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ABSTRACT

We derive reduced equations of motion (REM) which describe the dynamics of
polyatomic molecules in the presence of strong infrared lasers. The deriva-
tion is made starting from the complete molecular Liouville equation and
making use of the Zwanzig-Mori projection operator formalism. The complete
molecular information relevant for the dynamics of molecular multiphoton
processes (MMP) is expressed in terms of a hierarchy of intramolecular dipole
correlation functions. We show how by invoking simple statistical assumptions
(the random phase approximation and separation of time scales)this information
is considerably reduced to_essentially four quantities per transition: An
integrated Rabi frequency Qpy, @ dephasing rate Tpp, a detuning wpyy and ratios
of statistical weights of the levels dn/dy. Depending on our choice of reduc-
tion scheme we may obtain either generalized Bloch equations or simple rate
equations. The interrelation between the two and their limits of validity
are precisely specified. The present formulation enables us to describe the
dynamics of MMP all the way from "region I" via the quasicontinuum and up to
the dissociation. Finally we present novel spectroscopic results done in
supersonic beams which provide us directly with the intramolecular dephasing
rates which are the key dynamical quantities in MMP.

I. Introduction

Our understanding of the dynamics of highly vibrationally excited polyatomic
molecules has improved dramatically in recent years due to the development

of novel spectroscopic techniques such as overtone spectroscopy [1,2], spectro-
scopy of supercooled molecules in beams [3,4], picosecond spectroscopy [5]
etc. Of special interest are studies of molecular multiphoton processes

(MMP) which are based on pumping few e.V. (30-40 photons) of energy into
isolated (collision-free) polyatomic molecules via the interaction with
strong infrared laser pulses in the power range of 10M watt/cm?[6,7]. Some

of the main reasons for the enormous theoretical and experimental activity

in this field are:(i) This is a relatively clean and convenient way of pumping
ener?ies of chemical interest to large molecules in short times (0.5nsec-100
nsec}. The excitation conditions are easily controllable by varying the laser
frequency, power, fluence, using several lasers (multicolour experiments) etc.
(ii) The excitation may in principle be made bond selective since the oscil-
lator strength is not evenly distributed among the various molecular vibra-
tional degrees of freedom. This opens the fascinating possibility of achie-
ving laser-induced and laser controlled chemical reactions by putting the
rignt amount of energy in the region of interest. This depends of course on
the relative rates of pumping the energy to the intramolecular redistribution
of energy which tends to destroy any selectivity., ({(iii) Unimolecular dissc-
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ciation fallowing MMP turned out to be highly isotopically selective in

ceveral cases. (iv) Understanding the mechanism of the multiphoton pumping
processes provides us with a clue for monitoring the dynamics of highly vib~
rationally excited polyatomic molecules. This is connected to the new field

of intramolecular line broadening (dephasing) and may help us clarify the
validity of the existing statistical theories of unimolecular reactions {s].
The following qualitative picture [6] has emerged out of the numerous
experimental and theoretical studies: The moiecular energy levels are sepa-
rated into three regions. In the lowest energy range. (region I) the density
of molecular states is very low and the laser field is interacting with
isolated molecular states (coherent driving). In this region the laser power
is required to overcome the molecular anharmonicities and phenomena such as
threshold power, saturation behavior, isotopic selectivity and multiphoton
resonances are accounted for in terms of the molecular level-scheme of region
1. After the molecule has absorbed few quanta, the density of molecular states
becomes very large and we can no longer describe the time evolution in terms
of few isolated molecular states. This region is denoted region II or the
quasi-continuum and a proper description of the molecular time evolution in
this range requires a quantitative understanding of the mechanism of intra-
molecular energy transfer and line broadening (dephasing) of highly vibra-
tionally excited polyatomic molecules, of which very 1ittle is known at
present, Finally, when the molecule acquires enough energy for dissociation,
jt enters region I1II, where, in addition to all the complications of region
II, we have to incorporate also the dynamics of unimolecular decomposition.,
Since numerous reviews were written recently on this subject [6,7], we shall
not give here an extensive survey of the current experimental status. We
shall rather try to develop a general unified framework for the theoretical
description of these processes. It is clear that a complete microscopic
treatment of MMP (i.e.the calculation of the entire molecular density matrix
p) is neither feasible nor desirable. Due to the huge number of molecular
states involved (10'° or more) such a treatment will require an enormous
amount of (unavailable) information for the calculation of a density matrix
whose most parts are irrelevant and redundant. The present approach [9] is
based on the projection operator formalism of Zwanzig [10] and Mori [11
combined with the representation of the true molecular states. The latter
enables us to formulate the problem in a form free of perturbative arguments
in any intramolecular interactions. The main steps in this "hydrodynamic-
like" approach [9] are: (1) The choice of a few molecular operators whose
expectation values are the important variables for the dynamics of MMP;
(2) the definition of an appropriate Mori projection operator onto the space
spanned by these operators; and (3) the derivation of reduced equations of
motion (REM) for the time evoliution of these variables.

REGION TN
DISSOCIATION

REGION T
QUASICONTINUUM

REGION I

1 COHERENT DRIVING

Fig.1 Energy regions for molecular
. multiphoton processes.
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This procedure is completely general, and formally the choice of the number
and type of variables is arbitrary. However, the complexity and usefulness
of the resulting REM depend crucially upon a successful choice of variables
which should be adjusted to the desired level of description. In Section 11
we present the basic reduction formalism which is based on the projection
operator techniques of Mori and Zwanzig. In Section 111 we present the
Hamiltonian for MMP and formally derive the REM for a specific choice of
variables corresponding to level populations. These REM are then expanded
in Section IV and the conditions under which they further reduce to simple
rate equations in the quasi-continuum are analysed. In Section V we add more
variables corresponding to coherences and derive another REM (generalized
Bloch equations) which are valid also in region I of coherent driving. An
alternative derivation of the simple rate equations is also obtained as a
limiting case of these new REM. Finally in Section VI we discuss and sum-
marize our results.

11. The basic reduction formalism

We consider a complicated system with many degrees of freedom characterized
by a Hamiltonian H and a density matrix p whose time evolution is given by
the Liouville equation:

90« -i[H.e] = -iLo M
where L is the Liouville (tetradic) operator corresponding to H. Due to the
complexity of the system, the information contained in the complete density
matrix p is too detailed and its evaluation is imoractical. Consequently we
chall be interested only in 2 few quantities ou(t) which are the expectation
values of a small set of dynamical operators Au' i.e.

°u(t) = (Au.o(t)) (2)
where we have defined the scalar product S of two operators as
_ _ +
suv = (Au.Av) = Tr(Au Av) . (3)

Without loss of generality we may assume that our relevant operators are
orthonormal, i.e. Syy=dyv. The Mori-Zwanzig [10,11] projection operator
technique enables us to derive reduced equations of motion (REM) which
yield o,(t) directly without having to calculate p. To that end we define
a Mori projection P which projects onto the subspace spanned by our rele-

vant operators Au:

PB = ] (B,A DA, (8)
H

and the complementary projection Q=1-P. We shall further assume that
0{0)=Pp(0) so that Qp(0)=0. Making use of these definitions the REM may be
written in the form [9]

do . t
g =] ey, o) -OJ ] Ry, 0, ) . (5)
where R(t-1) is the tetradic operator

R(t-1) = L exp(-iQL(t-T)) QL » (6)

and the tetradic matrix elements <L>yy and <R>,,, are defined as
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. + -
V> = Tr(A] Y Au) ., Y=R,L . (n

fquations(5) are exact and are valid for an arbitrary choice of dynamical
operators A. In practice, however, the memory kernel <R> is usually evalu-
ated in some approximate manner using an expansion in a properly chosen para-
meter. 7o that end it is sometimes advantageous to use a different form of
the REM [9], i.e.,

dcv "
T ° -1 é <L>vu ov(t) - g <R(t)>vu cu(t) (8)
where
<R(t)>, = g' Wt) e V;uu(t) R (9)
Wi (t) = Tr(A: LQ exp(-iLt)A ) (9a)
- t :
Vor, = Tr(Als exp(-1Lt)Au) . (9b)

Equations (5) or (8) constitute the basic reduction scheme to be used through-
out the present lecture, The form (5) arises naturally when keeping the
complete time ordering of the various operators and will be referred to as

the COP (chronological ordering prescription). The form (8) uses only partial
time ordering and will be referred to as the POP (partial ordering prescription).
Equation (8), like (5), is also exact. However, once an expansion is made both
equations may have very different predictions [12,9]. Furthermore, it may

turn out that depending on the choice of variables one form could become
advantageous, This is indeed the case for the present problem of MMP. When

we try to derive simple rate equations (Sections IIT and 1V) then the COP

form (Eq. (5)) is most convenient. When we add more variables corresponding

to coherences (Section V), the expansion of the COP equations becomes extre-
mely tedious and the POP approach (Eq. (8)) is the natural way to proceed,

A comparison of the two forms for general relaxation and line shape problems
was made recently [12].

111. Reduced equations of motion involving populations only

We consider a polyatomic molecule interacting with a monochromatic infrared
jaser beam whose frequency is w|, under collision-free conditions. We assume
that the Schrddinger equation for the jsolated molecule {in the absence of
the field) has been solved and that we have the complete set of molecular
eigenvalues as well as the dipole matrix elements between them, Assuming
that the molecule is initially cold (kT<<hwi ), then only states with energies
around nw_, n=0,1,2,... are important for the multiphoton excitation process
and need to be considered, We shall therefore group these relevant molecular
states into levels and denote them as {[no>} with eigenvalues Ey, where n
stands for the level and a runs over the states within the n'th ?eve]. We
further invoke the rotating wave approximation (RWA) [13] which is very rea-
sonable for MMP with infrared photons and which amounts to neglecting high
frequency terms in the Hamiltonian which are not expected to contribute ’
significantly to the molecular time evolution, We can thus write the combined
Hamiltonian for the molecule and the field in the time independent form[9]:

H = H° + H' O, (10)

where
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Ho= 1 Ine> B <na| , (10a)
n,a
and
H'=¢ §  [ne> uﬁs, <ag|. : (10b)
no
mB
n=nz]

Here the molecular states within the n'th level have absorbed n infrared
quanta from the field, and EpgEpy-nw is Ehe energy of the |no> state
dressed (to zero order) by the field., ufp=<mB|u|na> is the transition
dipole between the |na> and |mg8> states and e is the laser field amplitude,
The molecular level and coupling scheme is presented in Fig. 2.
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We shall now turn to the construction of the set of relevant operators,
In a molecular multiphoton excitation experiment the quantities that are of
primary interest to us are the populations of the various levels (the proba-
bility Pp(t) for the molecule to absorb n photons at time t). It is thus
clear that a minimal set of relevant variables should include these popula-
tions. In order to derive REM for Pn(t) we shall row introduce the following
set of molecular operators [9]:

1

m " L Ine> <mal (1)

n ¢ n=0,7,..0,N=1

d, being the number of states within the n'th level (the statistical weight
o? that level) and N is the total number of levels considered. The choice of
the states included in Apy (and consequently of dp) is important since the
ratios dp/dy enter explicitly in the resulting REH (Eqs. (33) or (47)). It
should thus be made with physical insight and only states that are expected
to participate in the dynamics of the MMP in the experimentally relevant time
scale should be included in the summation [11]. The Apn operators are ortho-
normal (with respect to their scalar product) and the populations of the
various levels are

P (t) = v (A .o(t)) = v o () . (12)
At time t=0 we assume that all the molecules are in the zeroth level so that
p(0)=Pp(0)=1/vdy Agp. For the present set of operators we have the convenient
relation PLy=0 (Lo and L' are the Liouville operators corresponding to Ho and
H' respectively). This implies that

QL = (1-P)(L°+L') =L, * ', (13)

which enables us to expand exp{-QLt) in a power series in QL® and makes
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the formal evaluation of the COP operator <R(T-1)> straightforward resulting
in [9]:

dov t .
T ° -OJ dt E <R(t:-'r)>v‘J ou(T) s (14)
where
<R(t-1)>=<R(2)(t-1)>+<R(4)(t-T)>+<R(6)(t-T)> 4 vae (14a)
/D (t1)> = kKB (t-1,0) , (14b)
and t-T Ty T
1 2n-3
(2n) _ (2n)
<R (t-t)>= d dt,eee d K t-TsTysTnsesesTn. 530
T J T]J T2 J Tonez Ko (ETaTpTpne e s Ton 20)
(15)
Here
(2 (1) 1 a2 (1)L (1)L () (1-PIL (1)L (1)
(16)
(1'P).... (]'p)L'(Tzn_])L.(TZn)> »
where
L* 1) = exp(iLOT)L' exp(-iLor) . (17)

Let us introduce further the n'th moment of L' as the n-time correlation
function

M(n)(t].wz...rn) = <L'(1])L'(12)...L'(Tn)> s (18)

in terms of which we may rewrite Eq. (16) in the form:
K(Z)(T1,T2) = M(z)(T],Tz) , (19a)
K(4)(T1,12.13,14) = -[M(a)(T].T2,13.T4)-M(2)(T].Tz)M(z)(TB,T4)] (19b)

etc. The <s=+++> in Eqs. (14)-(19) denotes a tetradic matrix element as
defined by Eq. (7).

Equations (14) together with (15)-(19) enable us to derive closed REM
for the N populations of the various jevels (Pp) in terms of the tetradic
NxN R matrix. Evaluation of the latter require3 the calculation of the
intramolecular dipole correlation functions M{NJ (Eq. (18)) (or K n) (Ea.
(19)), n=2,4,... which provide us with the complete molecular information
needed for the description of all MMP whenever the experimental observables

are connected with populations only.

IV. Expansion of the REM - the derivation of simnle rate equations

We shall now utilize the formalism of Section 111 to derive explicit exp-
ression for the relaxation operator <R>.To that purpose we make use of the

property [10]
) vG;7H;kR(r)>nn om = 0 (20)
n ’
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which is a direct consequence of the conservation of probability, to rewrite
Eq. (14) (to fourth order in g) in the form

t .
J dT(R(Z)(t'T)>nn.mm

[Pm(T)'an;am - Pn(T)'dm;dn]

¢ (21)

+ ¢ 1 J dT<R(4)(7:'T)>nn.mm
m=n:2 0
n:l
[Pm('r)»/dn7drn - Pn(r)/dm7dn] .
where
QU (1) g = (08) 7 Faugptrhupy (0. (222)
t-1 1

<R(4)(t'T)>cc,aa = (dadc)'”2 OJ dt; OJ dt, Kégg (t-1,74,75,0)%c.c. (22b)
ML NP T T P 3§ (23)

cba

1 <uab(0)ubc(t~1)ucb(f] )Uba(12)>

%;-<ubc(t-1)ucb(r1)><uab(0)uba(12).

Il = (Uab(O)UbC(T] )Ucb(t'f)uba(12)>
1
- a‘; <ch(T'|)Ucb(t'T)><Uab(0)uba(Tz)>s
111 = <uab(0)ubc(Tz)ucb(t-r)uba(r1)> ’

and where we consider only c=a#2 (the axl terms are similar), i.e.
a=n, b=ntl, c=nz2 . (24)

The correlation functions <«e+> are defined as the trace of the product of
operators and

Uab(T) exp(iHor)uab exp(-iHor)

(25)

T Jao> w2 <bplexp(iuggt)

aB

In Fig.3 we have a,diagrammatic'representation of <R(4)>. We note that there
are six pathways leading from |aa>> to |ce>> in fourth order. Four of them
(1, 11 and their c.c.) are passing via |bb>> and the other two ( 111 and
its c.c.) are passing via |ac>> or |ca>>. These two types of pathways are
often called incoherent and coherent patiways, respectively. For the sub-
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@ Fig.3 Diagrammatic representation of
N~ The Liouville space terms contributing
to R(4) showing the six pathways to go

from |aa>> to ?cc>> in fourth order.

sequent manipulations we shall now introduce the integrated Rabi frequency
for the ab transition, i.e.

2 _ pl2) Y 82
fab ~ <Raa,bb(0)> -2 ZB luabl /«H;H; ’ (26)
and the dimensionless correlation function

T (7) = <hgp(T)iigg (0157w (0t (00> (27)

so that we have

R(2) (t1) = 'ﬁib Re Yab(tq) a2, 1(t-1) (28)

bb,aa
and I(0)=1. Equations (21)-(24) express Pp in terms of the hierarchy of
intramolecular correlation functions <uu>, <uupu> etc., We shall now make
use of the complexity of our system to further simplify the REM and reduce
the amount of relevant molecular information. This will be done in two
stages.

(i) The random-phase approximation

when each level contains many states and the various u's have arbitrary phase
we expect that :

af BY YR? Bta
gﬁ' uab(Tl)”bc(TZ)“cb (t3)up, (14)
aBB'y (29)
¥
a
f.e. only the terms with g=g" will contribute whereas the sum over g'#8 will
average to zero., This is a form of the statistical random phase approximation.

We further assume that the ab and bc transitions are uncorrelated so that
Eq. (29) may be further factorized resulting in

aB 8Y Y8 Ba
L uab(r1)ubc(rz)ucb(13)uba(r4),

<uab(r1)ubc(fz)ucb(r3)uba(r4)>

. | (30)
= T VT Wupa (T4)><Upc (12Mcp(T3)>
This implies that in the evaluation of Kég; we have
1 = II = 0, (31)
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so that

. T~|
(4) 2 =2 [t
<Rcc’aa(t-1)> = Qab ch oJ d'l:-I oJ d‘rz
Y n (32)
Ip(t-1-1) (1)

(ii) Separation of time scales - the Markovian limit

Suppose we have the desirabie situation whereby Pp(t) is changing on a time
scale much slower than that of <R(t-t)>. (This means that Pn?r) consists of
a complete set of slow variables) [10,11]. In this case the Markovian Timit
holds whereby on a coarse grained time scale (T>Tc) we may safely assume that
<R(t-7)> acts as a 6-function inside the integrations (Eq. (21)) so that it
may be factored out and we get the simple rate equations

dp

n_ (2)(p JaTd- ATT
dt mzn+1 W (Pr/dp/dn = P o On)
@ (33)
4 a7a
* m=%+2 Yo (Ppdy/y - Pn'am;dn) ’
*]
where " )
wlk) . deT<R(k)(T)> . (34)
0
Using Eqs. (22) and (34) we have
(2) - [ 4.er(? . =2
wnm = . d1<R (T)>nn,mm = 0m T ¢ (35)
where 1. is the dipole correlation time (typical time scale of Tnm(1)), i.e.
S Oj gt 1 (1) . (36)
Regarding w(4) we have utilizing Eqs. (32) and (34)
(4) . =2 =2 N Ty v
Nca = gy cho d'ro d'r] . dt, ch(T-'tz)Iba(T])'*'c.c. (37)

1t is clear that the only contributions to the integral (37) come from the
region 0<t,T7,T25Tc» Since otherwise the integrand vanishes. We thus have

W e @2 3 (38)

ca - ‘&b *be Tc

Similar arguments will hold also for the higher order correlation functiors
(34) so that we can write

W2 2 (@D (g )22 g3, (39)

Making use of the estimates (35) and (39) we may now state the condition for
the applicability of the Markovian 1imit as folliows

n = 5TC<<] o (403)

When Eq. (40) ho]%; the following things hapnen (i) the time 'scale of varia-
tion of P(1) is (TT)~! which will be >>1c. This justifies replacing <R> by
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W (separation of time scales). (;i) A1l the higher order rate constants
will become much smaller than Wl%J), i.e.

N(Zk)/w(Z) = n2k'2<<] . (4Ob)

so that we may ignore them and retain w(z) only in Eq. (33). Finally we note
that if we assume

v —
Inm(r) = EXp(-iwan -anT) s (841)
then
v Tom
T, = Re de'r Inm(l') = 7 (42)
0 w, +T
nm - nm
and -2 r
Q
.l -
w, +T
nm - nm

In concluding this section we note that we have demonstrated here how, when
rate equations apply, the relevant molecular information necessary for the
description of MMP reduces_essentially to four numbers per transition: an
integrated Rabi frequency Q, a dephasing rate T', a detuning w and the ratio
of statistical weights d,/dp.

V. REM for populations and coherences - derivation of generalized Bloch

equations
In Sections 111 and IV we have derived REM for the populations in MMP and
showed how in the Markovian limit they reduce to simple rate equations. The
basic reduction procedure of Section Il is, however, more general and enables
us to derive a closed set of REM for any arbitrary set of chosen variables.
As we have already pointed out, the choice of the right number and kind of
variables is a crucial step in the derivation of the REM since their simplicity
and applicability depend on a successful choice.

We shall now construct and analyze a different set of REM for MMP by the
addition of more variables corresponding to coherences(i.e. time derivatives
of the population variables). This is done due to the following reasons:

(1) It is clear that at the early stages of the molecular driving (Region I)
the random phase and separation of time scales assumptions made in the deri-
vation of the rate equations do not hold and we should in fact solve the
exact Schrédinger equation with few states and coherent driving. Although we
can inprinciple retain the populations as our only variables and expand the
evolution operator <R> in higher powers in the field, it is much easier to
add few variables corresponding to coherences and get a simple Markovian
equation which will be in the form of a general (mu1ti1eve]§ Bloch equation,
Thus the explicit inclusion of coherences as variables in Region I results in
a considerable simplification of the description in this region,

(2) In spectroscopic studies other than multiphoton excitations (e.g. ordinary
line shapes [14], coherent transients [15] and resonance fluorescence [16,4]),
the experimentalist usually probes directly the time evolution of coherences
and their damping (dephasing) rates (e.g. an ordinary line shape is the Fourier
transform of the correlation function of the molecular coherence) [14]. In the
present REM for the populations, the dephasing rates are "buried” inside the
kernel <R>, By using a less-reduced description in¢luding coherences, we are
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able to see clearly the role of coherences in the dynamics of MMP and we can
use the results of other spectroscopic experiments to evaluate the parameters
appearing in our REM, '
(3) Conceptually, the addition of coherences enables us to look at MMP from
a different viewpoint and to gain a better insight into the meaning of the
Markovian limit and the "reduction of information" that occurs there. We
shall be able to provide an alternative derivation to the rate equations (33)
which will demonstrate how the explicit inclusion of coherence variables
becomes redundant in this case. .

The construction of the coherence variables is done by considering the
cummutators of the population variables Ann (Eq. (11) with H* [9]. The k
quantum coherence Apm where |n-m|=k is defined as

L a8

Ao = o ge Ina> vep <m8| (44)
|n-m|=k

where {taking m>n)

aB _ ay Y6
Vom ~ g._. Yn,n+l Pn#l,ne2 0c Pn-1,m (45)
YB’
and
2 2 - .
VD WO Vied R (46)

*

(for k=1 we take v=u). The number of coherence operators to be included in
our REM wiil be determined for our convenience and we may stop at any kmax
(k=1,2,..0,kmax)+ Using the set of relevant operators (11) and (44) we may
now evaluate the REM making use of the formulation of Section II. This was
done in detail in Ref, 9 making use of the POP formulation. (We note that
for this choice of operators the Mori projection P does not commute with Lo
and PLo#0. As a result the expansion of exp(-iLt) in powers of L' becomes
more convenient than the expansion of exp(-iQLt) and this is the reason for
the adoption of the POP formulation in this case}. The resulting equations,
to first order in H' and after invoking some simplifying assumptions, are 9

P -i% i,

_.—n— :__..D—’..n—tl- t - L - n‘] ] _ 1
dt N (@ ha,n = n,n+1) ;? N n.n-l)’(47a)
do'n n+l - . —
— D - [-1wn,n+1'rn,n+1]° n.n+1_19",n+1(Pn+1‘an;Zdn+]'Pn'dn+1;zan)
. iQn+1,n+2 o' ) iQn,n-1 ot , (47b)
/7 n,n+2 N n-1,n+1
dU‘ 15
LU . m,m+l
at [-iwpg T ando am * /2 % n,mt]
{(47¢)

ST 6'7”‘—" 1
* a’ 29m-1 % n,m-1

m,m-1

- — R '
'1Qn,n+1‘dn;2dn+1 c‘n+1,m = a1 cn-1.m/J§ (m>n1)
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(In (47¢) we have taken m>n+1. The REM for o‘nT(m<n-1) and for a'pn+1,n are
b

simply the complex conjugates of (47c) and (47b)). Here
- 2 2 ... 48 1/4 '
ot =(dy s Gpa o0 dnt G (Agpso(t)) (48)

(The first factor in Eq. (48) is the statistical weight of the nm coherence
(the number of possible pathways to go from n to m). The following main
assumptions were made [9] in the derivation of Eqs. (47).

(1) The_random phase approximation

N
Four time dipole correlation functions which appear in <R> (Eq. (9)) were
factorized as was done in Eg. (30).

(2) Separation of time scales - the Markovian assumption

Y

The correlation functions Im(T) are expected to exhibit a complicated beha-
viour at short times tc (1c ~ inverse of typical molecular frequencies) but
to reduce to the simple exponential form (Eq. (81)) asymptotically for Tong
times. This behaviour js typical for dipole correlation functions as calcu-
lated for other solvable model systems (impurities in solids [17], pressure
broadening [18] and stochastic models of line shapes [14]). If our variables
in the REM change on a time scale.much slower than tc we may (on a coarse-
grained time scale t>tc) replace Ipy by its asymptotic form (Eq. (41)). omm
and T'nm are de?ined in terms of the asymptotic behaviour of the Jogarithmic
derivative of Ipp(t), i.e..

-ip_ - T = lim . EEEEE V (49)

“am T Cem Tt 4t :

nm

When the dephasing rates T'py are fast compared to the driving Spm. We may
invoke a steady state assumption for the coherences (i.e. set do'pm/dt=0 in
(47)), solve for opm and substitute back into the equations for the populations.
As a result our REM assume the form of simple rate equations corresponding to
incoherent driving (Egs. (33)). If we consider only single quantum coherences
(i.e. set opp=0 for {n-m|>1) we have :

-ia

o - n,nt+l .
n,n+l —
ﬁ(]mn’n+1+rn’n+]) (50)
' (pn+1‘an;dn+1'Pn'3n+1;dn) »

which when substi%uged back into (47a) results in Eq. (33) where N(z) is given
by Eq. (43) and W 4)-0. Thus we have here an alternative derivation of the
simple rate equations (33).

The present derivation of (33) provides us with a new insight regarding
the significance of the simple rate equations. As is clearly seen from (47),
the dynamics of molecular multiphoton processes is governed by the competi-
tion between the driving terms finm which tend to build higher coherences and
the dephasing rates T'nm which tend to destroy them. When

Q T
nE gt ° :2"[“__3.“1 <«<1, ' (51)
Onm* T nm
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(weak driving) we may solve for the steﬁdy ctate of the k quantum coherences
perturbatively resulting in o'n,n+k=0(n } and tBE contribution of the k quan-
tum coherences to the rate equation will be 0(nc%). We recall that zn the
previous derivation of the simple rate equations (Sec. 1V) we had Wl )=0(n2k).
It l thus obvious that the k quantum coherences pla{ here the same role of
wl2k) §n the previous derivation, The fact that WiZk) k>1 become frrelevant
in the Markovian limit (Eq. (40)) is thus a manifestation of the fact that

the steady state values of the higher order coherences U'n,n+k(k>1) are
negligibly small in this case so that the MMP are insensitive to the detailed

dynamics of the multiquantum coherences.

Vi. Discussion

Wwe shall now summarize our main results and discuss their physical signifi-
cance.

(i) The systematic reduction scheme

We have constructed an appropriate set of molecular operators (EQs. (11) and
(44)) relevant for the deseription of MMP and making use of the Zwanzig-Mori
projection operator formalism we were able to derive REM for their time evo-
Jution (Eqs. (33) or {(47)). The relevant molecular information necessary as
an input to our REM is express?d in terms of an jnfinite hierarchy of n-time
dipole correlation functions M(n) (Eqs. (18),(19)).

(ii) The Bloch versus rate equations

Wle have examined two alternative choices of relevant molecular operators.
The first {(Secs. 111 and 1¥) includes population variables only and leads
in the Markovian limit to simple rate equations. The second choice (Sec. V)
includes also coherence variables and leads in the Markovian limit to Bloch
equations. We chould bear in mind that the Markovian limit actually means
separation of time scales between the relevant (P) and the other (Q) varia-
bles, and it has a different meaning when we change the definition of P.
Thus invoking the Markov assumption in both equations is not equivalent and
therefore the resulting REM (Eqs. (33) and (47)) are not the same. Only when
we further assume n<<1 (fast dephasing), tren the Bloch equations (47) reduce
to the simple rate equation (33). We have thus established two routes for
the derivation of simple rate equations. The first is direct using the cop
equations and the second is via the Bloch equations, making use of the POP
formalism. The second method gives us a deeper insight on the dynamical
meaning of the rate equations. The first derivation is however less restric-
tive. As we are rot considering explicitly the multiquantum coherences we
do not have to invoke unnecessary assumptions regarding their time evolution.
This is demonstrated in the fact that in order to get the Bloch equations we
had to assume that I'np(t) exhibits an exponential behavio*r (Eq. ?49)) where-
nm(t) decays fast

as in the first derivation all we had to assume was that
(short tc) regardless of its exact functional form.

(ii1) The reduction of molecular information

When the simplie rate equations {(33) hold, there is an enormous reduction in
the amount of molecular jnformation necessary for an adequate description of
MMP. Not only that all higher order correlation functions became insigpifi-
cant (40b), but even the details of the two time correlation functions nm(t)
become irrelevant and all we need is their time integral (Eq. (36)). The
molecular quantities that enter the rate equations are the following four

numbers per consecutive transition: (i) Spms the integrated dipole for the
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nm transition times the field amplitude;. (i) Trms inverse correlation
time (i.e. a dephasing rate); (iii) a detuning frequency wnm, and (iv)
ratios of statistical weights of the Tevels dp/dqp.

The significance of py as defined in (26) lies in the reasonable assump-
tion [9] that for large molecules where only few degrees of freedom are
coupled with the radiation field, Gpp will be approximately independent of
the number of states involved (i.e. dp and dy). This arises from an appro-
ximate oscillator strength sum rule [8]. Regarding the dephasing rates I'mm
it is clear from their definition (49) that they are associated with the
energetic spread of the state within the n and m molecular levels. (This
may be verified using simple models) [9]. The ratio dn/dm enters as a
detailed balance relation: (the rate of m+n)/(the rate of nsm) equals dp/dme
The Bloch equations contain the same types of parameters but there are more
of them {(one dephasing rate for each multiquantum coherence}.

It is clear that during the Jower stages of the molecular excitation pro-
cess (region 1) we have actually to solve the entire Liouville equation
(coherent driving), The Bloch equations then provide the adequate descrip-
tion., In the absence of reduction (each level | na> contains only one state)
then Inm(t)=exp(-iEnmt) and there is no dephasing Tnn=0 (Eq. (49)). The
Bloch equations are then equivalent to the complete Liouville equation. As

_the excitation builds up, the dephasing rates increase and in the guasiconti-~
nuum we expect simple rate equations to hold. The condition n=tte<<l is
expected to be met typically after the absorption of a few infrared quanta.
Since even for the strongest jaser fields ysed in MMP [6,7] we have T<10cm™}
whereas the spread of molecular states 1c-1 is expected to be around 100cm™?
quite early [1].

(iv)The REM as a ctarting point for simple models

In the construction of the REM we have assumed for the sake of formal conven-
jence that we know the exact molecular eigenstates |na>. We may enjoy this
assumption only while remaining in the formal stage since the true molecular’
eigenstates are not known even for a single triatomic molecule. This, how-
ever, should not prevent us from using the REM, on the contrary. The REM

are a convenient starting point for molecular calculations which should be
focused on evaluating the necessary dipoie correlation functions in some
approximate manner. These correiation functions are a proberty of the isolated
mojecule (without the laser field) and when plugged into the REM will.result
in the entire multiphoton dynamics, A reasonable way to proceed is to use
some of the classical or cemiclassical methods which are well established in
molecular dynamics calculations [19], for the evaluation of the necessary
correlation functions. This could be much easier and more aporopriate than
the evaluation of the exact molecular eigenstates.

(v) Intramolecular vibrational redistribution and laser-chemistry

The way we chose our variables {Egs. (11) and (44)) is convenient for study-
ing the total energy absorbed by the molecule via MMP. The intramolecular
vibrational redistribution (1VR) processes are hidden inside the dephasing
rates Tpme As @ demonstration we may think of a situation where we have 2
zero order molecular basis set (say the harmonic pasis) in which in each
Jevel there is only one state {a “doorway ctate") which carries oscillator
strength and is coupled radiatively 1o the adjacent levels. This state is
further coupled by intramolecular coupling to the rest of the molecular states
within the same level so that it undergoes irreversible decay with rate I'n’
corresponding to,intramolecular vibrational redistribution {IVR). In this
idealized case, Ipp(t) will exhibit an exponential behaviour(Eq. (41)), where
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Tm =72 Ty * Ty
is the mean IVR rate of the |n> and
rate in this case is
ding to IVR of the zero
realistic models (it is clear that there
each level) and to follow explicitly the
bution processes, We have to use
may be done by partitioning each

|m> doorway states.
connected directly to the Ty
order molecular states.

a more fine grained
level variable (Eg.

(52)

Thus the dephasing
relaxation rates correspon-
1f we wish to consider more
js more than one doorway state in
intramolecuiar vibrational redistri-
cet of variables. This
(11)) into

corresponding to different distribution of the available energy among the

varijous molecular degrees of freedom,
detailed knowledge of the intramolecular

achieving 1aser-induced and laser-control

the

dependent on the competition between
sent formalism

(vi)

Direct measurements of intramolectl

This requires,

of course, a more
interactions. The possibilities of
1ed chemical reactions are crucially
energy pumping and IVR and the pre-

is suitable for studying these processes in detail.

ar line broadening in po]yatomic

molecules

An important result of the present formalism is the incorporation of the rele-

vant molecular information in
Tnm (E. (49)). 1t is clear
examination of
the experimental observables
copic.

enable us directly [3,43.

to measure I'nm

. REM to predict the outcome of multiphoton experiments.
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1ine shapes as measured in cells and at room temperature are usually inhomo~
geneously broadened due to rotational envelopes, sequence congestion (over-
1apping transitions), Doppler broadening etc. and do not yield any dynamical
information regarding intramolecular processes. 1t is possible to overcome
these difficulties by performing high resolution spectroscopy of cold mole-
cules (1-2°K) in supersonic beams. This technique eliminates the inhomogeneous
broadening and results in homogeneously broadened line shapes. A beautiful
exampie of this type of spectroscopy is shown in Figs. 4 and 5 where we show
the fluorescence spectra of a series of molecules consisting of a benzene

ring with a hydrocarbon side chain (R-CeHswhere R=CH, (methyl), CzHs {ethyl)
etc. up to CeHas (hexy1)), obtained in 2 supersonic beam [4]. - The vibrations
which show up in these spectra belong essentially to the benzene ring (since
the electronic transition is of the m electrons of the ring) and are changing
very 1ittle within this series of molecules. The side chain provides the Tow
frequency vibrations necessary for IVR. This series is a very successful
choice since we have a ¢lear separation of the molecular modes into a "system"
and "bath" where the former show in the spectra and the later induce relaxa~
tion. By moving along the series we are able to change the bath without
affecting the system. The two fiaures differ by the excitation wavelenath.

In Fig. 4 the excitation is to the 6b mode and in Fi?. 5 to the 12 mode and
the amount of available vibrational energy is ~830cm™
tively. We note how the spectra become more complicated with the increase
in the size of the side chains (R) and with the available energy. A careful
analysis of such spectra [4] gives us 8 direct measure of IVR and the resul-
ting dephasing rates may be used as an input to our REM for MMP.
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