with the grid search method were 

listed in Table S2. 

The 1D and 2D CNN models were trained by using the backpropagation algorithm 

with the adaptive moment estimation (Adam) optimizer. The layers were initialized with 

a Glorot uniform initializer; cross entropy loss was used as the loss function. We also 

applied early stopping to prevent overfitting. The training of the CNN was accelerated 

by employing four NVIDIA GeForce GTX-2080 Ti GPUs on a dual Xeon Silver 4110 

workstation.  

 

 
Figure S1. Scheme of the architecture of the 1DCNN model. 

 

 
Figure S2. Scheme of the architecture of the 2D CNN model. 

 
 

  



 

 

Table S1. Options of hyperparameters of the 1D CNN model optimized with the grid 
search method. 

Hyperparameter values 
Number of convolution layers 1, 2, 3 
Number of filters 32, 64, 128, 256, 512 
max pooling window size range from 2 to 20, step is 1 
Learning rate 0.01, 0.001, 0.002, 0.004, 

0.008, 0.0001, 0.0004, 0.0008 
Batch size 32, 64, 128 
Size of the fully-connected layers 32, 64, 128, 256, 512 
Dropout rate Range 0.1 to 0.5 
Epochs Early stopping, patience 5 

 

Table S2. Options of hyperparameters of the 2D CNN model optimized with the grid 
search method. 

Hyperparameter values 

Number of convolution modules 1, 2, 3 

Number of filters 32, 64, 128, 256, 512 

max pooling window size range from 2 to 20, step is 2 

Learning rate 0.01, 0.001, 0.002, 0.004, 

0.008, 0.0001, 0.0004, 0.0008 

Batch size 32, 64, 128 

Size of the fully-connected layers 32, 64, 128, 256, 512 

Dropout rate Range 0.1 to 0.5 

 

  



 

 

S3. Comparison between various recognition models 

We had further trained and tested these models on the same datasets used for 

the CNN model. The incorrect recognitions by these models are presented in Table S3. 

We found that the recognition performance of these traditional models is significantly 

lower than that of the CNN model. Specifically, the KNN models achieved the best total 

error score 163 (out of 17599) when using hyperparameter 𝑘𝑘 = 1  (only nearest 

neighbor); for SVM models, a linear kernel performs much better than radial basis 

function (rbf) kernel, and using polynomial kernel leads to much worse performance 

(7687 errors out of 17599); RF and FCNN also work well on this dataset, performs on 

par with the SVM model using a linear kernel. In conclusion, due to its powerful feature 

extraction ability, the CNN model out-performed all other traditional models. 

 

Table S3. Numbers of incorrect recognitions for each structural category produced by 

different machine learning methods applied on the same datasets. 

Methods KNN(k=5) KNN(K=3) KNN(K=1) SVM(linear) SVM(poly) SVM(rbf) RF FCNN CNN 

α-helix 94 93 95 4 548 62 10 4 1 

β-sheet 77 75 64 7 1996 79 4 7 0 

other-SS 3 1 4 2 5143 69 8 1 0 

Total 174 169 163 13 7687 210 22 12 1 

  



 

 

S4 Secondary structure discrimination accuracies of the pre-trained CNN models 

 
Figure S3. Confusion matrices of the pre-trained CNN models to recognize 
secondary structures of protein segments of (a) the original set I, (b) the homologous 
set II, and (c) the non-homologous set III. The vertical and horizontal axes represent 
true and model predicted secondary structures, respectively. 
  



 

 

S5. Details of molecular dynamics simulations of proteins. 

For each protein studied in this work, the X-ray/NMR crystal structure taken from 

the RCSB protein data bank (PDB) was used to initialize a molecular dynamics (MD) 

simulation performed by using the Gromacs package. Taking the BH protein as 

example, we put the protein molecule in a 9 × 9 × 9 nm3 cubic box with 21635 

TIP3P water molecules. Following 1000 steps of energy minimization, a 200 ps 

equilibration with constant NVT at 300 K was performed. A 200 ps constant NPT 

equilibration and a 200 ps constant NVT equilibration were followed. The 4ns 

production equilibration was then performed with 1 fs time step. Snapshots 

were harvested every 1000 fs along the production MD trajectory to avoid 

structural coherence.  
 
  



 

 

S6. Proteins used to construct the non-homologous dataset 

All proteins are recorded with their PDB IDs. All PDB structures were directly 

downloaded from the RCSB protein data bank, followed by solvation in water, energy 

minimization, and NVT equilibration at 300 K. Peptide segments were then extracted 

from the equilibrated structures in the same way we prepare the BH and LL dataset. 

Table S4. PDB IDs of proteins used to construct the non-homologous dataset. 
1a00  1a01  1a0n  1a0u  1a2i  1a2s  1a3o  1a4f  1a6g  1a6m  
1aby  1afp  1ah6  1ah8  1aj9  1amx  1anb  1aox  1aox  1ash  
1ax8  1ayj  1b0b  1b1a  1b86  1b9q  1bbb  1bf8  1bij  1bk8  
1bkv  1bpr  1bpr  1bsn  1buw  1buy  1bvc  1bvd  1c3g  1c40  
1c89  1cbl  1ceu  1cg5  1cg8  1cgd  1ch4  1cjq  1ck2  1ck7  
1ckr  1clg  1cmy  1cn4  1co9  1coh  1cpz  1d2p  1d5d  1d9a  
1d9i  1dbd  1ddr  1dg4  1dgf  1dgh  1dke  1dkg  1dkx  1dky  
1dlw  1dm1  1dox  1dxu  1dy2  1dy2  1dzi  1dzi  1e1g  1ebt  
1ecd  1eer  1ey4  1ezu  1f4j  1f6h  1faw  1fcs  1fdh  1fdm  
1fhj  1flp  1fm1  1fsz  1fuj  1fy9  1g08  1g0a  1g3j  1gcv  
1gd4  1ght  1gjn  1gr3  1gr3  1gvl  1gxd  1gzx  1h1x  1h4u  
1h6w  1h7c  1hab  1hba  1hbg  1hbh  1hbs  1hco  1hda  1hga  
1hgb  1hgc  1hjn  1hk7  1hx1  1hyl  1hze  1i6z  1i7x  1ibe  
1iox  1ird  1ivt  1iwh  1ix5  1j14  1j3z  1j52  1j7w  1j7y  
1jb3  1jbk  1jf3  1jj9  1jon  1jvx  1jwn  1jy7  1jzk  1jzl  
1jzm  1k0v  1k0y  1k9o  1kd2  1kfr  1khy  1kid  1kiu  1kke  
1koe  1kr7  1l2y  1l8z  1la1  1les  1lfl  1lfq  1lft  1lfv  
1li1  1m3d  1m9p  1mba  1mbd  1mbn  1mbo  1mbs  1mdi  1mgn  
1mhp  1mko  1moh  1mol  1mwb  1myh  1myi  1myk  1mym  1myz  
1mz0  1n9x  1nej  1nih  1npf  1npg  1nqp  1nwi  1nwn  1o1i  
1o1k  1o1n  1o4w  1o91  1ocy  1oo4  1oqv  1ory  1p9h  1pbx  
1pft  1pk6  1pmb  1pt6  1q5l  1q7d  1qc5  1qi8  1qiu  1qld  
1qpw  1qqw  1qsd  1qun  1qvr  1qwx  1qxd  1r1x  1r1y  1rbw  
1roc  1rps  1rtx  1rvw  1s21  1s5y  1s69  1s6a  1s85  1sb6  
1sdk  1sdl  1shr  1si4  1slu  1spg  1ss3  1ss8  1swm  1t08  
1t60  1t61  1t7s  1tey  1thb  1tjc  1tnw  1tpm  1tr8  1ttw  
1tu9  1u5m  1u7s  1u97  1uiw  1ulo  1umk  1us7  1usu  1uvy  
1uw3  1ux8  1uym  1uz2  1v4u  1v4w  1v4x  1v8x  1v9q  1vre  
1w09  1w0a  1w0b  1wg3  1wvp  1wxr  1wxv  1x3b  1x3k  1x46  
1x9f  1xu0  1xuc  1xxt  1xye  1xz2  1xzy  1y01  1y09  1y2s  
1y4p  1y5j  1y8h  1y8i  1yca  1ydz  1yeo  1yeq  1ygf  1yhu  
1yie  1yjp  1ykt  1ymb  1you  1yut  1yvq  1yvt  1yzb  1yzi  
1z2g  1z8u  1zav  1ze3  1zrj  1ztq  1zwh  2a3g  2aa1  2adn  
2akp  2arw  2av0  2b7h  2beg  2bmm  2bpr  2brc  2bre  2bsf  



 

 

2bw9  2bwh  2c0k  2c0x  2cg9  2cge  2cmm  2cpb  2cu9  2d1n  
2d2m  2d3e  2d5x  2d5z  2d60  2d6c  2dhb  2dk1  2dkm  2dkm  
2dn1  2dn2  2dn3  2dxm  2e2d  2e2y  2e3m  2e3o  2e3r  2e8j  
2ech  2eku  2evp  2f2n  2f42  2f68  2f6a  2fam  2fc6  2fcw  
2frf  2frj  2fse  2fse  2fxs  2g0s  2g12  2g16  2gtl  2gtv  
2h35  2h8d  2h8f  2hbc  2hbd  2hbf  2hbg  2hbs  2hco  2hhb  
2hhd  2hhe  2hp8  2hue  2hz1  2idc  2iij  2in4  2iw2  2iws  
2j61  2j7l  2jhh  2jhi  2jho  2jjc  2kb0  2kc5  2kco  2kgl  
2kho  2kji  2knx  2ksc  2l6l  2lhb  2lhk  2lkv  2lll  2lll  
2llp  2lm1  2ltb  2lwp  2lyj  2lyk  2lyl  2lyp  2lyq  2lyr  
2lys  2m0m  2m1n  2m3e  2m6z  2m8s  2mb5  2mbw  2mgo  2miq  
2mj5  2mye  2myj  2mze  2mzi  2n3j  2n4g  2n71  2n8r  2nb0  
2nd2  2nd3  2nd5  2npl  2nrl  2nsa  2nsb  2nsr  2nx0  2o5l  
2o5q  2o5s  2ohb  2oj5  2okm  2okn  2pei  2peo  2peq  2pgh  
2qg2  2qht  2qif  2qld  2qls  2qsp  2qss  2qu0  2r1h  2r80  
2r9y  2rao  2rk6  2rpj  2seb  2seb  2tgf  2uur  2uwj  2v15  
2v1e  2v1f  2v1i  2v1k  2v53  2v7y  2vlx  2vly  2vw5  2vwc  
2vyw  2vyy  2w0g  2w60  2w6v  2w6w  2w72  2wep  2wnp  2ww7  
2xd6  2xi6  2xif  2xil  2xj6  2xki  2xx4  2y1z  2y6y  2yge  
2yjm  2yob  2yrs  2yuh  2z1p  2z44  2z46  2z6s  2z6t  2z85  
2z9y  2z9z  2zlv  2zlw  2zlx  2zsp  2zsq  2zss  2zsy  2zwh  
2zwj  2zyp  3a0g  3a2g  3a59  3aeh  3aei  3ak5  3aq5  3ase  
3asw  3asw  3b72  3b75  3bj1  3bwu  3c11  3ciu  3d17  3d1k  
3d3r  3d7o  3dhr  3dll  3dpa  3dpo  3dpq  3dut  3eda  3ejh  
3elm  3eok  3eu1  3ewo  3ewq  3f71  3fh9  3fp8  3fs4  3fzh  
3fzk  3gkv  3gla  3gln  3gou  3gqg  3gqp  3gt6  3gys  3h0x  
3h3q  3h3t  3hc9  3hf4  3hrv  3ia3  3ic0  3ic2  3ipn  3iuc  
3k1h  3k8b  3kek  3l1e  3ld1  3ldl  3ldn  3ldo  3ldp  3ldq  
3lfo  3ljz  3lqd  3lr7  3lw2  3m0b  3m38  3m3b  3m6c  3mba  
3mjp  3mju  3mvf  3n3e  3n3f  3nl7  3nml  3o2x  3o39  3odq  
3ofg  3ofh  3ogb  3oly  3osx  3ovu  3p46  3pel  3pg0  3pi8  
3pi9  3pr9  3q9q  3qc7  3qje  3ql1  3qle  3qm5  3qzl  3qzm  
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