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The density of vibrational modes N (@) of a harmonic lattice with bond or site disorder is calcu-
lated. We predict the existence in three dimensions of a crossover frequency w.~ |c —c* |32
where c* is the critical concentration for percolation. For ¢ > ¢*, N(w)~a? if @<a, (phonon
regime), and N (w)~ao'? if ©>> o, (fracton regime). This is the first analytical theory to predict
a value of ¥ for the spectral dimension of a percolation cluster in three dimensions, in agreement
with the conjecture of Alexander and Orbach and with recent simulations.

It has been suggested that the thermal properties of
amorphous materials reflect the existence of a crossover
between fractal excitations (fractons) at high frequencies
and ordinary acoustic modes (phonons) at low frequen-
cies.!"> A model system that is known to display fractal
behavior over a range of length (frequency) scales is a
precolation cluster.~”> Below the critical percolation con-
centration, only finite clusters are formed. Such structures
are self-similar for distance scales that are large compared
to the lattice spacing, but small compared to the cluster
.size. At the critical point, an infinite cluster is formed,
which is known to be self-similar for length scales large
compared to the lattice spacing. Above the critical con-
centration, an infinite cluster exists, which is self-similar
for a range of length scales that is large compared to the
lattice spacing, but which becomes homogeneous over suf-
ficiently large lengths. Let us consider a site or bond per-
colation system above the critical concentration in which
the bonds are harmonic. At very small frequencies, the
density of vibrational modes has the Debye form
N (o) ~w?", at very large frequencies it reflects the de-
tails of the lattice structure, and at intermediate frequen-
cies fractal dynamics obtain, and N (0) ~ 0% ™!, where d,
is the spectral dimensionality.%’
We consider a lattice, characterized by either site or
bond disorder, that is composed of N particles of equal
. mass that are connected by harmonic bonds. In the case of
site disorder, a given lattice site is occupied by a particle
with probability ¢ and is unoccupied with probability 1 —c.
Two particles occupying nearest-neighbor sites are con-
nected by a bond. In the bond-disorder problem, all lattice
sites are occupied, and two particles occupying nearest-
neighbor sites are connected by a bond with probability ¢
and are not connected with probability 1 —c¢. The har-
monic bonds have identical force constants. The equation
of1 gnotion of a particular realization of the random system
is

ap
dr?

Wom =Wum _6mnzwjn ’
c

W-p, (1a)
(1b)
where p is an N-component vector whose nth element is
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the displacement of the particle labeled n. w,, is the ratio
of the force constant of the bond connecting particles la-
beled m and 7 to the particle mass. For either type of dis-
order, wpy, is zero if particles m and n do not occupy
nearest-neighbor lattice sites. In the site problem,
Wum =w, if particles m and n are nearest neighbors on the
lattice, and in the bond problem, wy,, =w with probability
¢, and wy,, =0 with probability 1 —¢. The configuration-
averaged density of vibrational modes N (@) is given by'°

N{o) =(—2o/7) ImlPy(—0?)], (2a)
Pole) = fo dt exp(— st Xlexp(W)1y1) . (2b)

The angular brackets in Eq. (2b) denote a configuration
average. .

The relationship between the present problem and the
determination of transport properties of a localized excita-
tion in a disordered medium has been used by Alexander,
etal. in their calculations of the density of vibrational
modes of disordered, harmonic structures.!® Replacement
of d?p/dt? in Eq. (1a) by dp/dt yields the Pauli master
equation for the motion of a localized excitation. In the
transport problem, the nth element of p is the probability
that the excitation resides on the nth lattice site, and wpy,
is the excitation transfer rate between sites m and n.
Po(e) is the Laplace transform of the configuration-
averaged probability that an excitation which initially oc-
cupies a given site can be found at that site at a later time.
We have recently developed a self-consistent mode-
coupling procedure (SCMC) for calculating transport
properties of excitations in disordered media.!'"!* This
technique has been applied to the quantum percolation
model,'2® to the Anderson model,'?® and to a model of
incoherent motion that is based on the Pauli master equa-
tion.”® In this work, we extend the SCMC to the deter-
mination of N(w). The SCMC is based on the following
pair of coupled equations for Po(e) and the diffusion ker-
nel D (k,e):

Po(&) =0~ [ dkls+k2D (o)l 1, (32)

Dk,e)=BIk,Po()] = 3 c™B,lk,Pole)] .

m=1

(3b)
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The integration in Eq. (3a) is carried out over the first
Brillouin zone. [Q =(27)%/Q¢, where Qg is the volume of
the unit cell] Equation (3a) is an exact relation that fol-
lows from the definitions of Py and D. The first equality in
Eq. (3b) is an ansatz that is made in order to provide a
second independent relation between these two quantities.
According to this ansatz, D is expressed as a functional of
Py, which depends implicitly on & through the dependence
of Py on . D depends explicitly on ¢ as well as depending
implicitly on ¢ through the dependencc of Pg on ¢. The
second equality in Eq. (3b) is an expansion of D with
respect to its explicit ¢ dependence. Each term in the ex-
pansion depends on c¢ to infinite order. Equation (3b)
should be viewed as a partially resummed density expan-
sion of D. In Appendix A of Ref. 12(a), we present a pro-
cedure by which D, can be uniquely determined from
the coefficients of ¢™ for m <n in the unresummed density
expansion of D (k,g) and Py. Such coefficients can be cal-
culated using the standard Mayer cluster expansion, as
discussed in Appendix B of Ref. 12(a). We shall make use
of an additional piece of information in obtaining an ap-
proximation to D (k,Pg). At ¢ =1 (ordered lattice limit),
D(k,e) can be determined exactly: k2D (k,e)=2wld
—Ycos(k-a;)]. aj is the lattice vector in the direction j.
Followmg the procedure described in Ref. 12(a), we con-
struct a Padé approximant to D(k,Po) in the variable
¢/(1—c), which approaches c¢D;(k,Py) for ¢ <1, and
which yields the exact result at ¢ =1. (It should be noted
that D has the same form for site and bond disorder.  This
is not the case for D, with n > 1.) With this approxima-
tion to D, the SCMC equation for the d-dimensional ana-
log of a simple cubic lattice w1th nearest-neighbor interac-
tions is!>

Pole) =D2wg(e)] _-114 [e/2we(e)],
west(€) =cw/[1+2(1 = ¢ )wPy(e)],

(4a)
(4b)

x n d -1
I dqd[xfrd > cos<q,->] -
=1

(4c)

Equations (4a) and (4b) are coupled equations for Pq and
wesr(g), which is the long-wavelength (k— 0) limit of the
diffusion kernel D (k,e), divided by the square of the lat-
tice spacing. weg(e) can be interpreted as an effective,
frequency dependent force constant in the vibrational
problem and as an effective transfer rate in the transport
problem. Equatlon (4) is applicable to either site or bond
percolation, if ¢ is given the appropriate interpretation.
Equation (4) is exactly correct to first order in ¢ and at
¢ =1 (the ordered lattice limit). I, which is defined in
Eq. (4¢c), is the diagonal element of the lattice Green’s
function. The density of vibrational modes N (w) for a
disordered d-dimensional lattice is obtained by solving
Egs. (4a) and (4b) for Po(e), setting e— — w?, and sub-
stituting the result into Eq. (2a).

In this work, we shall focus on the physically relevant
case of d=3. Before doing so, we shall briefly review. the
predictions of the SCMC for d =1 and d=2. Let us con-
sider the solution of Eqgs. (4) in the limit of small £&. The
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behavior of this equaticn in d dimensions depends on the
properties of I;(x), which is defined in Eq. (4c). The ar-
gument of I; in Eq. (4¢) is &/2wey. For ¢ > ¢*, the critical
concentration, we expect that wegr approaches a finite limit
as ¢ approaches zero, and hence that the argument of Iy
becomes arbitrarily small for sufficiently small s For
c <c*, we expect weg to have the form f(c)e as & ap-
proaches zero, where f i) is a function of ¢ that diverges
as ¢ approaches ¢* from below Thus, in evaluating Eq.
(4a) i m the e— 0 limit for ¢ > ¢* or ¢ very close to but less
than c*, we need only consider the behavior of I;(x) for
small values of x.'%15 In this limit, I;(x)=0Qx)"2
I,(x)=Qz) " 'In(1/x), and I3(x)= 13(0)— 1(x/2)1/2
where I3(0)=20.5055. Substitution of these expressions
into Eq. (4a) yields a simplified pair of coupled equations
for P and weg, that are valid for small frequencies and in
the concentration regim.e described above. For d=1, this
pair of equations yields the following solution for weg. For
¢ <1, wgr=Ic/(1 —¢)|%, and at ¢ =1, weg=w. For a
dlsordered linear chain, Egs. (4) predict that the effective
force constant vanishe:; in the zero-frequency limit for
¢ <1, and is finite at ¢ =1. The percolation threshold is
correctly predicted to occur at c=1 in one dimension.
Equations (4) yield the following behavior for weg in the

. small-frequency limit in the vicinity of the percolation

transition for d==2. For ¢ <1, weg={(g/2)expl2zrc/
(1—=¢)], and at ¢ =1, wef=w. The percolation threshold
is predicted to occur at ¢=1 in two dimensions. For a
square lattice, the critical concentrations for site and bond
percolation have been d:termined by computer simulation®
to occur, respectively, al ¢* =0.593 and ¢* =0.500.

Substitution of the limiting form of 73 for small values
of its argument into Ej. (4a), and of Eq. (4a) into Eq.
(4b) yields a cubic self-consistent equation for weg(e) in -
d =3 that is valid for small frequencies in the vicinity of
the critical point [e/weg(e) <11.

(5a)

Wettlwegt/w — (¢ —c*)/(1 —c*) 12 =[(1 —¢)/27]%,

c*=1500)/[1+15(0)1=10.3358 . (5b)

Inspection of the physizally reasonable root of Eq. (5a)
shows that c* is a critical point. For ¢ <c*, weg(e)
~(c*—c)" 2% in the limit of small & for ¢ > c*,
wegr(e) ~w(c —c*)/(1--c*) in this limit, and at ¢ =c*,
west(e) ~&'3. The crivical concentrations for site and
bond percolation on a si:nple cubic lattice have been deter-
mined from simulations* to be ¢*=20.311 and ¢*=¢0.249,
respectively. N (w) is idetermined from Eq. (5a) as fol-
lows. The physically rezssonable solution of Eq. (5a) is ob-
tained and the analytic continuation e— —w? is per-
formed. Equation (4b) prov1des a simple relation between
weir and Pg. Po(—w*) is determined by substitufing
Cl)eff('—w ) from Eq. (f2) into the left side of Eq. (4b).
N (@) is related to Po(-~w?) in Eq. (2a). We shall focus
on the crossover from pl.onon to {racton behavior and shall
therefore restrict our attention to ¢ =c¢*. For ¢ > ¢*, delo-
calized vibrations (acoustic modes) will exist on the infin-
ite percolation cluster n the limit of small frequencies.
For ¢ < c¢*, there is no nfinite cluster, and low-frequency
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modes are localized. The result for c=>c¢* is
N (o) =w~12{3Y2/[2(47)'3}}

x[e/(1 =) /W) PF (w/w,) , (6a)

sinhQ coshQ
(4 cosh?Q — 4 sinh®Q) 2+ 2 sinh®Q cosh?Q ’
(6b)
(6¢)

F(y)=y¥3

0 =+ tanh " Hy¥ (2 +1)1V3 |

. =w2(4n/332)(1 —c*) 321 —c) "o =c* |32 .
(6d)

The scaling function F (y), which is given in Egs. (6b) and
(6¢) is proportional to y* for y <1, and is independent of
y for y>1. In the limits w <o, and > w., Eq. (6a)
reduces to

w3 e/(1 =) B1A6/m)3(2/352) 0.2,
0<Lo, ,
N(w) - w2 /(1 —¢)3P1(2r) = 1331213,

o> o, .

€))

Inspection of Eq. (7) shows that @, is the crossover fre-
“quency between fractal and homogeneous dynamics. For
o<, N(o)~o? in agreement with the Debye density
of modes for acoustic phonons in d=3. For o> .,
N (0) ~ '3, which corresponds to d, =-4. The crossover
frequency . vanishes as |c —c*|¥2. At ¢ =c*, w,=0,
and N (w)~ ' for all values of w. Alexander and Or-
bach’ have used a scaling argument to conjecture that
ds =% for d =2. Recent simulations of random walks on
percolation clusters in d =3 by Ben-Avraham and Havlin,?
and by Argyrakis and Kopelman® have yielded d, =1.26
£0.01 and d; =1.3230.06, respectively. This value is
also consistent with experimental data. Orbach has point-
ed out that the neutron scattering measurements of the vi-
brational density of states of vitreous silica, carried out by
Buchenau, Nucker, and Dianoux!® are consistent with
ds==1.4. Thus, the value of d; predicted by the SCMC in
d =3 is in perfect agreement with the currently accepted
- value. The SCMC also yields a prediction of dy, the frac-
tal or Hausdorff dimension of a percolation cluster.!” The
mean-squared displacement, {r2(z)), for a random walk on
a fractal>’ grows at long times as t%/¥. Within the
SCMC,"=13 (r2(¢)) is proportiohal to the inverse Laplace
transform of & 2wer(e). In the fractal regime
wesr(e) ~ &3, which implies that (r2(t))~¢%/3, and hence
that dy=2. This result is in good agreement with the
current best estimate from scaling arguments of dy=¢2.5
in d =3. Alexander and Orbach’ have derived a scaling
relation between df, d;, v (the correlation length ex-
ponent), and the exponent that characterizes the vanishing
of w, as ¢ approaches ¢*, which is obeyed by the SCMC:
w,~ |c —c* | " % The exponent v describes the diver-
gence of &, the correlation length, which is related to a
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characteristic cluster size: &~ |c —c*| ~" The value of v
within the SCMC for d =3 can be obtained from the solu-
tion of Eq. (5a). For ¢ <c*, the Laplace transform of
{r?(1)) is proportional to ££2. The solution of Eq. (5a) for
¢ <c* has the form weg(g) ~(c* —¢) ~2¢ in the limit of
small g, so v=1. Substitution of the SCMC values for v,

' i/, and d; into the scaling relation leads to an exponent of
fi

or the crossover frequency, in agreement with Eq. (6d).
The frequency dependence of N (@), calculated from Egs.
(6), is shown in Fig. 1 for three values of ¢ that are greater
than ¢*==0.3358. The crossover from homogeneous (&?)
to fractal (#') dynamics is explicitly shown, as is the
vanishing of the crossover frequency as ¢ approaches c*
from above.

We next turn to the predictions of the SCMC for d > 3.
In order to analyze the solution of Eqs. (4a) and (4b) in
the vicinity of ¢* we need the behavior of I for small
values of its argument. Analysis of the definition of I; in
Eq. (4c) shows that I4(x)~A4+BsxIn(x), and that
I;(x)~Ay+Byx for d > 4, in the limit x <1, where Ay
and By are numbers. Substitution of the latter result into
Egs. (4a) and (4b) leads to a quadratic equation for weg
for d >4, in contrast to the cubic equation given in Eq.
(5a) for d =3. Repetition of the above analysis shows that
the SCMC predicts dy =2 and d; =1 for d > 4. For d =4,
there is a logarithmic correction to the power-law
behavior.

A crossover from homogeneous to fractal dynamics for a
disordered harmonic network is also predicted by the
effective-medium approximation (EMA),'®-2 which was
applied to this problem by Derrida, Orbach, and Yu.?
Like the SCMC, the EMA predicts the existence of a
crossover frequency that vanishes at ¢ =c*. However, in
d =3, the EMA predicts that w.~ |c —c*| and that
d;=1. The EMA and the SCMC agree in the prediction
dy=2. The EMA yields v=1, so that the scaling relation

0.0
10g,0(N{w))

-2.0

4.0

log o (w)

FIG. 1. N(w), the density of vibrational modes, is calculated
from Egs. (6) for a disordered simple cubic lattice with
¢ =0.336, 0.340, and 0.350; w=1; ¢*==0.3358. The crossover
from homogeneous dynamics (@?) to fractal dynamics (@'/3) is
clearly illustrated.
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of Orbach and Alexander is satisfied. Comparison of Fig.
1 of the present work to Fig. 1 of Ref. 2, shows that the
SCMC and the EMA differ qualitatively in the behavior
of N(w) in the vicinity of @,. The transition from homo-
geneous to fractal behavior is very abrupt in the EMA,
and N(w) has an inflection point in the vicinity of w,.
The SCMC does not predict a drastic change in N (») in
the crossover region. The SCMC is the first theory of
dynamics in disordered systems to yield the correct value

M e
6585

of d; in d =3, and to allow the calculation of N (@) for all
frequencies and concenrrations.
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