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1. INTRODUCTION

The discovery'=3 that polyatomic molecules under collision-free condi-
lions may absorb many infrared quanta from a powerful laser and acquire
energies of chemical interest (few eV), had triggered considerable experi-
mental and theoretical efforts in recent years."”!” The currently available
experimental information regarding molecular multiphoton processes
(MMP) includes absolute .cross-sections for energy absorption,® transla-
tional,” and vibrational® distribution of the products of unimolecular
decomposition following infrared pumping, total reaction yields and
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branching ratios of various channels as a function of laser frequency,
intensity and fluence,’ infrared,’ and visible' emission characteristics of
the excited molecules, double resonance experiments' (both frequency and
time resolved), etc. ,

The following qualitative picture'*-'* has emerged out of the numerous
experimental and theoretical studies: The molecular energy ‘levels are
separated into three regions. In the lowest energy range (region I) the
density of molecular states is very low and the lasér field is interacting with
isolated molecular states (coherent driving). In this region the laser power
is required to overcome the molecular anharmonicities and phenomena
such as threshold power, saturation behavior, isotopic selectivity, and
multiphoton resonances are accounted for in terms of the molecular
level-scheme of region I. After the molecule has absorbed few quanta, the
density of molecular states becomes very large, and we can no longer
describe the time evolution in terms of few isolated molecular states. This
region is denoted region 11 or the quasicontinuum and a proper description
of the molecular time evolution in this range requires a quantitative
understanding of the mechanisms of intramolecular energy transfer and
line broadening (dephasing)?® of highly vibrationally excited polyatomic
molecules, of which very little is known at present. (We should note,
however, that recent developments in overtone spectroscopy, 2" 2 coherent
transients,?® and high-resolution optical spectroscopy? are currently yield-
ing novel information regarding intramolecular line broadening.) Finally,
when the molecule acquires enough energy for dissociation, it enters region
111, where, in addition to all the complications of region 11, we have to
incorporate also the dynamics of unimolecular decomposition. _

Some of the theoretical problems which are underlying the current
studies of molecular multiphoton processes are as follows: (1) How much
energy is absorbed by a polyatomic molecule interacting with a strong
infrared laser, and what is the intermolecular distribution of energy as a
function of the molecular and laser parameters (molecular size, frequen-
cies, anharmonicities, laser frequency, intensity, and duration)? (2) What is
the intramolecular energy redistribution rate? How much time does it take
for the absorbed energy to flow among the various degrees of freedom?
Does the energy randomize, and at what time scales? (i.c, does the
molecule exhibit an ergodic behavior?)® These questions are essential for
the observation of laser-specific nonthermal effects in chemical reactions.
(3) Can we use the information extracted from studies of molecular
multiphoton processes to study the dynamics of unimolecular reactions
and, in particular, to test the validity of the various statistical approaches
that are extensively used to predict reaction rates and branching ratios??
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It is clear that a complete quantum-mechanical treatment of these
problems is extremely complicated and is impractical. The density of
molecular states is very rapidly increasing with energy. (For SF;, e.g., it is
10%/cm™?, 2x10%/cm™", and 3x 10" /cm~" at energies of 5000 cm™",
10,000 cm ™", and 19,000 cm™?, respectively.) Due to the lack of structural
information (i.e., potential surfaces) on highly excited polyatomic mole-
cules, we do not know the exact nature and coupling strengths of these
states even for a single polyatomic molecule. Moreover, even if we had this
structural (static) information, it would have been impossible to solve for
the dynamics of about 10'° states interacting with a strong laser field. On
the other hand, we should bear in mind that the information that is of real
interest for us:is much less detailed than the knowledge of the complete
molecular density matrix, including the amplitudes and phases of all
molecular states. In practice we are interested only in a few molecular
observables and their time evolution on a coarse-grained time scale (~107°
sec) which is much longer than the molecular frequencies (i.e., 10~ 3-104
sec). A complete. dynamical treatment of the problem is thus neither feasible
nor desirable.

The current theories of unimolecular reactions?® avoid these complica-
tions by assuming a complete microcanonical redistribution of energy prior
to the reaction. This assumption makes it feasible to evaluate reaction rates
using equilibrium statistical mechanics. The relative success of these theo-
ries in predicting reaction rates does not, however, prove the validity of
their basic assumptions, which were very seriously challenged® by a
variety of recent experimental?’ and theoretical?® studies.

An inevitable conclusion from the foregoing discussion is that we should
adopt a mesoscopic level of theoretical description, which is intermediate
between the fully dynamical and completely statistical approaches.?® The
basic idea of the mesoscopic level of description is to find some few key
molecular variables and to adopt a reduction scheme that will enable us to
derive closed reduced equations of motion (REM) describing the ap-
proximate time evolution of these variables in the presence of the rest.
Formally this is one of the most important problems in irreversible
statistical mechanics,*® and there are many methods for constructing
REM, for example, the Langevin approach,®->* the stochastic Liouville
approach,* and projection operator techniques.>> 3¢

It has been suggested phenomenologically'® ¢ and demonstrated in
several cases* ° that a simple description of the multiphoton excitation
process in terms of ordinary rate equations may be quite adequate (at least
for highly excited molecules in the quasicontinuum region). A basic
prediction of this postulate,® which was experimentally verified, in particu-
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lar by the recent Jow-power ICR experiments,* is the dependence of the
dissociation yield on the total fluence (and not on the laser power once it is
above threshold). The major problem with the phenomenological approach
is that apart from a convenient way of fitting experimental data,” it does
not give us any microscopic interpretation of the observed rate constants.

Early attempts'" '* to derive reduced equations of motion (REM) for
MMP (which may lead to rate equations in some limits) relied on separat-
ing the molecular degrees of freedom into 4 “system” and a “bath” with
weak interaction between them. The few molecular normal modes that
interact with the radiation field are taken to be the systém, whereas the rest
are the bath. This approach is in the spirit of conventional theories of line
broadening.3 3% 37-3 1t is, however, fraught with some difficulties, since
the dynamics of highly vibrationally excited polyatomic molecules is not
expected to be properly described, using a perturbative approach in
anharmonicities.* Moreover, perturbative treatments in anharmonicities
necessarily become less adequate with the degree of molecular excitation.

In this review we develop a new approach toward the derivation of
REM for MMP," which is based on the projection operator formalism of
Zwanzig>® and Mori* combined with the representation of the true
molecular states. The latter enables us to formulate the problem in a form
free of perturbative arguments in any intramolecular interactions. !> 4% 42
The main steps in this “hydrodynamic-like” approach® are: (1) the choice
of a few molecular operators whose expectation values are the important
variables for the dynamics of MMP; (2) the definition of an appropnate
Mori projection operator onto the space spanned by’ these operators; and
(3) the derivation of reduced equations of motion (REM) for the time
evolution of these variables.

This procedure is completely general, and formally the choice of the
number and type of variables is arbitrary. However, the complexity and
usefulness of the resulting REM depend crucially upon a successful choice
of variables.

“In Section II we present the general systematic reduction scheme, which
allows us to construct a closed set of equations of motion for any chosen
set of molecular variables, starting from the complete Liouville equa-
tion. We present two formally different schemes based on different
choices of time ordering.** > 4 In Section I1I we construct the molecular
Hamiltonian for MMP using molecular states “dressed” by the radiation
field'> 1 % and define a “minimal set” of reduced variables corresponding
to the populations of the various levels. We then derive our REM for these
variables. We are able to give closed formal expressions for the complete
information that is contained in any multiphoton experiment involving
populations only. This information is a hierarchy of k-time intramolecular



REDUCED EQUATIONS OF MOTION 513

dipole correlation functions where k=2,4,6,... (29). In Section IV we
expand the REM to second-order in the field and show how under quite
general conditions (the Markovian limit,> % 40 where the integrated Rabi
frequency is small compared to the energetic spread of the states within the
levels) they reduce to simple rate equations. In Section V we consider
higher order terms in the expansion of the REM and define an expansion
parameter which shows that in the Markovian limit the higher order
correlation functions are not important. The conclusion from Sections IV
and V is that in the Markovian limit simple rate equations apply, and most
of the molecular information contained in the complete set of correlation
functions (29) is redundant and is reduced to two numbers per transition.
These are the integrated Rabi frequency and a dephasing rate given in
terms of the time integral over a two-time dipole correlation function. (In
addition, the REM depend on ratios of the statistical weights of the various
levels.) In Section VI we derive a different set of REM for the populations
and the coherence variables. The explicit inclusion of molecular variables
corresponding to coherences in our REM is important for the sake of
getting a unified description all the way from region 1 (where they are
important) to the quasicontinuum, for establishing the connection between
MMP and other spectroscopic techniques, and for getting a better insight
on the dynamics of MMP. Intramolecular relaxation of populations (T,
processes) need not be considered at all in-these REM (unlike phenomeno-
logical Bloch equations) since they are “buried” in our choice of basis set.
The intramolecular dephasing processes (73), however, are playing a major
role in the continuous transition of the driving from coherent to totally
incoherent. It should be pointed out that no perturbative arguments in
intramolecular couplings need to be made in order to give a precise
definition to the dephasing rates, since they are associated solely with our
reduction scheme (i.e., choice of variables).' 2 We finally show how in the
limit of fast dephasing thess REM reduce to the same rate equations
obtained in Section IV. This alternative derivation of the simple rate
equations gives us a better understanding regarding the “loss of relevant
information,” which occurs when the REM reduce to simple rate equa-
tions. Finally in Section VIII we present a microscopic model for the
intramolecular two-time dipole correlation functions which enables us to
calculate the dephasing rates appearing in our REM and to compare with
existing experimental data.

Il. THE SYSTEMATIC REDUCTION SCHEME

We consider a large system with many degrees of freedom characterized
by a Hamiltonian H and a density matrix p. The time evolution of pis
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given by the Liouville equation:

L o [ H,p]=~iLp )

where L is the Liouville (tetradic) operator lcorresponding to H, i.e,

dpab = —

= =i E Loy, caPea . @
‘and
4
Lab.cd=an8b,d— Hl’daac (3)

The density matrix p(7) contains the complete information regarding the
state of the system at time r. In practice, however, much of this informa-
tion is redundant and we shall be interested only in some projections of
p(¢) on few “relevant” operators A, whose nature is determined by the
initial conditions and the type of experiments considered. We- are thus
interested. in deriving reduced equations of motion (REM) which will
provide us directly with the time evolution of the expectation values of 4,.

The appropriate formalism to achieve that goal is the projection opera-
tor technique of Zwanzig*® and Mori.*® The procedure goes as follows: We
first have to define the set of molecular operators of interest, A,. We then
define a scalar product of two operators as

(A4,,4,)=Tr(4}4,) )

Throughout the present work we shall assume that the chosen operators 4,
are orthonormal with respect to ‘the scalar product (4), that is,

S,.,=(4,, A,)=8“_, )

although the general reduction procedure does not rely on this property
and it could be easily generalized to include a general overlap matrix S,,,
as well as a more general definition of the scalar product. 40

We now define a Mori. projection P which projects onto the subspace
spanned by our relevant operators A4 : ut

PB=3 (B, A,)A, (6)

and the complementary projection
o=1-P (6b)
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Our quantities of interest are the expectation values of 4 , at time ¢, that is,
o(1)=(4,,p(1)) ™

and using the definition (6) it is clear that all our relevant information is
contained in the projection Pp(?), that is,

o (1)=(4,, Po(1)) ®)

Making use of the‘Zwanzig”—Mori“"techniq‘ué we can now derive REM
for Pp(t) and project it on the variables 4, resulting in the following REM
fora,: '

e = —iZ (L0~ [dr B RU-1%,0(n) - KFD),  ©)
» "

where R(¢—7) is the tetradic operator
R(t—7)=Lexp[ —iQL(1-7)]QL (10)
and the tetradic matrix elements (L ),, and (R),, are defined as
| (Y,,=Tr(AlYA,) Y=R,L 4)))
{F) 1s the vector:
(F(1)y, =Tr[ A} Lexp(—iQLt)Qp(0)] (12)

p(0) being the density matrix at time 1=0. Equations 9 are exact and are
valid for an arbitrary choice of .dynamical operators A,. In practice,
however, the memory kernel ( R) and the vector ( F) are usually evaluated
in some approximate manner using an expansion in a properly chosen
parameter. To that end it is sometimes advantageous to use a different
form of the REM,' that is, '

B e IS (L0 (1) S0 () =iCG(1),  (13)

where :
CK(1)),u= Z W), V(1) (14)
W, (1)=Tr[ ATLQexp(—iL1)A,.] (15)

V,.”=Tr[ AI,exp(-—iLl)A"] (16)
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. and
<G(1)), =Tr[ 4} Lexp(~iLt)0p(0)] (7

The form (9) arises naturally when keeping the complete time ordering of
the various operators and will be referred to as the COP (chronological
ordering prescription). The form (13) uses only partial time ordering and
will be referred to as the POP (partial ordering prescription). Equation 13,
like (9), is also exact. However, once an expansion is made both equations
may have very different predictions. A comparison of the two forms for
general-relaxation and line-shape problems was made recently.** 4 46 Ip
the next section we shall perform a formal expansion of both REM for a
particular choice of variables for the multiphoton problem, and this will
enable us to point out more precisely the differences l’gctween the two.

lII. THE MODEL HAMILTONIAN FOR MOLECULAR
MULTIPHOTON PROCESSES—REM FOR THE
POPULATIONS

We consider a polyatomic molecule interacting with a monochromatic
infrared laser beam whose frequency is , under collision-free conditions.
We assume that the Schrodinger equation for the isolated molecule (in the
absence of the field) has been solved and that we have the complete set of
molecular eigenvalues as well as the dipole matrix elements between them.
Assuming that the molecule is initially cold (kT<hw, ), then only states
with energies around nw;, n=0,1,2,... are important for the multiphoton
excitation process and need to be considered. We shall therefore group
these relevant molecular states into levels and denote them as {|na) } with
eigenvalues E_,, where n stands for the level and a runs over the states
within the nth level. We further invoke the rotating wave approximation
(RWA),3-1% 45 which is very reasonable for MMP with infrared photons
and which amounts to neglecting high-frequency terms in the Hamiltonian,
which are not expected to contribute significantly to the molecular time
evolution. We can thus write the combined Hamiltonian for the molecule
and the field in the time-independent form:'®

H=H,+H’ (18)
where

H0= z I”a>Ena<na| (188)
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and

H'=¢ 3 |na)uf(mp| (18b)
mB
m=n]
Here the molecular states within the nth level have absorbed » infrared
quanta from the field, and E, ,=E;, —nw, is the energy of the |na) state
dressed (to zero order): by the field. %8 =(mB|u|na) is the transition
dipole between the |na) and |mB) states and e is the laser field am-
plitude. The molecular level and coupling scheme is presented in Fig. 1.
We shall now turn to the construction of the set of relevant operators. In
a molecular multiphoton excitation experiment the quantities that are of
primary interest to us are the populations of the various levels (the
probability P,(7) for the molecule to absorb n photons at time ¢). It is thus
clear that a minimal set of relevant variables should include these popula-
tions. In order to derive REM for P,(t) we shall now introduce the
following set of molecular operators: '®

1
d

n

A

nn—

Y|nad{nal n=0,1,..., N—1 (19)

d, being the number of states within the nth level (the statistical weight of
that level) and N is the total number of levels considered. The choice of the
states included in 4, (and consequently of d,) is important since the
ratios d,,/d,, enter explicitly in the resulting REM (48). It should thus be
‘made with physical insight and only states that are expected to participate
in the dynamics of the MMP in the experimentally relevant time scale
should be included in the summation (19). The A, operators (19) are

8
724

%

:
REREEREN
:
I

loa) 1Y) f2 y) j38)

Fig. 1. The coupling scheme for molecular multiphoton processes. The true molecular states
are grouped into levels where the nth level includes states |n¢) which absorbed n photons
from the field. 4 is the radiative dipole coupling.
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orthonormal, that is,
(Ann’Akk)-sn,k (20)

and the populations of the various levels are

P()=Vd, (A, 0()=Vd, o(t) @1

From the defmmons (6), (19) and (18) it is clear that for our pamcular.
choice of P:{(6) with (19)] we have

PLP=0 | (222)

and ‘ _
PLy=LoP=0 | (220)
Here L, L, and L’ denote the Liouville operators corresponding to H, H,

and H', respecuvcly We shall further assume that initially at'r=0 all the
population is in the zeroth level so that

p(0)= Ao (23a)

d,
which implies that
| Qp(0)=0 - (23b)

Substitution of (23b) in (12) and (17) shows that for this type of initial
condition we have

(F)>=(G>=0 (23¢)

that is, the inhomogeneous part of the REM vanishes.
We shall turn now to the expansion of the REM in a power series of L’
using both time-ordering prescriptions.

A. The COP Reduced Equations of Motion
Using (6), (19), and (18) we note that

QL=(1-P)(Lo+L)=Lo+ QL' (24)

which enables us to expand exp(—iQLt) and the memory kernel R eq (10)
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in a power series in QL’, that is,
exp(—iQLt)xexp(-iLot)—if'd'rexp[ —iLo(t—1)]OL exp(—iQL7)
0

(25)

We note in addition that due to the nature of our P and L', only even
powers in QL’ will contribute to PRP. We thus have

e [ldr SR T0) @
»

where

(R(t=7)> =(RO(1—1)> + (RO(1=7)> +{RO(1—1)> +--- (26a)

and where
(RO(t-71)) =8,(1—1,0) (26b)
(RO(1—-1)) ='f'--,d‘r, fnd'rz 0,(1-=7,7,,7,,0) (26¢)
(} ()

1—7 Ty 72 T3
(R(G)(t—'r))=j; d-rlj; d'rz](; d'r,j(; dr 6(1—7,7,, 7,75, 7,,0)

(26d)
and
<R(2">(:-7)>=f0 df,fo. dry- -
xfo'“"dfu_,ou(t—f,f,,T,,...,fz,‘_z,O) (26¢)
Here
Oy (11 s 10 ) = (= 1T L)L (7, )( = P)L'(73) L (7,)
(1=P)...(1 = P)L' (135 _ )L (7)) 27)
where
L'(t)=exp(iLyr )L exp(—iLgr) (28)

Let us introduce further the kth moment of L’ as the k-time correlation
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function
Mk("’lv"2---"k)‘(L'("'l)L'("'z)---L'("’k» (29)
in terms of which we may rewrite (27) in the form:

; az(fl»Tz)FMz('rl»"'z) (30a)
0i(7), 72,75, Te)=— [ My(7), 75, "3:"4)"‘”2("’1,1’1)]“2(73’ "4)] (30'?)

etc.

The {...) in (26)-(30) denotes a tetradic matrix element as defined by eq

(1.
Equations 26 together with (27)-(30) constitute our COP reduction
scheme. They enable us to derive closed REM for the N populations of the

various levels (P,,=\/¢;: o,, n=0,1,..., N—1) in terms of the tetradic
NXN R matrix. Evaluation of the latter requires the calculation of the
intramolecular dipole correlation functions M, (29) [or 6, (30)}, k=2,4,...
which provide us with the complete molecular information needed for the
description of all MMP whenever the experimental observables are con-
nected with populations only.

B. The POP Reduced Equations of Motion

Turning now to the POP reduction scheme for our particular choice of P
[(6) with (19)), we may use the relation

exp(—iLt)=exp(—iLol)-if()'d'rexp(—iL(t—‘r))L’exp(—-iLo-r) 31

to expand (K(7)) (14) in a power series in L', that is,

CK(1)) =<LQ(1 —ij;’d-rexp(—iL(t—'r))L')

X [l—ij(;'d-r(exp(—-iL(l—'r))L') B (32)

resulting in'®

‘:' = §<K(')>.,o.(t) (33)
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where
CK(1)) =<KP(1)) +<{KO(1)p + - - (332)
and where ' -

(KD(1)) = fo ‘dr My(1~1,0) (33b)

CK9(1)) = —j:d'r, j:ld'rz j:zd'r;M4(t,1,,12,13)+L'd1| fo’d‘rz _/:zd"a

xMz(l,‘rl)Mz(Tz,fs)
= ’f’dﬁf .d"z] zd"’s[M4(’,:‘”|a"'zr"3)‘Mz(”"l)Mz("z,";)
[1] (1] 0
"Mz(’,"'2)Mz("'|:73)-M2(t:“’3)M2(7:"2)] (33c)

The complete molecular information that enters into the POP equations
(33) is identical to that used for the COP (26); that is, it consists of the
entire set of intramolecular correlation functions M, (29). However, these
correlation functions enter in a different: way in each reduction scheme.
The expansions (26) and (33) enable us-to point out more precisely the
differences between the two prescriptions. In principle they are both
exact.*> * However, if we truncate the REM at second order, this amounts

1o setting (RW> =(R®) =... =0 in the COP (26) and (KW ) =(K®)
= ... =0 in the POP (33). (R =0 implies

M(7), 72,73, 1) = My(7y, 1) My(73, 7,) (34)
whereas (K@) =0 implies

M4(T|,‘fz,73, 14)=M2(-r|,72)M2(73,T4)+M2('r,, Ts)Mz("z"&)
+My( 7y, 7 )Mo( 7y, 75) (35)

Thus, the two expansions correspond to different statistical properties of
the dipole operator. These points and their implications were discussed
recently in detail for other line-shape problems.** 4

Finally, we should point out that there is one general type of condition
in which both equations reduce to the same form. This is the Markovian
limit where a separation of time scales exists between the relevant opera-
tors A, and the dipole correlation functions, whereupon the latter decay on
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a time scale 7, which is much more rapid than the evolution of the former.
In this case the higher order terms M,, M, have a contribution which is
higher order in 7. compared to that of M, and may be neglected, and both
REM [(26) and (33)] reduce, on a coarse-grained time scale >7,, to the
form: '

di == % ”,ruor(’) (36)

where

W= (KD () = [ “drCR)y = [ “dr(L(r)L'(0)> (36a)

In this case the resulting REM (36) attain a very simple time-independent
form and the amount of molecular information necessary for the descrip-
tion of the MMP is considerably reduced [we need consider only W (36a)
instead of the complete set of correlation functions M, (29)]. In the coming
sections we shall make use extensively of the Markovian limit condition
after justifying it from microscopic considerations for MMP.

IV. EXPANSION OF THE REM TO SECOND- ORDER IN
THE FIELD

We shall now apply the formal results of Section III to derive explicit
expressions for the REM, 1o second order in the applied field (H’). We
shall adopt here the COP formulation. We should bear in mind, however,
that the final rate equations derived here (52) are in the Markovian limit
where the POP equations coincide with the COP as implied by (36).

To second-order in the applied field (H’), we set

CR(1=17)> =(RD(1-1) (37)

in (26). Substitution of (18) in (26b) results in the following nonzero matrix
elements of R: A

Rl 1=1)) = ),/,

m=nx] (38a)

2 ( Lreas aﬁ T)Lmﬂnﬂp (O)+C.C.)

an, nm nm, mm

and

Rupali=1> =5 3 (Ligtieb(1=r)Lisb:a2(0)+c.c.) (38)

m=px+])
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Here
Lighi— ia, JBIL'Ky, 183 (39)

comes for the tetradic matrix element of L’ (we are using here the double
bracket notation®® whereby the tetradic state corresponding to |a){b] is
denoted |ab) ). In (38) we have made use of the Liouville conjugation

symmetry
Loy, ca=—Lia,ac (40)

which is valid for any tetradic operator® and may be easily verified using
A3). ’

We shall now define the two-time intramolecular dipole correlation
function for the nm transition:

InM(I)gReinm(‘) (4]&)
where |
r <p'nm(0)""mn(’)> 2 - .(0
1,.(1)= O 0)S 7,.,.5'" 1 exp(—iw,o mpt) (41b)
Here
“"nm(’)=exp(iH0’)#nmexp(—iHO’) (42)
i} Vim = ClamObma(@> = Z [ @)
and
hwna,mﬂ-__Ena—Emﬂ (44)

We further define the integrated Rabi frequency for the nm transition
— |2

2 =

Qnm=2c azﬁ (d )1/2 (45)
Making use of the quantities (41)—(45) we can express the matrix elements
of {R) (38) as follows:
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and

1/2
BRmlt=r= S (7)) hni-m) a6

m=px]

Upon substitution of (46) in (9) and putting P, =(d,)'/%,, we finally get:

T2 By oo HD - B0 @)

d m=nx] n

k)

Equations (47) or (48) reduce to simple rate equations in the following
limit: If I, (1~7) has a characteristic time scale 7,=T,} such that

or, alternatively,

dP,
dt

&.I&.

fd‘rl,,m(t 'r)[P (1')(

m-n*l

then we expect P,(1) to vary on a time scale considerably longer than I!
(this expectation will be verified later). In this case I, (1—7) acts like a &
function inside the integrals of (47) or (48). We thus have:

L (t=7)=T, 18(1-7) (50)
where
TtEI':,,:=f°°d‘rl,,m(1) (51)
: 0
Substitution of (50) in (48) results in the simple rate equations:
dP, d,\'"? d,\'"?
n_ @ -n —pl—
I L B )
where :
02
W - ‘;"' (52a)

Equation 52 may be recast in the form:

‘:" = 32 KOP()-KQP() (53)

m=nx*]
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where
d 1/2 ﬁ!
and |
K= 3 K@, (53b)
m=pt]

We note that K, , satisfies the detailed balance relation

AT =t (53¢)

which implies that the radiation field is tending to establish a distribution
of molecular states where all radiatively coupled states are equally popu-
lated. Thus the rauo (53c) is equal to the ratio of the number of effectively’
coupled states in each level. The superscript (2) in (52) and (53) signifies
that W® and K® are evaluated to second order in H'(p). Utilizing (53a)
and (52a) we have
W2 =(K2KS,)" | (54)

Condition (49) is the Markovian limit**-*: %1% and implies that a separa-
tion of time scales exists in our problem such that our chosen set of
variables (i.e., the P space) is slowly varying compared to the other
variables (the Q space). Equations 52 could have been obtained directly
from (36) where we have derived the Markovian form in a formal way. A
posteriori we can now justify the substitution (50). Using (52) we notice
that the characteristic rate of change of P, is W,,=82,_/T, . Condition
(49) thus implies also that W, <«T,, , which provides a consistency check
to our assumption that P, are varying on a much slower time scale than
I} [which led to (50)).

Wc note that the only molecular information that enters the rate
equations (53) is

1. R,,. the integrated dipole for the nm transition times the field am-
plitude;
2. T,,, inverse correlation time (i.e. a dephasing rate); and

3. Ratios of statistical weights of the levels d,,/d,,.
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The relevant molecular information thus reduces essentially to two num-
bers (822,,/T,,, and d,/d,,) per transition in the Markovian limit where
rate equations apply. _

" The significance of ©,,, as defined in (45) lies in the reasonable assump-
tion' that for large molecules where only few degrees of freedom are
coupled with the radiation field, £2,,, will be approximately independent of
the number of states involved (i.c., 4, and d,,). This is expected, since any
quantity of the form

S 7 KnalblmB>I=lbnl (552)
or
3 - Knalulm@> = lbanl’ (55b)

is independent on the addition of degrees of freedom that do not couple
with p. The dipole sum rule (552) implies 92, =% z|Knalp|mB)|*=d,
and (55b) implies 92, od,,. It is thus fair to assume that Q2_ is propor-
tional to (d,d,,)"/?, which implies that Q,,,, is independent of d, and d,,,.
Regarding the dephasing rate T, it is clear from its definition (51) that it
is associated with the energetic spread of the states within the n and m
molecular levels. For the sake of illustration, we shall consider now a
simple model whereby |28 |2 is constant, independent on a and B, that is,

o [IVI? —-A<E,, ,E, <A
I#..f’..l’=[' | na> Emp (56)
0 else

Assuming that the number of states d,, d,, is sufficiently large and that
they are uniformly distributed throughout the n, m manifolds, we can
replace the summation (41) by an integration, resulting in

Ln(1)= sin’(A1) (57a)
(ary’
and
Q2 =28|V|¥d,d,.)'"’ (57b)

The characteristic time scale of I, (¢) is thus A™'. The condition for the
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Markovian limit (49) is then equivalent to

Q,,<A (58)
and we have

L= “drl, ()= o (59)

Finally, it should be pointed out that the molecular driving rates K@ may
be recast in the form

Q2 (d,
@ - am| 92|y |2
K¢ T, (d ) 27e? |V |%p, (60)

where

dll .
=5 (61)

is the density of states in the [na) manifold. Equation 60 is the familiar
golden-rule-type expression. We found it convenient to express the REM
in terms of the quantities £,,, and T, , rather than |V, |? and p,, since ...
and T,,, are the two actual time scales of the problem and their relauve
magnitude determines the validity of the Markovian assumption. Also,
when adding more modes to the molecule, which do not couple with the
radiation field, then p, is changing and |V,,,,|? will depend strongly on p,
and p,,. Thus |V,,.|* and p p, are not the natural independent parameters for
the problem for MMP. Q,,,,, and.T,,, however, may be considered in-
dependent.

Y.  EVALUATION OF THE HIGHER ORDER
CORRELATION FUNCTIONS

In order to get an estimate of the approximations involved in the
expansion of the REM to second-order in H’ (as was done in Section 1V),
we shall now proceed to the evaluation of the fourth-order contribution to
{R). This will enable us to define a dimensionless expansion parameter
for the series (26a) and as a result to define precisely the general conditions
for its truncation.

We shall consider first M,(+—7, 1, 7,,0) which is required for the
evaluation of (R®(r—1)),.. .., where m=n, n+2. To that end we take
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@
p=

/ \ \
) Fig. 2. Diagrammatic representation of
- the Liouville space terms contributing to
\ M,. Note that there are six pathways to
@ go from [aa)) to |ec)) in fourther

three consecutive levels n, /, and m. For abbreviating the notation we shall
throughout the present section substitute a, b, b', and c for na, IB, IB’, and
my, respectively. Similarly £, will substitute Z,, etc. Figure 2 presents
diagrammatically the coupling scheme required for the evaluation of
(M,).i. aq- Using Fig. 2. we notice that there are six pathways which lead
from |aa)) to |ec)) in fourth-order. However, by virtue of the Liouville
conjugation symmetry (40) we need consider only three independent paths
and the other three have a contribution which is simply their complex
conjugate. We thus have:

M'('_T’T"Tz’o)«-m=®""®+@+c.c. (62)
where ‘
| T L ' B ’
®= _(dﬂdc)l/z % Lcc. b't(’—T)Lb't'ﬂ‘(‘r‘)Ldt.ab(TZ)Lnb'aa(O)
b'c -
1

a ¢ b't

(622)

1 ) , o ’
®= _—(d 4 )I/Z § Lt"b't(t—?)Lb't.b'b(Tl)Lbfb,ab('rz)L‘b'aa(O)
a%e be

1 . ‘ ‘
@€ b'c

(62b)
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and

®- (T;Tﬁ 3 Lic. 1= Lo s L, () L, 0O

b'c

—an 2#5 ‘aPapBocker €XP 0y (1= T) Fiw oty Hiwy,m]

(d )
(62c)
At this stage we introduce a simplifying assumption which makes use of

the complexity of our system. The various p’s are expected to vary
randomly and have an arbitrary phase. As a result, we anticipate that

2 Bpal op= 2 |#tasl 2 8, » (63a)
a a

and
El‘bcﬂcb"‘z |#pc|28w ’ {(63b)

This is a form of the statistical random phase approximation (RPA)
Making use of this assumpnon we can omit the b’ summation in (62) and
set b=b". It is now clear that when (62) holds, then diagrams @ and

do not contribute at all to 6, (27) (and to R™). This arises since they both
pass through 4,,=(1/Vd, )25l#8><IB|, and by construction of the P
projection (6) we have

(1-P)A,,=0 (64)
An alternative way to see this is by looking at (30b). We then note that the
contribution to M (71—, 7, 7,,0) from these diagrams exactly equals that

of M,(t1—7,7,)M,(7,,0) and as a result their net contribution to §,
vanishes. Using (30), (62), and (63) we thus have:

O(1=7,7,,1,,0)= - [D+c.c.]

-1 ~ .
172 2 el lpel*expliog(1—1~m) +iw,,n ] +c.c.

@4 o
(65)
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Within the random phase approximation we do not expect |igs|? and
|5 |2 to be correlated. It is thus reasonable to assume that (65) may be
further factorized in the form ;

-1 . e
0,= o un [ p) |#¢b|2°xP(“"ba‘T|)2 |Foc|z°xP(“"¢b(""'""’2))"“:-‘:-]
(d,d.d})’ L a be..
(66)
i.e.

0(1—7,7,7,0)= —ﬁibﬁgc'Re[ ias("n)ihc(""‘fz)r] (67
We are now in a position to evaluate (R@),
(RY (t=1)> = [ TTdr, [(dr8(1-1,7,7,0)  (68)
() ()

From the definition (41) we expect I(r) to be finite only over a limited
time scale 7<<7, =T""' where I' Is a measure of the energy spread of the
levels involved. Using (67) it is clear that 6, (and consequently also
(RY ,.(1—1)) (26¢)) vanishes when 1—7127. Thus the characteristic time
scale of R is equal to that of /. Usually we are interested in the time
evolution of P, which occurs on a much longer time scale than ' ~'. This is
again a manifestation of the Markovian assumption (49). We can thus
substitute in (26) - e ‘

RW(t—1)=—-WWs(1-1) (69)
where “
@ ] A
Wc(:?aaf‘_j; d’fod'ﬁfo 47204(’s7|’fzap)
=252 L %0 (e (" nel 7 = :
=02,03, fo at fo a, fo dfz-Re[Ja,(fi)zbé(:-f—f,)-] (70)

Equation (69) together with (50) and (26) result in the following rate

equations:
dP d 1/2 d 1/2
" @ “HY _plim)
a2 w"":[:”"(d) P"(d.

m=ntl m.
o 2 w2 (2] o

nx2
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The evaluation of W, where m=n= 1 proceeds along the same lines and
the results are similar to (70). For brevity we shall not consider these terms
here.

We shall now turn to an order of magnitude estimate of W, From the
previous arguments, it is clear that the only contribution to the integral
(68) comes from the region:

0<1,1,1<7=T"! (72)

since otherwise the integrand vanishes. We thus expect that

a2,
W“)a——'f - b (73)
For the sake of illustration, let us take
I(r)=exp(~T1) (74)

which yields
(RO(1=1)> =038, [, ["dmexp(~Tr,)
o Yo

exp[ -T(1—1~1)] (75)
rgsulting in '

A4) / ﬁ:‘;b(—z:t '
{R" (t—-ir))tc'“=.?r-exp[ —I(1-7)]

,{exp[ -T(t—1)] +l"(r—-r)—‘1} (76a)
and

Q2,02 ’
] ab*be (76b)

W@ =_/f’°d,R(4)(,)“'“=i %
0 B

cc,aa

Equations (76) demonstrate the validity of our general argument leading to
(73), which is not restricted to the particular form (74). Assuming that
2., =0, =Q we recall from (52a) that

Q2
) . 22
W= an
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We thus get, using (73) and (77)

W® K@ _ ., WO
__W"’ = ']'(723 =(9 /r) -5 (78)

which shows that the expansion parameter for the series

is

Thus

W=W®D4+ W9+ ... (79)
0\ we

*'=(f) =T (80)

W(2k+2) = W(z),r'k (81)

We further note that the condition for the validity of the Markovian limit
[i.e., (49)] is n<1, which implies that in this limit the higher order terms in
the expansion (79) become unimportant ! ’

In concluding this section we note that using the present formalism we

were able to define precisely the complete molecular information that is
relevant for MMP and to see how this information is reduced considerably
in the Markovian limit leading to simple rate equations. We shall now
summarize the basic steps leading to the rate equations and discuss the
validity of the Markovian limit for typical molecular multiphoton experi-
ments. Our general derivation of the rate equations goes as follows:

1.

We have grouped the molecular states relevant for the dynamics of
MMEP into levels, and making use of the Mori-Zwanzig** *° projection
operator formalism we have derived our most general set of REM [(26)
or (33)] for the populations of these levels. The complete molecular
information that is required for our REM is a hierarchy of k-time
intramolecular dipole correlation functions M, where k=2,4,6,....
The two-time correlation functions M,(71—7,0) are factorized in the
form

My(1=7,0) . mm= = 2 L 1= T7) (82)

where ©2,, = M,(0,0) is the square of the integrated Rabi frequency for
the nm transition, is proportional to the incoming laser intensity, and is
roughly independent of the addition of molecular degrees of freedom
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that do not couple directly with the radiation field. /., (1—7) is a
dimensionless correlation function that decays from one to zero on a
characteristic correlation time 7.=TI,!, which has to do with the
-energy spread of the states within the n and m levels.

The Markovian limit is defined whenever

V= rﬂ <1 (83)

For a typical infrared transition dipole (0.1_Debye) and taking an
intense laser field of 10 MW cm™~? we have 2~1 cm™'. T,,, may be
estimated from the observed multiphoton cross-sections for energy
absorption* * and it is typically around 10-100 cm™! for highly
vibrationally excited polyatomic molecules (see Section VIII). Thus
condition (83) is expected usually to hold for real life MMP even for
very intense laser fields. In this limit we have the following:

i.  On the relevant time scale for the evolution of populations we

may write :

L, (t—=7)=T,,8(t—7) (84)

where
o0
Toi= [ drl,(7) (85)
0

and the REM reduce to simple rate equations of the form (55)
with the rate matrix

W=WP+ WO+ WO+ (86)

ii. The higher order terms in the expansion (86) are much smaller
than W, In fact

WeKH+ Do D kg @ (87)

iii. The molecular information that is required for a proper descrip-
tion of the multiphoton excitation process is greatly reduced. Not
only that the high-order correlation functions M,,, k=2,3,... are
not important, but even M, enters only via £,, and T, }=
J&drl,, (7). Thus even the details of the two-time correlation
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s o (v ~funclions 4,6+ ¥ (@) aré:albovirrelevamt for;the dynamiics.of the
s o - 1:MMPi-The Yate ‘équations thus:depenthiondy: on-82;4:T,,,, -and

6t carwratiesof the stasstical weights of thelevels dgfdyiznoivs. =
iv. The COP:und<POP seqoations are’the>garie iandahe: ;present
analysis justifies the formial defivation of:(36), whicliis ¥qaivalent

to (52). .

3-3Fina]ly, we would like tomake a few comments regarding a constant
’coupling model, since it was. éxtensively studied in'the past in connec-
tion with other molecular relaxation problems,*” 4 although this
25 ynodel is physically unrealistic for: MMP.:in: the constant: coupling
. vmodel we take 1°2. 10-be independent of « and:B (no randomness in

nm
¢4 »phase). We thus assume: =
ii;“ t seab D T e wmale P TP

e G

R 1< NRY P P

; g @

piwoiiol st SIS H. onl ebisd qwen! canwlm v

We further assume that T~ is much faster than our relevant time scale

for P, (the Markovian assumption) and that &>»1. For this model the

REM will assume the same form [i.e., (71)] as for the previous coupling

““ model (56) with the random phase approximations, and WS attains
the same value, that is,

. a2
WP=WP=52 =2m |V I*Veur, (89a)
where
d; . o
p,=~2—f: ’r=a, b (89b)

(We add " 10 quantities corresponding to the present, constant cou-
pling, model to distinguish them from the previous quantities corre-
sponding to (56) with the random phase assumption.) W®, however,
will be much larger than W (73), and simple insertion of (88) in (62)
yields :

e = ﬂ.’.ﬂ_ﬁ:db =W _d, ‘ (89¢)

Wec,aa — cc,a0
r!

Thus, for the constant coupling model we have 7= WO/ W = Q/T)yd
whereas for our random phase model we had n=W@/W® =(2/ T)? (78).
This arises simply, since :the effective number of pathways to go from
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laa)) to |ecd) is d times larger for W, For real life MMP, (/T)?is a
small parameter ~1072-107* (see #3 above), whereas (R/T')%d need not
be small. When (2/T)?4>>1, then our expansion (86) does not converge
and the resulting time evolution is then very different from that predicted
by the simple rate equations (52).*” 4 We should bear in mind, however,
that the random phase assumptions (63), (66), and (67) are much more
physically realistic for MMP than the constant coupling (88). This is
indeed verified by the applicability of the simple rate equations (52) to
actual MMP experiments.*

V1. REM FOR POPULATIONS AND COHERENCES

In Sections 111-V we have derived REM for the populations in MMP
and showed how in the Markovian limit they reduce to simple rate
equations. The basic reduction procedure of Section H is, however, more
general and enables us to derive a closed set of REM for any arbitrary set
of chosen variables. As we have already pointed out, the choice of the right
number and kind of varniables is a crucial step in the derivation of the
REM since their simplicity and applicability depend on a successful
choice. In particular it is desirable (if possible) to choose a complete set of
slow variables whose evolution occurs on a much longer time scale
compared to the rest, since then the REM attain a simple time-independent
form {the Markovian limit (36)).'” Thus a non-Markovian equation may
become Markovian with the addition of a few more variables.>! On the
other hand; if we consider also fast variables, this will complicate the
REM, may force us to make unnecessary simplifying assumptions; and we
may end up with less accurate and oversimplified equations. Thus the
flexibility of the general formulation of Section II should be utilized to
match the number of variables to the problem.

“In this section we shall construct and analyze a different set of REM for
MMP by the addition of more variables corresponding to coherences. This
is done due 1o several reasons:

1. It is clear that at the early stages of the molecular driving (region I),
the expansion of (R) to second-order in the field (37) and the
Markovian limit of (49) do not hold and we should in fact solve the
exact Schrodinger equation with few states and coherent driving.
Although we can in principle retain the populations as our only
variables and expand the evolution operator (R ) in higher powers in
the field, it is much better to add few variables corresponding to
coherences and get a simple Markovian equation, which will be in the
form of a general (multilevel) Bloch equation.®® Thus the explicit
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inclusion of coherences as variables in region I results in a consider-
able simplification of the description in this region.

2. Studies of multilevel systems in contact with a bath and subject to
coherent driving are usually carried out by.introducing a Zwanzig
projection operator which projects out the bath degrees of freedom
and results in a set of variables consisting of a complete set of system
operators.’> 3 It is thus of interest to see the connection between the
present and the more common formulations. We shall be able to show
how in the case of a weak coupling of a system and a bath, our REM
reduce to the familiar line broadening formulations.

3. In spectroscopic studies other than multiphoton excitations (ordinary
line shapes,> “ double resonance,'? coherent transients,?® resonance
fluorescence®!) the experimentalist usually probes directly the time
evolution of coherences and their damping (dephasing) rates (e.g., an
ordinary line shape is the Fourier transform of the correlation function
of the molecular coherence).* In the present REM for the populations,
the dephasing rates are “buried” inside the kernel (R) (or (K >). By
using a less-reduced description including coherences, we are able to
see clearly the role of coherences in the dynamics of MMP and we can
use the results of other spectroscopic experiments to evaluate the
parameters appearing in our REM. . :

4. Conceptually, the addition of coherences enables us to look at MMP
from a different viewpoint and to gain a better insight into the
meaning of the Markovian limit and the “reduction of information”
that occurs there. We shall be able to provide an alternative derivation
to the rate -equations (52), which will demonstrate how the explicit
inclusion of coherence variables becomes redundant in this case.

We shall now turn to the construction of the relevant set of variables for
our new REM. The first group of variables consists of the population
variables A,,, which were introduced in (19). These variables should, of
course, be included in any REM for MMP, since they contain the
significant information which is of primary interest to us, that is, the
intermolecular distribution of energy as a function of time. We next define
a set of operators which correspond to the time derivatives of 4,,, ie.,
[H’, A,,] [H' was defined in (18b)]. We thus introduce the operators
corresponding to single quantum coherences:

A,,=— 3 [nadpmp (90)

‘nm ‘,B

where v,,, Was introduced in (43). We can now continue the process of
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constructing new variables by adding operators of the form [H',[H', 4, ]},
[H',[H',[H', A,,]]), etc. which correspond to the second, third, etc. time
derivatives of A4,,. We thus get the following set of N2 operators corre-
sponding to populations (A4,,) and multiquantum coherences defined. as
follows:

Svirinad{mB| n,m=0,1,...,N—1 ¢J))

nm aff

where (taking m >n)

2 P-" n+l";:ﬂ n+2#;|pl m (918)
and
Yom =2 [1op|? (91b)
apf

(For m<n we have A,,=A!,) When |[n—m|=1, the definition (€2))]
coincides with (90). We should note at this point that the set (91) contains
only certain projections of the high order derivatives of 4,,. Also the
truncation at N—1 is arbitrary and the level of theoretical description may
be easily varied within the present formulation by changing the number of
relevant operators. The attempts'* ' ¥ to provide a phenomenological
description for MMP in terms of N?X N? generalized Bloch equations (for
an N-level system) are intimately related to the picture of a system and a
bath that are weakly interacting (since N 2 is the size of a complete set of

“system” operators) (see Section VII). From the present approach, how-
ever, it is clear that the number N? does not play any special role. A
complete descnpuon of the molecular densny matrix requires much more
than N? operators, but in practice we may construct a convenient set of
REM whereby the number of variables is significantly smaller than N2 ; for
example, it may turn out that only single-quantum coherences are suffn-
cient for a complete simple description of ‘the molecular evolution all the
way up to dissociation, and that we could ignore the effects of multiquan-
tum coherences. Using the set of relevant operators (19) and (91) we may
now evaluate the REM making use of the formulation of Section 11. This
was done in detail in Ref. 19b, making use of the POP formulation. (We
note that for :this choice of operators the Mori projection P does not
commute with L, and:PL,7#0. As a result the expansion of exp(—iLt) in
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powers of L’ becomes more convenient than the expansion of exp(—iQLt),
and this is the reason for the adoption-of the POP formulation in. this

case.) The resulting equations, to first-order in H’ and after invoking some
simplifying assumptions, are'*®

dPn -inu n ’ , iﬂn n— , )
d =__.—tl(°"+l-"-on,n+l)— : I(a —I,n—on.n—l)
{4 \/5 \/i
(92a)
do, . _ _ , iﬁu ]
(T B
1/2 d 172
ol 2]
i@ iR, .
+ g = =00 e (92b)
V2 Vi
’ _ .ﬁ
donm = [ —iw,, -r"m]al:m + MU;,»H—I
dt =
iQ 1/2
+ 'Qm,m—l 0,:'m_‘|(_dL) o,."m_l
V2 d,_,
iQ d \\2
- "'"+10"m"+|( ) ) Ot l,m
\/i ' dn-o-l '
_ 'Qn.n—’_o':_],'m (m>n+1) (920)
V2

[In (92c) we have taken m>n+1. The REM for o/, (m<n—1) and for
0,4 1,n are simply the complex conjugates of (92¢) and (92b).] Here

O =(dud2 s s. 42 i) e, (924)
o, being the expectation value of the coherence operator 4,,,,, that is,
Opm(1)= (4,0, p(1)) (93)

The quantity inside the parentheses in (92d), which scales the coherences
0, .., is the statistical weight of the nm coherence (the number of possible
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pathways to go from n to m). The 8;, factors are defined as

b= C"-— fbt't iaab (94)
I pt+iv,,

@,,, and T, are the off-resonant frequency and the dephasing rate of the

nm coherence and are defined in terms of the asymptotic behavior of the

two-time dipole correlation function I, (1) (41), that is,

- di "
—F = lim — 22 o gim L i (1) (95)

—iw
t—»o | d’ 1—»00 d’
nm

Q,, and d, were defined in Section III. The more general equations
derived in Ref. 19b have the same form as (92); however, T,,,, and @,,, are
defined by (95) without the limit 7—o00 and are thus time-dependent. Also
the Q,,, factors in (92b) and (92c) are replaced by more complicated
time-dependent factors, which include also higher order (three-time) dipole
correlation functions, which are direct generalizations of I,,,, that is,

anr( T 72)= <uab( Ty )vba(o)vac(o)vca( T2 )> (96)

In order to get the form (92) we have assumed'®® that I, (1) has a time
scale 7, much shorter than that of our variables P,. This is the Markovian
limit of the present REM. In Section VIII we shall demonstrate that 77! is
of the order of the molecular frequencies that are much larger than the
multiphoton rates and that provide a justification 1o the Markov assump-
tion. (We recall that the Markovian limit actually means separation of time
scales between the P and Q variables, and it has a different meaning when
we change the definition of P. Thus invoking the Markov assumption in
the present equations is not equivalent to the Markov assumption in. the
previous REM.) Furthermore, we have assumed that asymptotically for

long times I,,,(¢) exhibits an exponential behavior,

Iym(1)~exp( - iG,,,1-T, 1) : 97)

This type of behavior is reasonable for dipole correlation functions as
verified by some solvable models corresponding, for example, to impurities
in solids®? and pressure broadening®® (see also Section VIII). In addition
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we have factorized the three-time correlation functions in the form

<vab( ] )vba(o)> <v¢¢‘(0)vta( T )>
d

Jase = CUas( 1105 (00, (O, (7,) ) =
(98)

This factorization is consistent with a random-phase approximation which
is expected to hold in the quasicontinuum. In the next section we shall
discuss (92) and their connection with the previous REM (52).

VIl. THE ROLE OF COHERENCES AND
INTRAMOLECULAR DEPHASING

Our general REM (92) provide a unified description for MMP, which is
valid for weak and strong driving fields and interpolate continuously all
the way from the coherent to the totally incoherent limits of the molecular
driving. They may be thus used to describe the evolution of a polyatomic
molecule starting in region I up to the dissociation. We note that due to
our adoption of a basis set of true molecular states, all the anharmonicities
are properly (nonperturbatively) incorporated in our REM (92). As a
result, no relaxation of population (T type) terms need 1o be considered.
The T, terms which appear in the perturbative approaches®® ' '® couple
different zero-order states and allow for energy exchange between the
“system” and the “bath.” In the present formulation they are included in
the dephasing operators. The equivalence of T, and T,, depending on the
choice of a basis set, was discussed recentlv for mlra- and intermolecular
interactions.® %4

In this section we shall analyze the behavior of the REM (92) throughout
the multiphoton pumping process.

A. The Early Stages of Region 1-Coherent Driving

At the early stages of the molecular excitation there is no reduction and
each level contains only one state. We thus have 1 m()=exp(—i@,,,1) so
that 1" =0, there is no dephasing and (92) become equivalent to the
complete Schrédinger equation for the driven molecule (coherent driving).
This behavior demonstrates how, within the present formulation, the
dephasing is a direct consequence of our reduced description of the molecu-
lar dynamics in terms of few variables.® The dephasing rates in our REM
I,,. (95) are expressed in terms of microscopic intramolecular dipole
correlation functions. They are independent of the dipole strength but
rather depend merely on the functional form of the dipole operator. No
perturbative arguments régarding intramolecular interactions are required in
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order 1o give a precise definition of these terms. Thus intramolecular interac-
tions are rigorously treated by using the true molecular basis set. This state
of affairs is in contrast to ordinary line-broadening formulations* 35 3
where the dephasing is treated perturbatively in the system-bath interac-
tions (see Section VIL.B). ’

B. The Perturbative Line-Broadening Limit: Weak Coupling of a
“System” and a “Bath”

As the molecule absorbs more photons, the density of molecular states
rapidly increases and the reduction starts to play a role. But as long as the
total molecular energy is not too high, the normal mode picture for the
molecule is quite adequate and the anharmonicities may be treated as
weak perturbations. In this case the dephasing operator assumes the
well-known form from perturbative line-broadening theories.>* 3 ¥ we
shall. now analyze. the behavior of the REM in the weak. intramolecular
interaction limit. To that purpose we assume separation of our degrees of
freedom into “system” and “bath.” We further assume that only one
“system” degree of freedom interacts directly with the radiation field.
However, it is coupled to the bath by a weak perturbation V. The
molecular Hamiltonian (18) thus assumes the form

H=EIM>E <MI+ZIa>E<aI S ma, ma.ma$MB|  (99)

m,a, B
B¥a

Here m is the system quantum number, whereas a comes for the collection
of all bath quantum numbers. As in (18); [ma) are molecular states
“dressed” by the radiation field (m photons were absorbed at |ma)).
Therefore the intramolecular coupling cannot connect molecular states
with different |m)

Vnn.mﬂ na nﬁ8 (lm)

The radiation field is assumed to interact only with the system thus
<"a|p"mﬂ>=p'nm8¢,ﬂ . (101)
In order to evaluate the dephasing terms in our REM perturbatively in

V, let us first diagonalize the molecular states to first-order in V. We thus
get

+ mﬂ ma
|mB -—lmﬂ)+a§B gt in |ma) (102a)
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and -
(nat|=¢nal+ 3 <nBI Vag e - (102b)
a%p —in '
Substitptiqn pf (102) i“, (101) resuhs in

(na+|“1mp+> -"'au 8¢.ﬂ+ (] saﬁ) (103)

Wy + in
where we ‘have dcﬁh‘ed' 4
AV‘- - ﬂ ma Vn . na ‘ (104)

Substitution of (i03) into-(41) results in (where for the: sake of simplicity
we take AV""'-O)

I.(1)= ;—5.‘38|§nd*InIMB*>|’exp(-w..pt)
mn 2 ’
=[taml? 2“’ 2 ———exp(—iw,p?) (105a)

a cs‘ﬁ gp
From (95) and (105) we thus get to second order in V:
IAVpZ"I2
@ap

G,,(r)s—].' Lom 2 exp(—iw.gt)  (106)

where d is the number of relevant bath states. Since G,,.(0)=0, (106) can
be recast in the form

{
Gum(1)= [d7 X (1) - (107)
0
Where x,,.(7) is a dynamical line-width function
. ,x,,,,,( )= - 2 1AV 2 cos w7 ’ (iOB)

and we have

G, () (109)
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These are the familiar expressions from the theories of line broaden-
ing 3% 38 3 '

In conclusion we note the following:

1. Ordinary Line Shapes
In ordinary line-shape studies, the driving field is weak and is switched
adiabatically. If the molecule is initially at the nth level, then the line shape
predicted by our REM is the Fourier transform of the molecular coherence
correlation function, which is the solution of our REM for g/, (1) with
Q=0 and o,,(0)=1.>* We thus get for the absorption line shape

D, (w)= fo ”dfcos(w,,,,,f)exp[ - fo 'd-r(t—f)x,,,(f)] (110)

[In the derivation of (110) we have used the non-Markovian version_of
(92), which in the perturbative limit simply amounts to replacing iw,,, +1,,,,
by G, (#)."” Only in the Markovian limit we have G, (1)=G, (o),
JodT(1—1)Xum(T)>1fs° d1 X, ,.(7), and the line shape (110) assumes a
simple Lorentzian form with a width of [&°drx,.(7).]""* '

2. Absence of Energy Redistribution

In the weak perturbation limit, the system mode is being pumped by the
radiation field, and the bath merely causes a dephasing but does not
induce any relaxation of population (7;) in the system (all energy ab-
sorbed from the field remains in the pumped mode). This arises since in
our “dressed” picture the bath cannot couple states which belong to
different levels (100) and in the perturbative limit each level is associated
with a definite state of the system. We could take account for 7, within a
perturbative approach by adding more variables (each level could be split
into several groups with the same total energy but with different energy in
the pumped mode). This will result in a large increase in the number of
variables.!”- 18

3. Limiations of the Perturbatig)e Approach

The usage of a zero-order (harmonic or local-mode)?? 3% %6 basis set with
intramolecular couplings may be advantageous provided we can get along
with few states (say, when only one state in each level is carrying oscillator
strength to the previous level). In such a case we can, in the Markovian
limit, attribute a width of 27r|V|2pf to the various levels (where p, is the
density of final molecular states), and this provides a very convenient
framework for the description of molecular radiative phenomena.?” This is
the case in ordinary optical line-shape?* and transient experiments® in
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electronically excited states of polyatomic molecules where it is possible to
find a well-defined “doorway state.”*’ Another type of related experiments
where such a zero-order basis set was proved useful is the novel gas-phase
CH stretch overtone spectroscopy in benzene done by Bray and Berry.?" n
For these experiments, by adopting a local mode picture we may again
consider a single (local-mode) doorway state and perform a dynamical
line-shape analysis by considering its coupling to the rest of the modes.?
This is not the case, however, for MMP in the quasicontinuum where we -
do not expect a perturbative treatment in intramolecular interactions to
hold. This is why in the present work we have chosen a basis set (jna)) of
the true molecular states for the description of the highly excited mole-
cules.

C. The Quasicontinuum

At high degrees of excitation we expect the Markovian limit [which Jed
to (92)] to hold very early (see Section VIII) so that we are left with the
general REM (92) where each transition is characterized by a frequency
@, integrated Rabi frequency Q,,, (which is roughly independent on the
molecular size) and a dephasing rate I, given by the asymptotic behavior
of the logarithmic derivative of 1,,(t). [The perturbative expression (109)
no longer holds.] In addition the REM (92) include ratios of statistical

weights (d; /d,,)of the various levels.

D. The Complete Incoherent Driving—Rate Equations Revisited

1f the dephasing rates I_‘,,,,l are fast compared to the driving ﬁ,,m, we may
invoke a steady state assumption for the coherences, (i.c. set do,,, /dt=0 in
(92)), solve for o,,, and substitute back into the equations for the popula-
tions. As a result our REM assume the form of simple rate equations
corresponding to incoherent driving*®

dp,

dt = 2 Knum—KnnPu (l]l)

mvn

If we consider only single quantum coherences (i.e., set o,,,=0 for |n—m)|
> 1) we have

_lQn.n+l

’

on.n+l= o o
\/5 (lwn,n+|+rn.n+l)

PH.(—;L)W—PH(%*—')W] (12)

X
n+1 n
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which when substituted back into (92a) results in

d;,:;qz l_‘"'ﬁ'z""'[P..(;:)I,/z"’f(%)l/z] o)

n;-n:l I—‘,,z,,,+23,2,,,, n

We recall that in the derivation of (92) we have assumed »
Ion(t)=exp( = iBpmt —Tomt) (119)

Substitution of (114) in (51) results in

e | @ " = rnm
T !=Re fo dri, (1) TaT (115)

which shows that the simple rate equations (113) derived from our new REM
(92) are identical with (52) derived from the previous REM (48). '

The present alternative derivation of (52) provides us with a new insight
regarding the significance of the simple rate ‘equations. As is clearly seen
from (92), the dynamics of molecular m'u]tiEhotoh processes is governed by
the competition between the driving terms &, which tend to build higher
coherences and the dephasing rates T',,,, which tend to destroy them. I

92
@*+T?

| B= «1 (116)

we can solve iteratively for the steady state. of (92), that is, we can
substitute o ., ,(112) in (92¢) to generate g, ,.,, €IC. This simple solution
of (92) (perturbative in ) reveals that we have a hierarchy of multiquan-
tum coherences where o). .4 =0(8%/?), k>0. The contribution of o, ,,,
to the rate equation (111) for the populations will be 0(8%). Equations
(112) and (113) are the simplest demonstration of this where for k=1,
0 ;s =0(B'7?) and K, ., =0(8). When B<I this means that the
steady-state values of the high-order coherences will be very small, and
when we ignore all o, ,, , except for k=1, we get our simple rate equations
(113). These arguments show how most of the information regarding the
molecular dynamics (i.c., the dynamics of the higher order coherences
k> 1) becomes irrelevant for the dynamics of MMP in the Markovian limit
B<1 where simple rate equations apply. In the previous derivation of (52)
from (48) all the extra dynamical information was hidden in the higher
order correlation functions contributing to {(R).
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It is obvious from the comparison of the two derivations of the REM
(52) and (92) that the k quantum coherences in the latter o, ., play the
role of W& in the former. If we take, for example, W2),,, we can
see from Fig. 2 that it corresponds to the path leedd —|bed ) —lac) )
—|ab)> ) —|aa) ), which leads from |aa)) to'|ec)) via the two quantum
coherences |ac)). The neglect of W@ in (79) is thus equivalent to
ignoring o, ,,, in (92). The same rate equations thus result from the
neglect of all higher order coherences in (92) or of all higher order
correlation functions in (48). Furthermore, the expansion parameter B
(116) corresponds to 3 (80) (from (115) we see that if @=0 then 5= ).

VII. A MODEL FOR THE INTRAMOLECULAR DIPOLE
CORRELATION FUNCTIONS

In the preceding sections we have developed a complete theory for
MMP where in the Markovian limit the resulting REM (52) or (92) are
expressed in terms of the two-time intramolecular dipole correlation func-
tions I,,(1) (41).

In this section we shall develop a simple microscopic model for I .0,
which will enable us to relate the dephasing times (and the whole dynamics
of MMP) to real molecular parameters (size, frequencies, anharmonicities,
masses, etc.). We start with the molecular Hamiltonian

HM= EHOD(qr)+H' (117)

where H,,(g,) is a harmonic Hamiltonian for the »th normal mode and g,
is its dimensionless coordinate. H’ is the anharmonic part of the Hamilto-
nian and includes terms cubic and higher in q. Our expressions for the
dephasing rates are given in terms of the true molecular states. We thus
fniéed a way for obtaining a reasonable approximation for these states. In
fact, since the dephasing is essentially a spreading process of a wavepacket
of molecular states on the energy shell, we need to have a “mean field”
Hamiltonian that will describe correctly the motion only on the energy
shell. The simplest way to achieve that is to expand H’ to linear terms in
q,, that is,

- H'=3F(qq, (118)

and to replace each F,(q) by its microcanonial average at cnérgy E, thatis,

Tr[ F8(E—H)]

(119)
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We thus get

H(E)'zﬂo-(qy)"’EA.(E)% (120)

(Note that A, and g, are dimensionless.) We have thus established a simple
plcture of a collecuon of harmonic oscillators whose equilibrium position
is being shifted as a function of the molecular energy. At E=0, {q,>=0
and we recover the normal-mode Hamiltonian. A (E) are related to the
anharmomcmcs 10 lowest order as

Av(b-)= zau'r'<q3'>5 (121)

where a,,.,. are cubic anharmonicities and (g2 ), is the microcanonial
mean square displacement of the rth mode.
Let us consider now the following microcanonial correlation function

o E,1)= W(E)gluz 2exp(~ i,y mp! )8(E,,—E) (122)

where W(E) is the density of molecular states at energy E. In terms of this
correlation function we have

o) =1,.(E,.1) (122a)

where E, is the mean energy of the nth level. We further assume that the
dipole operator is coupled only with one normal mode (»,)

n=iig, (123)

The quantity that may be easily evaluated is, however, the canonial
correlation function®®-4?

Q(B)f dETQ,,(E.0)W(E)exp(—BE)  (124)

where: Q( 8) is the partition function

o8)= [ “dE W(E)exp( - BE) (125)
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I,,.(E, 1) may then be evaluated by the inverse Laplace transform** 3

. :fmdﬁexp(BE)Q(ﬂ)i,,,.(p, 1)
Ium(E”)= = Nt ioo (126)
[ apexp(8E)Q(B)

The anharmonicity of g,, A,(E) has a special role in determining @, ,, (the
mean frequencies of the transitions); however, for the dephasing it con-
tributes just as any other mode. For the sake of simplicity we shall assume
A, =0. (Incorporating A, will not affect substantially our final expressions.)
We then get*-42

Io(B.t)=exp[ —S(B)]exp[ S, (B, 1)+S_(B,1)]  (127)

where
S+(ﬂ, =73 -;-IA‘,"""|’(ﬁ,+ Dexp(iw, 1) (127a)
S_(B,1)= 3 3|4 |, exp(—iw,) (127b)
and
S(B)=S,(B.0)+S_(B,0)= 3 ;14727 + 1) (127¢)
Here

A('"M)=A’(Eﬂ)_A'(EM) (128)

and 71, is the mean occupation number of the »th oscillator at temperature
B~ '=kT, that is,

i, =[exp(Bhw,)—1]"" (129)

Evaluation of the inverse Laplace transform (126) should now be made
in order to evaluate J,,(E, ). We recall that under quite general condi-
tions®> ¢ the inversion may be achieved by using the saddle-point method.
This results in the extremely simple relation

I(E,0)=Ii(B*,1) (130)
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where 8* is the saddie point, obtained from the solution of

2 7,(B*)hw,=E (131)

Using this result we get
H(E,1)y=exp(~S(B"))exp[ S, (B*, 1) +S_(B*,1)]  (132)

The exact equation (122) satisfies l.,,,(t)tl';,;. This is no longer the case
due to our use of the saddle point; we thus take

l'....(t)f=1',....( ’E";E"'.-’t) (132a)

Substituting (132) in (106) we get

| ] di‘"" d * .
Gom(1)= -E'—‘;,—= = [S+(B%. 1) +5_(8*,1)]
=~ GSE 0|+ [arxan(n) (133)
where

Xom(T)=Xum(T) +ixm(T) (134)

: mn|2
Xam(T)= 'A'z l w3(25,+l)cosw,l (135a)

nmj2
Xom(T)=2 'A"z ' wlsinw,1 (135b)

i 2 ‘

| %S(ﬂ‘,t),l-o=i§l '2' i, +1)w, (135¢)

And the dephasing rate T, in the Markovian limit (95) assumes the form

nm

T =;fo°°dr.z |A"™)2(27, + 1) w?cos w,r (136)

which corresponds to a Lorentzian line profile. : .
Let us now have a rough estimate of T,,. The integral (136) in the
high-temperature limit is over a wavepacket whose frequency width is
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the spread in molecular frequencies that is of the same magnitude as the
molecular frequencies. We thus have

nm a «
Br(E)~5 2 (137a)
and
_ 2
T~ 3 A2Qi+ 1)% - 1(&Y@itne,  (37)

Here {w) is a typical molecular frequency, «w, is the laser frequency, and
is the total number of absorbed quanta. a is a dimensionless cubic
anharmonicity and is typically a~10""'-10"2 _

Taking the typical values 7=40 and w;=1000 cm™", we get I.=1
cm™! assuming a=10"2and T, = 100 cm~' assuming a=10"". These are
very reasonable values for MMP. If we consider the experimental data of
SF,, the absorption cross-sections were fitted to experiment assuming a
rate equation (113),% ¢ resulting in a cross-section of 0~2X 102 cm? at
A=40. Using (113) the cross-section is given by

od _ 0,
hw, TF

(138)

3

where @ is the incoming laser flux and we have taken w,,, =0. Assuming a
diluted oscillator strength of u~0.03-0.1 Debye we get I, ~15-150
cm™', which agrees very nicely with the above estimates.

Furthermore, the multiphoton absorption data’ indicate that the effec-
tive multiphoton absorption cross section defined as dn/dl is decreasing
with @ (and hence with the degree of excitation). This type of behavior is
predicted by our REM due to the roughly linear increase of T,,, with (n)
(137) and the dilution of ©,,,, which result in a gradual decrease of the
effective absorption cross-section with 7. From these estimates we can also
verify the validity of the Markovian assumption leading to (136) as the
relation '« '~{w) is equivalent to (49). Rate equations of the
form (111) and (113) were used by several authors to fit experimental
data.> & 7 '® We should bear in mind, however, that these equations are
only the final stage in the reduction hierarchy described in this work and
only at the higher energy part of the quasicontinuum are we allowed to use
the simple rate equation (113).
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Furthermore, in the actual calculations’ it was assumed that

K Pn

e (139)

mn pm

where p is the density of molecular states. From the present derivation it is
clear that p, /p,, should be actually 4, /d,,, that is, the ratio of effectively
radiatively coupled states, which may be very different. This may crucially
affect the intermolecular energy distributions and the conclusions drawn
by Grant et al.” should be thus treated with caution. Fitting of the present
REM with experimental data may thus provide a clue for understanding
the dynamics of highly excited polyatomic molecules, by providing us with
Q,,, and I,,(¢) as a function of the molecular degree of excitation. The
experimental data available at present are not sufficiently detailed to allow
for an unambiguous quantitative study, and this is the reason that different
authors are able to fit their data using completely different assumptions.
For that reason it is necessary to use data from other types of experiments,
especially regarding the intramolecular dephasing times, which will
eliminate the number of unknown parameters in the REM. Great progress
has been recently achieved in that direction by various techniques.?'-2*

Finally we should note that although M, were defined in Section III
using the true molecular eigenstates, their microscopic evaluation does not
necessarily require the complete knowledge of the molecular eigenstates. It
is possible to calculate M, semiclassically directly from the Hamiltonian
and to avoid the reference to the molecular eigenstates altogether. Such
semiclassical methods were recently developed for absorption and fluo-
rescence spectra® (i.e. one and two photon processed, M, and M,) and
they may be easily extended towards the evaluation of any intramolecular
dipole correlation function M,.
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