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We investigate the optical properties of Wannier excitons in bulk semiconductors in the regime of
light intensities corresponding to a linear or weakly nonlinear behavior of the active optical medi-
um. Our approach is based on the derivation of equations of motion, which for weak electronic ex-
citation lead to the identification of a quantum-mechanical system of interacting bosons. We calcu-
late the lowest iterative correction to the bosonic limit when the incident light beams are
quasiresonant with an excitonic line. Closed expressions for the third-order nonlinear susceptibility
¥, the ac Stark shift of the excitonic line, and the effective transition dipole moment of excitons,
renormalized by exciton density (phase-space filling), are derived.

I. INTRODUCTION

The interaction of light with semiconductors is of con-
siderable current experimental and theoretical in-
terest.! ~® The basic principles of this interaction are well
understood; the incident photons create electron-hole
pairs whose subsequent dynamics and relaxation deter-
mine the optical properties. However, the systematic
evaluation of many important properties, such as the
nonlinearity of the light-matter—interaction process, is a
nontrivial task. A particularly interesting situation
occurs when the frequency of the incident light is lower
than the band-gap energy (i.e., there is no direct creation
of free electrons and holes), but matches the energy of ex-
citons, which are bound electron-hole pairs. Recently
this type of light-matter—interaction process has been in-
vestigated extensively, partly because the nonlinear-
optical susceptibilities of semiconductors are related to
the development of ultrafast electro-optical switches. In
this paper we present a microscopic theory for the optical
properties of bulk semiconductors in the linear and weak-
ly nonlinear regime. The implications of the present pic-
ture on semiconductor microstructures, such as quantum
wells, quantum wires, and quantum dots, will be dis-
cussed as well. The nonlinear-optical saturation of semi-
conductors was extensively studied, particularly in the
pump-probe configuration with the pump beam being
quasiresonant with an excitonic line. 2=7 The saturation
of absorption for increasing density of virtual excitons
created by an intense quasiresonant ?ump was attributed
to the phase-space-filling effect,’”!! i.e., to mutual in-
teraction of excitons occurring when the number of exci-
tons multiplied by the exciton volume is not negligible in
comparison to the volume of the sample. Another non-
linear effect, the Stark shift of the excitonic line, was also
studied using pump-probe spectroscopy.!?”'* The exci-
tonic ac Stark shift and the third-order nonlinear suscep-
tibility are often evaluated using simple models involving
only one or two electron-hole—pair states for the semi-
conductor.*~?! We will show that such models are more
applicable to geometrically restricted systems such as

4)

quantum dots or molecular aggregates rather than to
bulk semiconductors.?! In geometrically restricted sys-
tems the energy of the two-exciton state may be largely
shifted from twice the energy of a single-exciton state.
This implies that creation of a higher number of
electron-hole pairs can be blocked by the off-resonance
condition, which could justify the use of such few-level
models.?! In contrast, bulk semiconductors are weakly
anharmonic, and the excitons are closer to bosons with
equally spaced levels.?%2*-

The starting point for our analysis is the observation
that the electrons and holes created by the absorption of
a photon are uniformly distributed over the medium, and
the electron-hole density for a fixed number of excitons is
therefore inversely proportional to the size of the medi-
um. In this low-density limit the operators creating such
electron-hole pairs obey Bose commutation rules.?* The
low-density approximation rigorously yields the linear-
optics limit in both the quantum-mechanical and classical
approaches. Hydrogen-atom-like (Wannier) bound-
excitonic states appear naturally from the equations of
motion, which include two-site dynamical variables. For
low electron-hole density, the optically active medium is
equivalent to a set of harmonic oscillators, corresponding
to excitons with different values of quasimomentum. We
next calculate the lowest-order iterative correction to the
bosonic limit, which enables us to evaluate nonlinear
effects in the regime of weak optical nonlinearity. The re-
laxation of coherence in the medium is accounted for by
incorporating exciton- phonon coupling. We calculate the
third-order susceptibility ¥’ and the Stark shift in a
pump-probe configuration. Both are shown to have the
characteristic form of a weakly anharmonic oscillator.
This result, together with the linear-optics solution,
brings us to the conclusion that an excitonic system can
be very well modeled as a set of weakly anharmonic oscil-
lators. The light-matter interaction couples each plane-
wave component of the electromagnetic field with the ex-
citonic state having the same wave vector. The lowest-
order anharmonicity has a form of a quartic potential in
the exciton and electric field operators. Calculating

2959 ©1990 The American Physical Socigtzi



2960

linear-optical properties in condensed phases using
harmonic-oscillator models for the medium is a well-
established procedure that dates back to Lorentz.?* The
addition of anharmonicity in order to account for non-
linear optics is a natural generalization, which was
demonstrated by Bloembergen, who used a cubic
anharmonic-oscillator model.”® The present work shows
that y'* of bulk semiconductors can be modeled using a
quartic anharmonic oscillator [Eq. (4.1)] whose anhar-
monicity depends on the driving field.

The present theory provides a unified picture which in-
terpolates between the limiting cases whereby the exciton
size is small or large compared with the lattice constant
(Frenkel and Wannier excitons, respectively). Using the
equations of motion developed in this article, the calcula-
tion of the linear and the weakly nonlinear-optical
response of excitons is straightforward, since it involves
only the classical-like, coherent amplitudes of the exci-
tonic states and of the electromagnetic field. We investi-
gate electronic renormalization effects such as the Stark
shift and the phase-space filling for a pump-probe experi-
ment with either an off-resonant or resonant pump, and
obtain analytical results to first order in exciton density.
Previous calculations based on the Keldysh nonequilibri-
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um Green-function technique>’~!! were performed only
in the limit of the off-resonant pump, and the inclusion of
Wannier excitons required a numerical solution of the re-
sulting equations.'® The theory presented in this paper is
for bulk semiconductors; however, some general con-
clusions can be immediately drawn for quasi-two- and
one-dimensional semiconductors (quantum wells and
quantum wires), as well as for semiconductor microcrys-
tallites (quantum dots). We show that as the size or tem-
perature is varied, the nonlinear properties of a small
semiconductor sample can undergo a transition from the
limit of semiclassical anharmonic-oscillator behavior,
characteristic for bulk semiconductors, to the limit when
only one and two electron-hole—pair states are excited, so
that a few-level -system picture is applicable.

II. LINEAR-OPTICAL RESPONSE IN THE
LOW-EXCITON-DENSITY REGIME

The analysis presented in this paper is based on the
tight-binding model of semiconductors.*?* The model
Hamiltonian for the electronic system coupled to the
electromagnetic field has the form?’

A= [ax@a,+ 1o+ [dr (o) pn)—e A0 PP(r)

+fdr1fdr21/1 ;) ¢T(r2)VC r,—1)(r,

B+ [de Vi)

A

(2.1a)

Here, i(r) is the field operator representing the electrons, ak is the photon-creatlon operator, #iw, =fikc is the energy of
the photon, p(r) is the electron-momentum operator, e is the electron charge, and Al(r,1) is the vector potential,
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where V is the quantization volume. Adopting the
Coulomb gauge, the electromagnetic potential satisfies
V-4(r)=0. The electromagnetic interactions are then
split into two parts: a minimal coupling part describing
the interaction with the transverse modes of the elec-
tromagnetic field, and a direct, unretarded Coulomb in-
teraction V(r) of pairs of electrons. The interaction of
electrons with the nuclei is given by V%(r).

To proceed further, we need to adopt a more specific
model. We assume that the electrons and the holes move
among the discrete lattice sites and that each site has two
electronic states with a ground-state wave function ®%(r)
and an excited-state wave function ®%r) with corre-
sponding energies w, and w,, respectively. This leads to
the following form of the electronic field operator:

Ho)= D[, ®%r—r1,)+d [®%r—r,)] . (2.2)

The system ground state in which all sites are in the

(2.1b)

lower ®° state will be denoted |Q). We further mtroduce
operators creating electrons (holes) at site m, ¢ f (d ).
The electronic state describing the electron in the con-
duction band localized on the mth site is given by c‘r Q),
and the state describing a hole localized on that site is

m!/ Q). These operators satisfy the Pauli commutation
rules

~n o~ AL ~

(2,2 L1=(F—2¢12,)8,,[d,, d L1=(T

e e l}=1, {d,dl}=T.

—2d1d,)8,, »

We next substitute Eq. (2.2) into Eq. (2.1) and recast it in

the form of the band-edge, tight-binding Hamiltonian**
(see Appendix A)
3
A=31,, (2.3a)
s=0
where
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By= [ ax@le, + Lo+ 3 a2 fe,0,+313.0,) ‘ (2.3b)
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where 3| , denotes the sum over neighboring sites, and the Coulomb (C), dipole-monopole (DM), and dipole-dipole
(DD) potential energies are given by

e2

cos(0), VPP(r)=(e; V_,)(e; V,) [—
, €F

C 82 ez
Vir)=—, VPM(r)=(e,;-V,) |—
(1114

2
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cos(6,)cos(8,) .

For simplicity, we assume that all transition dipoles are parallel and that the incident radiation field is polarized in the
same direction given by the unit vector e, 6, is the angle of the jth dipole with the interparticle axis r, and €, is the
static dielectric constant. H,, describes the free electromagnetic field and the free electrons and holes, A ; describes the
mobility of electrons and holes, i.e., the transfer of carriers between sites, and H, describes the phonon interactions
with electron-hole pairs. Finally, A; describes the various components of the unretarded Coulomb interaction,?® the
interaction between dipoles [ VPP(r,—r,)], between charged sites [V <(r,~r,)], and the charge-dipole interaction
[VPM(r,—r,)]

The Frenkel-exciton limit is obtained when the electron and hole mobilities vanish (i.e., T¢=T"=0). In this case the
second and third terms in A 3 can be neglected since all sites remain neutral, and the states corresponding to electron-
hole pairs located at different sites (i.e., ¢ i;i\ LIQ) with n7m) are never populated.

We will investigate the quantum dynamics of our model system starting with the Heisenberg equations for the opera-
tors @, (¢) and the two-body electron operators ¥, (#)=2,(¢)d,(¢). The choice of the two-body operators [rather than
the single-electron operators ¢,(¢) and 3m(t)] as the relevant dynamical variables is natural, since in this system elec-
trons and holes are always created and annihilated in pairs. The commutation relations for the two-body operators
?nm( t) may be derived using Eqgs. (B3) and (B4) and have the form

[,Ynm’ ? z'm'] =8nn'8mm' + 6nn’é‘m’mem’m + amm’gnn'ﬁ n'n +( gnn’gmm’ —1 )ém’mﬁn’n’ ’ (2.4)

where @nm =¢ I’c’m, ﬁnm E(?la\m, and &, =1—-28,,.
In the limit of low electron and hole density {(C,, ) —0and (D _, ) —0, we get?*

( [ ?nm> ?z'm’] ) Eann'amm' ’ (2.5)
where { - - - ) denotes the expectation value, which implies that the operators ?nm satisfy bosonic commutation rules in
this limit (note that for N sites, we have N2 independent boson variables). Using the commutators derived in Appendix

B [Eqs. (B5)-(B10)], we obtain the Heisenberg equations of motion for the operators ?nm(t) and @, (¢):

—ik—k'),

a (= —io@ (g, e P (—PLn]—i S [ax vye “a.+al,), (2.6a)

P (1) =—i(02p + VU= 1)) Do ()i 3 [T VP00 ) [ P g )+ P L sl )]

TP+ VPP ) Pyt O+ O 0] =By [ degie™ @ () +2 L)+ o) (2.6b)
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Here, w,, =0, —w, denotes the band-gap frequency,
and the radiation-matter coupling g; is given by (see Ap-
pendix A)

172
s= fﬁj [ dr &** (r)e (e, )N(r) .
e
(2.6¢)
The coefficient vy is given by
2
__2mctie S e s e 06d)

VI T
It should be noted that the dipole approximation was not
invoked in the derivation of Eq. (2.6¢). The dipole ap-
proximation is made by setting e’*"=1 in Egs. (2.6c).
Equation (2.6¢) therefore contains a smooth cutoff for the
electromagnetic modes with k£ >>R ~!, where R describes
the size of electronic wave functions ®%r), ®%r). Invok-
ing the dipole approximation, Eq. (2.6¢) assumes the form

172
Dap | 21hic
= UnT Ty | He (2.6¢)
where 1, is the transition dipole matrix element,
pa=e [ dr@*¥*(r)(e, 1)) . 2.6
1

B ()=—i0@()+g, 3 [dk' h(k—K)p(0)F (=i 3 [dk vyyee

P (D=i(Ep+E )Py ()~ ,(0) [ dkgyh*(k—k )@ (1) +a L 0]+ Fyu(t)

where
h(k~k)=(2m) 73 [ drelx¥r,
Cv

and E; is the center-of-mass kinetic energy of the exci-
ton, i.e., Ey =|k|2/2(m} +m}). The diagonalizing trans-
formation used in the derivation of Egs. (2.7a) and (2.7b)
is

?ak(t)= z e_ik.ngba(rn_rm)?mn(t) ’

n,m

(2.8)

where ¢,(r) is the solution of the Schrdodinger equation
for a hydrogenlike atom,

1 e?
- M Ar“‘"eo—r ]¢a(r)=Ea¢a(r) . (2.9)
Here the effective mass M* is given by

(M*) '=(mX)"'+(m})"}, and ¢,(r) are taken to be
real and  dimensionless, and normalized as
3. [04(r)>=1. The operator ?7,(¢) is the creation
operator of a Wannier exciton with hydrogenlike quan-
tum number a and center-of-mass quasimomentum #k.
When the RWA with respect to the dipole-dipole interac-
tion is not made, the diagonalizing transformation [Eq.

JAN R. KUKLINSKI AND SHAUL MUKAMEL 42

We have partitioned the right-hand side (rhs) of Egq.
(2.6b) into a part linear in ¥, and into other nonlinear
terms denoted F,_(¢). The nonlinear part contains terms
quadratic, cubic, etc. in ?um and is precisely defined in
Appendix D. In the limit of low exciton density, the
latter term can be neglected, which results in linearized
equations of motion. When F,(z) is treated perturba-
tively in the exciton density, we can expand the dynamics
in terms of optical susceptibilities. An important proper-
ty of Eq. (2.6b) is that a part of the Coulomb electron-
hole interaction is present in the linearized dynamics. In
the following we will employ the rotating-wave approxi-
mation (RWA) for the dipole-dipole interaction, and
neglect the terms proportional to creation operators ?Zm
in Eq. (2.6b). When the electron Bohr radius is large in
comparison to the lattice constant, we can treat the site
label as a continuous variable, which leads us to the sepa-
ration of center of mass,
Ron=(romtr+romi)/(m}+m}), and relative variables
I =TI, Ty, We further define the electron and hole
effective masses m}=[T°+ 37, VPP(r,)] 1262 and
mi=[T"+ 31 VPP(r,)]"'2a ~2, where a is the lattice
constant. The linear part of Eq. (2.6b), proportional to
the operators ?,,m(t), can be diagonalized using a coordi-
nate transformation, resulting in

i(k—k')r,

Mae () +a_p ], (2.7a)

(2.7b)

(2.8)] should be modified and ¥,, will depend on ?nm as
well as on ¥ :,m

The optical properties of the medium can be expressed
in terms of the optical polarization:

P(k,t)= [drP(x,t)e kT . (2.10a)
(Throughout this paper we adopt the same definition for
the spatial Fourier transform for all quantities.) For our
system we have

Pk,0=g, S [P (+H.c.]. (2.10b)

Using the transformation (2.8), we get

Plk,0)=g, 3 ¢ 0 Pu()+ 2T (0)] . @.11)

At this point we should comment on the limiting case
when excitons can be treated as perfect bosons.?* Con-
sider the case when few excitonic modes denoted k=k’
are occupied, so that (¥ sz'?ak’>>>1> but the exciton
density is wuniformly distributed in space, i..,
(PP, )=N"IS(P! 9,.)<<1, where N is the total
number of sites. In the limit when N — o, but the occu-
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pation of k modes is kept constant (i.e., we fix the total
number of excitons), the excitonic system will behave as a
set of harmonic oscillators. The bosonic treatment of ex-
citons thus corresponds to zeroth order in a systematic
expansion in exciton density.

The first-order polarization is obtained by neglecting
ﬁ’ak(t). The frequency- and wave-vector-dependent
dielectric function is given by

Pk =K@ "Ly )
4

where B(k,0)=iw 4 (k,»). Solving the linear part of Eq.
(2.7b), we get

lgk'¢a(0)|2

Pk,0)= 3 [dkh(k—k)
s—flo'*

X Bk, o), (2.12)

where e—0%. For a bulk semiconductor we have
h(k—k')=8(k—k’) (the absorption of a photon with
momentum 7k leads to the creation of an excitonic state
with quasimomentum #k’=#k). We then get

2
etk0)=1+ars — Bt OF @.13)
2 (E,1TE)—w

The Elliott expression of linear absorption for Wannier
excitons?* is obtained from Eq. (2.13) by setting k=0, and
taking the imaginary part. In agreement with the Elliott
theory, we note that the oscillator strength of the exciton
transition is inversely proportional to the exciton volume,
since |$,(0)|? scales as the inverse volume. The o sum-
mation shows the contribution from bound-excitonic
states, corresponding to various discrete states of the hy-
drogen atom, as well as from continuum states corre-
sponding to free electron-hole pairs.

Equation (2.13) shows that in the low-density limit the
optically active medium is equivalent to a set of harmonic
oscillators labeled @ and k. A monochromatic com-
ponent of the electromagnetic field with wave vector k
excites only the oscillators with the same wave vector.
We further note that in the Frenkel limit (T,,T), —0),
when only tightly bound electron and hole states are
created, a simple result for the creation operator of an ex-
citonic state can also be derived (since the only value of
the relative electron-hole variable is =0, we need con-
sider only the center-of-mass motion). In the Frenkel
limit we first consider the discrete problem for the rela-
tive variable and change the center-of-mass motion to the
continuum limit. We thus have

Pun)=e" P (1) (2.14)
n
The dielectric function in this case has the form
lgit?
ep(k,0)=1+4n . (2.15)

(Ep+E ) —(0—ie)? ’

where E, is the energy of the excitonic bound state, i.e.,

E;=o,— [ dr VPP(n)l¢%r)[* |¢%(r)°. Note that Eg.

(BEy +E,P2—(0—ie)}
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(2.15) does not contain the contribution of free electron-
hole pairs, which are not included in our model in the
Frenkel limit.

III. EXCITON-PHONON COUPLING

A complete physical picture of the resonant interaction
of light with excitons requires the incorporation of the
damping of the excitonic coherence by phonons. The
description of highly excited excitonic states coupled to a
phonon bath is more complicated than the weak-
phonon-coupling model employed for Frenkel excitons,?
since highly excited Wannier excitons are likely to be dis-
sociated into free electron-hole pairs due to interaction
with the phonon bath. However, if we restrict ourselves

" 'fo strongly bound excitons (i.e., excitons with a low «

quantum number), and assume that the electron-phonon
coupling is weak and that the density of excitons is
sufficiently low, the exciton-phonon coupling may be de-
scribed by a simple Hamiltonian, quadratic in exciton
annihilation-creation operators and linear in the phonon
displacement field, as shown in Eq. (C4). When consider-
ing only elastic-scattering processes, the exciton-phonon
coupling given by (C4) reduces to

ﬁ4=quﬁcoq33;3q
+3 [dafdkF (k@) ? ] o Parb,+51),
[+

(3.1

where 5q is the phonon-creation operator, which satisfies
the commutation relation [b,,b Z’]=8qq" Equation (3.1)
can be considered the lowest-order expansion in the
electron-phonon—coupling strength, which results in
elastic processes. We stress that the form of coupling in
Egs. (C4) and (3.1) is found to be a straightforward gen-
eralization of the standard model of weak exciton-phonon
coupling for Frenkel excitons,? where annihilation and
creation operators of Frenkel excitons with wave vector g
are replaced by analogous operators describing Wannier
excitons.

The derivation of the equations of motion for the po-
larization operators of excitons starting with the micro-
scopic electron-phonon coupling is given in Appendix C.
The derivation is along the lines of that presented in Ref.
29, employing iterative expansion with respect to the
exciton-phonon interaction: This kind of iterative treat-
ment, together with the key sequence of approximations
for Frenkel excitons, is known as the Bogoliubov-
Tyablikov method.3® The procedure presented in Appen-
dix C is based on a double expansion of exciton-phonon
interaction. The first expansion consists of an iterative
treatment of the phonon-bath motion, i.e., to zeroth or-
der the phonons are not perturbed by excitons, and suc-
cessive orders in the interactions modify the exciton
motion. The other iteration consists of expanding this re-
sult in powers of the electron-phonon coupling. The
derivation of the nonlinear corrections to the bosonic pic-
ture of excitons is presented in Appendix D. This calcu-
lation consists of inserting the exact commutation rela-

tions given by Egs. (B3)-(B10), instead of the linearized



2964

commutator (2.5), and taking the nonlinear terms f §,(¢)
into account. The resulting equations of motion includ-
ing the excitonic nonlinearity are given by Eq. (D17).
When the phonon dephasing of the exciton- and phonon-
|

B()= =102 (1)+8, 3 $,0) (=i 3 [dk vyee

P ()=—i(E, +E) P o () —gp 602, () +8 L (0] —y P () + 7R u () +F oy (2)

where I?‘ak(t) stands for the nonlinear interactions and is
a sum of six terms, i.e., F, ()= $6_, F4)(¢). The terms
7)) with s=1,2,...,5 represent the exciton-exciton
and photon-exciton-exciton nonlinear interactions. The
phonon effects enter Eq. (3.2b) in three terms.

(i) The —y?ak(t) term describes the damping of exci-
tonic polarization by elastic scattering.

(i) The phonon-assisted scattering of light by excitons
can be schematically viewed as a combination of two dis-
tinct processes: the first is a coherent scattering in which
a coherent state of the incoming field is transformed into
a coherent excitonic state. The electron and hole may
subsequently recombine, giving rise to a coherent
scattered wave; the other process is an incoherent contri-
bution in which the coherent excitonic state is converted
into an uncorrelated state of excitons which subsequently
recombine, leading to the emission of incoherent photons
(where the average electric field vanishes). The ¥, (¢)
term describes the generation of the incoherent com-
ponent of excitonic polarization. An important
difference between the two components of the scattered
radiation is that the incoherent emission is isotropic,
whereas the coherent component is emitted mostly in a
few selected directions that satisfy exciton-phonon
momentum conservation. In the following we shall only
consider the coherent part of scattered radiation and
neglect the yN o term and the incoherent background.

(iii) Phonon-induced optical nonlinearity f (& __the
first-order perturbation of the phonon motion by excitons
has a feedback effect on the excitonic dynamics; this non-
linear effect is described by 7 [Eq. (C20)].

The nonlinear corrections to the bosonic picture will be
discussed in the next section. Here we will only consider
the linearized regime, when the nonlinear term F;(¢) is
neglected. We take the expectation value of the opera-
tors in Egs. (3.2) and obtain a simple equation for the
complex amplitude Y, ,(k,0)=( ? «t(k;®)). This re-
|

Yy (t)=—(iQ+7 Yy () +p A (k)

+ [dx, [ dk, [ dk, 8k —k; —ky—ka)[Ai Yy (DY -y, ()Y 1y (DA A (£k )Y, (DY (0],

where
172

ZTTﬁCCOab ¢ (0)
1 .

H=Hgp v

The nonlinear coupling coefficients A, A, are given by
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mediated nonlinearity represented in Eq. (C20) is incor-
porated as well, we obtain the following equations of
motion for the coupled dynamics of excitons and pho-
tons:

i(k—k’)-rn[ak'“)_ka P nl, (3.2a)
(3.2b)
[
sults in the dielectric function
ek,o)=1+477 lgwba(0) . e (3.3)

= (B +E P —(0—iy,)

We reiterate that Eq. (3.3) cannot be used for an arbitrary
state a, since for highly excited excitonic states the ener-
gy spacing between Wannier excitons is sufficiently small
to allow inelastic phonon-assisted transitions a—f3 and
the possible dissociation of excitons, which are not in-
cluded in Eq. (3.1).

IV. ANHARMONIC-OSCILLATOR PICTURE
AND THE NONLINEAR SUSCEPTIBILITY y‘*’

In order to investigated the weak nonlinear corrections
to the bosonic limit, we need to perform an averaging of
all quantities entering Egs. (3.2) and derive effective equa-
tions involving only expectation values of electromagnet-
ic field and excitonic polarization. The main difficulty
lies in the evaluation of the averages o£ products of opera-
tors entering into the nonlinear term £, (¢), which result
in an infinite hierarchy of coupled dynamical variables.
In order to close the hierarchy, we assume that the densi-
ty matrix of our system is factorized in the form of a
product of field and matter coherent states. Within this
approximation, products involving excitonic polarization
and electromagnetic field operators are factorized as
products of averages of k-space exciton polarjzations and
amplitudes of the modes of the electromagnetic field. We
further assume that the frequency of radiation exciting
the semiconductor is quasiresonant with the 1s (¢=1) ex-
citonic line and neglect all other excitonic states. We
then obtain nonlinear equations for the amplitude,
Y=, (0=(¥,=; (1)) which are truncated next, re-
taining only terms up to cubic order. These manipula-
tions are performed in Appendix D, resulting in

(4.1)
[
A =¢,(0),I,+¢2(0)]; +2¢%0),
+ 12T+ THH0) + Ay, (4.22)
M=Ih, (4.2b)



where I,, I,, and I are given by

.2—1)SV—Zf*dra_3/2eiE"VDD(r) , (4.2¢)
T

IIE:(

1 -
L=t [ 40 [ dnaThrgebn ),
(4.2d)

L [ dr vPP(r)gd(r)a =32 . (4.2¢)
*

I,=
3 (277)%72

f «dr denotes the integral over r with the exclusion of

|rl <a, where a is the lattice constant. k denotes the
wave vector corresponding to a light frequency resonant
to the a=1 exciton (e, |kc|=Q,-o) and satisfies
k-e;=0. A,, defined in Egs. (C19) and (C21), is a
phonon-induced nonlinearity.

Equations (4.1) and (4.2) constitute the main result of
this paper. They describe the dynamics of our system in
the limit of small and uniformly distributed exciton
density n.,(r) [i.e., the number of excitons is small
compared with the number of sites, 7ng
2N 'S, (P, (Y (1)) <<1]. The physical picture
underlying Eq. (4.1) is of that of weakly anharmonic,
semiclassical oscillators, which evolve in coherent states
with the coherent amplitudes ‘described by averages of
annihilation operators, where these amplitudes are
governed by the (weakly) nonlinear equation (4.1). This
picture is, of course, only valid for sufficiently weak non-
linearity, since in the opposite case the quantum-
mechanical density matrix can differ considerably from a
product of coherent states. Using the present picture the
nonlinear properties of bulk semiconductors are de-
scribed by two parameters. The first parameter (A,) is a
sum of contributions originating from the Coulomb in-
teraction between excitons, the mobility of electrons and
holes, and a phonon-mediated interaction. The latter
contribution has recently attracted considerable atten-
tion.»63! The second parameter (A,) represents the non-
linear contribution originating from the interaction of
electrons with the transverse part of the electromagnetic
field.

The validity of Eq. (4.1) depends crucially on the rela-
tive magnitude of the coupling constant g, and the de-
phasing rate y,. Consider the interaction of a coherent
beam with a semi-infinite semiconducting medium in the
limit of linear light-matter interaction, with infinite exci-
ton mass. In this case we can apply a one-dimensional

4
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analysis, where the excitonic medium is modeled by the
means of harmonic oscillators with an oscillator strength
Ao=|gx|*/2E, per unit length. Both the amplitude of
the light beam and the excitonic polarization will be ex-
ponentially damped, i.e., |P(7)|2~exp[ —(2A,/y,)r], and
the condition for uniform distribution of the excitonic
population has the form AyL/y,<<1, where L is the
thickness of the sample. This means that the sequence of
approximations leading to Eq. (4.1} is valid when
AgL <<v,, corresponding to a temperature high enough
for the exciton-photon interaction to be overdamped by
phonons. These equations also hold in another limit,
when all the incident light beams are far off resonance
with respect to the excitonic line, so that g, is small rela-
tive to the detuning of the laser frequency from the exci-
tonic line. As we will show in the following, in this re-
gime the interaction of a coherent beam with wave vector
k, excites the collective excitonic mode with center-of-
mass momentum #k =~#k,, and nonlinear effects can be
described using a simple picture of interacting, weakly
anharmonic k-space oscillators.

When the damping is weak, A,L >>v,, the k-exciton
and k-photon modes are strongly correlated and form
new elementary modes, called polaritons.?™3* In this
case, Eq. (4.1) is no longer valid since the excitation of
the semiconducting sample with monochromatic
coherent light can lead to a nonuniform distribution of
excitonic density and, therefore, the analysis of nonlinear
effects requires addressing the full nonlinear interaction
and propagation problem.

We next consider a four-wave-mixing experiment in-
volving three incident coherent beams with frequencies
wy, 04,03 and wave vectors k;,ky,k;. 'We shall calculate
the nonlinear polarization with frequency wo=w,—o,
+ w3 and wave vectors k=k; —k,+k;. It is given by

PRk, 0)=x"3(—k, —w;k,, —ky, k3,0, —05,03)

XE (ky, 0 E*(Ky0,)E (kpy03) . (4.32)

The nonlinear susceptibility x>’ is obtained from Eq.
(4.1) by solving the linearized equations for the excitonic
polarization Y,_, ,(2), inserting the solution in the non-
linear terms on the rhs of Eq. (4.1), and treating this non-
linear term as an external perturbation. In this way we
calculate the nonlinear corrections to the excitonic polar-
ization and the ¥'*) susceptibility, calculated within the
rotating-wave approximation,

M

X
(C()_Qk'{_i'yl)(w]_le+i71)(w2_0k2_i'}’l)(C()3—Qk3+i'}’1)

Ay

+
(0= +iy Moy =y —iy oy~ Fivy) |’

(4.3b)
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where #iQ, =FE, +E, and the summation is over the per-
mutation of w;,k; with w;,k;.

Let us consider a simple four-wave-mixing experiment
performed using two light beams. We set k;=k, and
consider the signal at k=2k; —k,. When this experiment
is performed on a chromophore perturbed by collisions
or by phonons, the signal shows a dephasing-induced ex-
tra resonance known as degenerate four-wave mixing. 3>36
As o, is tuned across @, while both w; and w, are kept off
resonance, ¥'>) will show a narrow resonance at w,=a,
whose width is determined by level relaxing (T, process-
es).>” This extra resonarice vanishes in the absence of de-
phasing. A recent calculation of this type for Frenkel ex-
citons has been made.3® This differs dramatically from
the present collective quasiparticle picture that employs
weak exciton-phonon coupling. Equation (4.3b) does not
show the dephasing induced resonances at w;=w,, since
within the present approximations we do not have pure
dephasing (T, =2T),).

V. ELECTRONIC RENORMALIZATION EFFECTS
INDUCED BY A PUMP BEAM:
ac STARK SHIFT AND PHASE-SPACE FILLING

In this section we consider the modification of optical
properties of a bulk semiconductor induced by a coherent
pump field tuned in the vicinity of an isolated exciton
line, and calculate corrections to the 1s exciton energy,
dipole moment, and relaxation rate, to first order in exci-
ton density. We will assume that these optical properties
are subsequently probed by a second beam that is weak in
comparison to the pump beam, i.e., we assume that the
number density of excitons created by the probe is negli-
gible compared to that created by the pump. We further
assume that the population of excitons created by the
pump beam adiabatically follows the pump intensity:
this limit holds when the light-matter interaction is over-
damped by phonons or when the pump is off resonance
with respect to the excitonic line. The total electromag-
netic field and the polarization wave associated with the
1s Wannier exciton can be described in terms of slowly
varying envelopes. We denote the envelopes of the pump
beam E,(k,t) and those of the probe E,(t), assuming fur-
ther that the probe field is nearly monochromatic. Simi-
larly, we define the envelopes describing the excitonic po-
larization associated with the pump and probe beams as
Y, (¢) and Y,(2), respectively. We thus have

E(k,t)=E(t)exp(iowyt)d(k,—k)

+E (k,t)expliogt) , (5.1a)
+ Y, (k,t)expliogt) , (5.1b)

where w,=kec, and k, denotes the wave vector of the
probe beam.

Following the assumption of adiabatic behavior of ex-
citonic polarization created by the pump beam, we have
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Ys(k,w)zx(”(k,co)Es(k,a)). When Egs. (5.1) are inserted
into Eq. (4.1) and a linearization is performed with
respect to the Y,(z) variables, we obtain the following
equation for excitonic density associated with the probe
frequency, Yy(2):

To(t)=—1i(0, =00 +7, 1)+ 1—Egln),  (52)
0
with the renormalized coefficients
w=ull—Amn (1)), (5.3a)
Q,=0Qy+A (1), (5.3b)
v, =y(1+An.,(1), (5.3c)
where
E (k,1)|?
ne()= [ dk Es( 2)| 5, (5.4a)
[0y =) +yilog
IE,(k,t)|2(aJk—Qk)
A(8)=2A t)+A, | dk .
S Rt R T
(5.4%)

The properties of our medium as measured by the probe
beam can be described by the dielectric function (3.3)
with the oscillator strength, the eigenfrequency of the ex-
citonic line, and the damping rate replaced by the renor-
malized quantities u,, Q,, and y,, respectively. The ab-
sorption spectrum, related to the imaginary of e(k,w), is
then given by

LY,
[(o—Q,P%+y212Q,

S(w)= (5.5

Equation (5.2) is a linearized equation describing exciton-
ic polarization, with the parameters being renormalized
by terms proportional to the density of excitons created
by the pump beam. Note that the renormalization of the
dipole moment depends only on A,, whereas the Stark
shift A;(z) is a sum of two terms related to A; and A,. For
a monochromatic pump, we have further that

AAD=[2A+ Ay~ Q) ]n g, () . (5.6)

The damping rate [Eq. (5.3¢)] is modified by an additional
term proportional to the excitonic density. This contri-
bution is a result of a conversion of coherent excitons
into incoherent excitons, induced by the nonlinear pro-
cesses. The coupling strength u, is renormalized as well.
This renormalization implies that excitation of a finite ex-
citon density by the pump beam effectively reduces the
oscillator strength of the medium in comparison with the
linear regime. This is in agreement with the phase-
space-filling (PSF) picture of the saturation of absorption
in semiconductors.’® Obviously, the results discussed by
us are restricted to the limit n,, <<1, and for that reason
we do not obtain a true saturation. It can be seen that
exciton-density corrections (i.e., linear and higher-order
terms in n,, ) to the excitonic polarization associated with
the pump beam, Y,(k,t), lead to higher-order corrections
to u,, Q,, and ¥, which are of second and higher order in
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n.,(2). A simple resummation to higher exciton densities
may be obtained using a Padé approximation for Eq.
(5.2b) [i.e., we set p,~u(1+A,n, )" ']. However, when
higher-order effects in n., are considered, the truncation
of the nonlinear equation for the excitonic polarization
Y, (2) to third order [Eq. (4.1)] is no longer valid. This
means that the Padé approximant is oversimplified, and
for higher exciton densities a more elaborate microscopic
picture than that given by Eq. (4.1) should be developed.
In addition, for higher pump intensities, the absorption of
photons from both pump and probe beams by excitons,
leading to dissociation of excitons into free electron-hole
pairs, cannot be disregarded. This means that for high
light intensity a finite density of free carriers will be
created, leading to the screening of electron-hole attrac-
tion and finally to the dissociation of bound-excitonic
states. ¥ '

Both types of nonlinearity (A, and A,) have a distinctly
different character. The contribution to the ac Stark shift
governed by A, does not change its sign when a mono-
chromatic pump beam is tuned across the excitonic line,
and has its maximum when the pump beam is exactly res-
onant with the exciton frequency. The A, contribution is
dispersive, i.e., it changes its sign when the pump fre-
quency is tuned across the pump-exciton resonance, and
vanishes on resonance. The nonlinearity proportional to
A, contributes to renormalization of the oscillator
strength of the medium, to the ac Stark shift, and to the
modification of the damping rate, whereas the nonlinear
interaction described by A; contributes only to the ac
Stark shift and to the renormalization of the damping
rate. It then follows that the nonlinear-optical properties
of a bulk semiconductor will depend on whether the A;-
or A,-type nonlinearities are dominant. We expect the 4,
nonlinearity to be dominant when phonon-induced non-
linearity is significant, as is the case in recent experi-
ments.%3! Therefore, in this case a Stark shift of the ex-
citonic line should be observed without renormalization
of the oscillator strength of the medium.

When phonon-induced nonlinearity is not dominant, a
more careful analysis is needed to estimate the relative
strength of both types of nonlinearities. Let us consider
the ratio of the two components entering in the ¥*) non-
linear susceptibility given by Eq. (4.3). In the simple
|

() +2y4()+ 0% ()=pE () + M W;3{4(1),q (1)} +AuE ()W, {4(2),q (1)} ,

where W,{g,q} denotes an nth-order polynomial in ¢
and g. We assume that y,A <<@,, where A is the detun-
ing between the driving field E(¢) and the oscillator fre-
quency Q, The third-order susceptibility and the ac
Stark shift, calculated from Eq. (5.8) employing the RWA
approximation following from A <<, have the same
form of Eq. (5.4), provided the translational kinetic ener-
gy is neglected (i.e., Oy =E,/fi=Q,). We further note
that for off-resonance excitation, when y <<A <<, the
third-order susceptibility and the ac Stark shift originat-
ing from the A, term alone have the same form as that of

a two-level atom. This result seems to shed some light on
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case, when all three laser beams considered in Egs. (4.2)
have the same frequencies, the ratio of the term of Pl
proportional to A, to the term proportional to A, is sim-
ply equal to p=A,/(A,|y,+iAl), where A is the detuning
of these beams from the exciton frequency Q. This, in
turn, can be expressed as

Ekin +Ec

where E,;, is the characteristic kinetic energy of the exci-
ton translation and E, is the energy of Coulomb exciton-
exciton interaction. Using Egs. (5.6) and (5.7), we see
that the nonlinearity related to A, is dominant when light
frequencies are tuned sufficiently far off resonance with
respect to the exciton line. In the opposite limit, when
the light frequency is closer to resonance with the exci-
tonic line (|A| <y,), effects associated with A, become
dominant, and if the temperature-dependent relaxation
rate y, is small relative to Ey;, and E,, the nonlinearity in
the vicinity of exciton-photon resonance is dominated by
the A, nonlinearity. The latter statement leads us to a
conclusion that at low temperatures the optical non-
linearity near resonance will be A;. However, this argu-
ment has some limitations, since the phonon-dephasing
rate does not vanish at zero temperature, and the radia-
tive losses contribute to the damping of excitonic polar-
ization, Therefore, ¥, cannot attain an arbitrarily low
value at low temperatures.

Finally, we investigate the relative magnitude of A, and
A, as the size of the exciton is varied. We assume that the
static dielectric constant of our system (g;) is varied,
which modifies the exciton radius R.,,=(#/M*e?)e,.
We rescale the integrals [Eqgs. (4.2)] by introducing a di-
mensionless integration variable x=r/R., and modify
the potential-energy terms [Egs. (2.3)], which results in
the following scaling, in the limit of large exciton size:

~p 3 ~PR 372
)"1 Rex? )”2 Rex .

This implies that the A, nonlinearity dominates for large
exciton radius R,.

It is interesting to make a further comparison between
these two types of nonlinearities by considering the fol-
lowing oscillator driven by an external electric field:

(5.8)

[

the comparison between the ‘' susceptibility and the ac
Stark shift of a bulk semiconductor given by Egs. (5.4),
and the same quantities calculated using models involv-
ing only a few electron-hole—pair states.'®”?! In the off-
resonance regime both y‘* and A; calculated either using
the anharmonic-oscillator model with the A, term alone
or the two- or three-level models are identical. However,
the A, nonlinearity cannot be derived from the few-
level-system model. Also, if we keep only the A, non-
linearity, and consider the adiabatic on-resonance case
(i.e., when light-matter interaction is overdamped by pho-

nons), the regults of both approaches are diffarent. These
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arguments do not contradict the phenomenological ap-
proach to off-resonance excitation of semiconductors,
modeled as a few-level system, ! since the contribution of
A, becomes dominant for off-resonance pumping. In oth-
er words, far off resonance, the system of weakly anhar-
monic excitons can be adequately modeled as a few-level
system.!” However, the excitonic optical nonlinearity in
the entire regime of off-resonance and near-resonance
pumping cannot be described using such few-level mod-
els. The comparison of the nonlinear-optical features of
excitonic systems such as ac Stark shift and renormaliza-
tion of the oscillator strength, to those known from atom-
ic physics, has attracted considerable attention in the
literature. '#127 1820 Many experimental investigations
used off-resonance pumping, and the ac Stark shift was
observed simultaneously with reduction of the oscillator
strength of the medium (saturation).”!® The physical
picture of excitonic nonlifiearity was therefore found to
have similarities to that known from atomic physics. !
However, new aspects of the excitonic nonlinearity, such
as the role of biexcitons,*® were also recognized. #%° Re-
cent experiments on GaAs quantum wells showed a large
Stark shift without renormalization of the oscillator
strength of the medium.'? This effect, also confirmed by
theoretical calculations, !* was the source of some contro-
versy in the literature,?® and demonstrates a situation
where the nonlinear-optical properties of semiconductors
are very different from those known from atomic physics.
Using the present theory, this could be the result of a
dominant role of the A| nonlinearity in this system.

VI. DISCUSSION

In this paper we have studied the interaction of light
with excitons in bulk semiconductors. In the regime of
low exciton density and when phonon-induced dephasing
is larger than the radiation-matter coupling, the medium
can be described using an interacting-boson model [Eq.
(4.1)]. The interaction among these bosons and with the
electric field can be represented by a quartic potential
[Eq. (4.1)]. The systematic evaluation of these nonlinear
corrections allowed us to calculate the third-order optical
susceptibility and the ac Stark shift. Our closed-form ex-
pressions are governed by two parameters, representing
two different types of nonlinearity. The first (A,) arises
from Coulomb interaction between excitons, nonbosonic
corrections to the mobility of electrons and holes, and
nonlinear processes mediated by phonons. The second
(A,) arises from nonbosonic corrections to the dipolar
radiation-matter coupling. The following physical pic-
ture is obtained from the present theory: the excitonic
medium in the regime of weak optical nonlinearity can be
modeled as a set of weakly coupled semiclassical anhar-
monic oscillators. Each oscillator is labeled by the wave
vector k representing the center-of-mass momentum of
the electron-hole pair, and an internal quantum number
a corresponding to the hydrogenic eigenstate of their rel-
ative motion. The oscillators describe both bound and
free-electron-hole pairs, i.e., both excitons and free car-
riers. The anharmonicity couples different oscillators and
modifies the dynamics of each oscillator.
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The idea that excitons at low densities behave as bo-
sons is well established and was discussed numerous
times in the literature.?>?**! The present microscopic
calculation of optical nonlinearities were performed by
considering the lowest-order iterative correction to the
bosonic limit in the frame of Heisenberg equations. The
present results were obtained using several assumptions
and approximations. We have considered a simple tight-
binding model admitting two electronic states per site.
Effects related to “heavy” and light” holes present in a
realistic semiconductor with a more complex band struc-
ture are not considered in our model.'® When calculating
the nonlinear properties of a bulk semiconductor, follow-
ing the assumption that the incoming radiation is reso-
nant or quasiresonant with an excitonic level, the dynam-
ical variables associated with the other excitonic states
and free carriers have been neglected, so that we could
consider only a single-exciton line. In practice, however,
we usually deal with a finite density of free carriers due to
incoherent excitation phenomena. The latter effect can
be incorporated in our calculations by replacing the
Coulomb potential with a screened Yukawa form.
Another limitation is that, as a consequence of the itera-
tive treatment of the Coulomb interaction, bound states
arising from attractive interactions between excitons, i.e.,
excitonic molecules, are not included in our calculations.
This implies that the present results are valid only when
we neglect resonances between the incoming light and
exciton-biexciton®® transitions (the exciton-biexciton
transition can result in an additional nonlinearity associ-
ated with the exciton-biexciton transition). However,
even if we stay far off such resonances, the finite-
temperature phonon-mediated processes may lead to the
formation of excitonic molecules. The effect of these pro-
cesses on the excitonic polarization can be modeled phe-
nomenologically by modifying the damping rate y in Egs.
(3.2). The effects of phonon-induced generation of exci-
tonic molecules is significant only for a limited range of
parameters, since for sufficiently high density of free car-
riers the screening of the Coulomb potential results in the
dissociation of bound-excitonic states. Finally, we have
invoked the rotating-wave approximation for the
exciton-phonon interaction. This is appropriate when the
frequencies of all components of the electromagnetic field
entering our problem are resonant or quasiresonant with
a given excitonic level. Processes such as third-harmonic
generation or two-photon absorption require the in-
clusion of additional terms, and are beyond the scope of
the present calculation.

The present analysis provides a simple description of
bulk semijconductors. It also allows us to draw several
qualitative conclusions concerning semiconductor sys-
tems having a lower dimensionality. Let us consider a
quantum-well structure in which the confinement in one
direction is sufficiently strong to ensure that only one
transverse mode is excited. In this case, two-dimensional
(2D) electron-hole bound states are formed (2D excitons)
and the analysis of this system can be straightforwardly
done along the lines presented here. We identify the bo-
sonic exciton states arising from the diagonalization of
linearized excitonic dynamics and then consider non-
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linear effects by deriving the effective interaction cou-
pling these bosonic modes. The physical picture underly-
ing such an interacting-boson picture is identical to the
one considered here; when a photon is absorbed, an exci-
tonic state with the excitonic density being inversely pro-
portional to the volume of the sample is created. Follow-
ing that, the exciton density is treated as a small expan-
sion parameter which leads to the interacting-boson pic-
ture. This results in the same form of nonlinearity
governed by two parameters (i.e., the form of the ac Stark
shift, renormalized excitonic dipole strength, and third-
order susceptibility is qualitatively the same). Similarly,

the application of the present theory to 1D semiconduc--

tors is straightforward. Finally, we note that a similar
method of evaluating the nonlinear-optical response
based on the iterative solution of nonlinear equations of
motion was developed earlier in the study of polariton
effects in molecular crystals.

Some interesting conclusions can be drawn with regard
to quantum-dot microstructures. When their size is de-
creased, the probability that two excitons are found
within the range of the nonlinear interaction increases in-
versely proportional to its volume. This means that the
energy of the two-exciton state is shifted in comparison
to twice the energy of the single-exciton state. When this
shift becomes larger than the broadening associated with
phonon relaxation and the radiative width, the descrip-
tion of the nonlinearity of our system by means of quasi-
classical anharmonic oscillators is no longer possible.
However, when a monochromatic excitation is tuned
near a single-exciton resonance, a two- or three-level
model involving only the ground state, and one and possi-
bly two exciton states, is applicable. Such a picture 1s
commonly used in theoretical studies of quantum dots.>
The straightforward conclusion from our analysis is that
the transition from the regime when the optical non-
linearity is described by means of a weakly anharmonic
system to the one described by a few-level system is not
only governed by the size of the semiconductor particle,
but also by the temperature. When the temperature is in-
creased, the nonlinear-optical properties of a small semi-
conducting sample can change from a behavior charac-
teristic of a microstructure to that of a bulk semiconduc-
tor. We should stress that our conclusions hold only
when the size of the quantum dot is larger than the exci-
ton radius. In the opposite case, we reach the regime of
quantum confinement, where excitonic states no longer

exist.?!
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APPENDIX A: DERIVATION
OF THE BAND-EDGE HAMILTONIAN

In this appendix we outline the derivation of the band-
edge Hamiltonian [Egs. (2.3)] starting with Eq. (2.1a).
The Hamiltonian (2.1) can be partitioned as follows:

A=8,+A,+A,+1,, (A1)

where
Ay+A,= [dr §lop 2o+ [dr§ oo
+ [dxfo @l +1), (A2a)

ﬁ2=e2fdr$1(r)

A,= [dr, [ dr, 1) () V Sr — )y firy)
(A2c)

We now make use of the electronic field operator (2.2).
D% r), d%r) are the wave functions of the two localized
electronic states of interest (see Sec. II). We assume

Jdr o™ (r—r1,)®lr—1,)=

8;;8um + €l , (A3)

[ dr o™ (r—r,)(e; V) BN r —1,)=(1-8,)8, i +efic ,

(A4)
and

Jdr o™ (r—r)A P —1,)=8,8, .m)+efk,  (AS)
where k=1 if n and m are nearest neighbors and «=0
otherwise, and i,j =a,b. ef{ describe the electron and
hole mobility effect due to partial overlapping of electron-
ic wave functions describing electronic states localized at
neighboring sites (we assume that only the overlap be-
tween the nearest-neighbor sites is finite). Following the
assumption of the tight-binding limit, the overlap of
neighboring states is obviously small, i.e., €§,ef,ef <1
[the quantities 77;,75 represent the integrals in (A4) and
(A5) calculated for n=m]. The simplest realistic picture
is obtained when the overlap effect is neglected in Egs.
(A3) and (A4), i.e., we set €f=¢€/=0, but we take it into
account in (AS5) setting €§740. In this case we get the mo-
bility of electrons and holes (which is absent for €5=0),
and the electron-hole pair generated by the absorption of
a photon is always located on the same site. The other
overlap parameters €470 and €/0 lead to various
corrections. For example, there is a small probability
that the electron-hole pair created will be located at
neighboring sites, but this does not modify the physical
picture in a significant way. Therefore we assume
€f=¢€/=0 and €70 in our calculations.

Employing the form of the vector potential A(r,t)
glven by Eq. (2.3b) and of the electronic operator w(r t)
given by Eq. (2.2), we write ﬁ in terms of creation and

annihilation operators of locahzed states:
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where g, is given by Eq. (2.6¢).

In the following we employ Eqs. (A3)—(A6) and the relations 2,2 f=F—2 ¢, and d,dl=Ff-

Hamiltonian as

Bo+8,= S 0,@fe,+d1d)+ 3 3 (T gy +T'd [dyrn)+ [dk o @io,+1),

n n

~

+al, ya +aly)
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i(k,+k,)r
el 12 n (A6)

~ A

+ .
odn to rewrite the

(S5

(A7)

By=3 ver,—rp)ele,—dldele,—dtd + S vPPur, —rp)e,d, +e ld e da+eldl )

n,m

+ 3 VM —r N2 d, e ld el —dtd),

n,m

n,m

(A8)

where T'=(#*/2m, )€ (m, is the electron mass) and the potential energies V'(r), ¥PD(r), and ¥PM(r) are given by

Egs. (2.3).

APPENDIX B: COMMUTATOR ALGEBRA

In this appendix we present the commutators of opera-
tors necessary for deriving the Heisenberg equations of
the tight-binding model. These commutators were given
in Appendix F of Ref. 24, but the expressions given there
for the commutators (B5)—(B7) are incorrect.

In our tight-binding model, each site can be in one of
the following four states:

[1,n)=]Q), (Bla)
l2n)=efla), (BIb)
I3n)=dlla), (Blc)
l4n)=eldlla), (B1d)
where the operators ¢, and d a are defined by
2,=I1,n){n,2[+3,n)(n,4[, (B2a)
d,=11,0){n,3|+[2,n)(n,4| . (B2b)

The states |1,m),...,|4,n) represent site n in the
ground state, with one electron, with one hole, and with
an electron-hole pair, respectively.

The basic commutation relations of ¢ z and d I are

e, el1=(T—2ete,)5,. , (B3)

d,,dl1=(F—2d13 5, . (B4)

The commutators of matter operators necessary for cal-
culation of Heisenberg equations can be evaluated by a
repeated application of Eqgs. (B3) and (B4), resulting in

[ ?nm’ ? l’m’] = 8nn'Smm’ + Sm’gm'mem'm +8n;m’§n'nﬁn’n

+ ( §nn’§mm' —1 )6m'mﬁn'n ’ (BS)

[¥mn Cot 1780080y Py — 8, (1—8,, 29,8, (B6)

[
[ ?mn’ ﬁm'I]=5mm'6mI ?Inu—amm’( 1=8,;)2 ?Inﬁmm ’

(B7)
where £, =1—26,,..
We further have
[ ?mn’ en'n' én"n"8u’n"]
=8 P Covrar + B Fona Cor » (BY)
[ ?mn’ ﬁm’m’ﬁm"m"sm'm”]
=6mm’ ?mnﬁmm" + Smm" ?mnﬁm'm ) (Bg)
[ ?mn’ én'uﬁ m'm’sn’m"]
= 8nn' ?mnﬁ m'm’ + Smm' ?mnﬁ n'n * (B10)

These commutations were used in the derivation of Eq.
(D1).

APPENDIX C: COUPLING OF WANNIER
EXCITONS TO PHONONS

The coupling of Wannier excitons to phonons is usual-
ly described using two types of interactions: the long-
range Frohlich interaction (mediated by the Coulomb po-
tential), taking place when excitation of a lattice-
vibrational mode is accompanied by dielectric polariza-
tion, and a short-range interaction associated with the
“direct” impact of the deformation amplitude on elec-
tronic degrees of freedom.?* Both effects create effective
potentials acting on electrons and holes. Adopting the
notation of Ref. 24, we denote the polarization by
Q&(r,t), where £(r,¢) denotes the displacement created by
both optical and acoustical phonons and Q is the polar-
ization tensor. We then have

V:ff(r,n:—ELfdr'M+dc§(r,t> ,  (Cla)
0

(r'
lr—r']
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(C1b) Vlr,rp,0)= [ dk S (1,1, k)6(k, 1) . (C2)

r—r ),

gt farYIQEEOL_y o,
0

where d, and dy are constants.?* We next consider the

total potential acting on the electron pair We now calculate the matrix elements between various
V,(r;,15,8) =V r,t)+ VEi(r,, 1), and decompose the dis-  excitonic states induced by the effective potential
placement &(r,t) into plane waves, which leads to [rp=r—r, Rp=(mtn+min)/(m¥ +mf)],

o ik,‘R —ik,-
Foplkiky, )= [dr, [ dry g(ride™  Pgptrie 7 S (ry,m,00q) . (C3)

Flnall’g we consider a quantized displacement field £(q,)=b ot )+b 1 4(?), where b is the phonon-creation operator,
ie., [bg, 5! ¢1=8qy- This leads to the following Hamﬂtoman descrlbmg the coupllng between Wannier excitons and
phonons

Bow=73 [da[dkF sk+q, k@l P56, 451 . (c4)

B

F, describes elastic-scattering processes when only the center-of-mass momentum of excitons is changed, while the
terms with a7 describe interactions where the internal state of the exciton is changed (inelastic scattering). The
Hamiltonian given by Eq. (C4) is a straightforward generalization of the Hamiltonian describing the weak-coupling lim-
it of Frenkel excitons coupled to a phonon bath.?’

We will assume that the energy of phonons is not high enough to allow processes in which a excitons are excited into
higher states, dissociated into free carriers, or annihilated due to phonon-assisted recombination, i.e., we will neglect in-
elastic scattering. The approximation restricting one to elastic-scattering events is more likely to fail for &> 1 excitons,
since for Rydberg-like excitons the phonon-mediated decay to lower excitonic states is expected to be relevant for a
correct physical picture.

We next calculate the impact of the phonon bath on the exciton motion assuming that only a single-excitonic line is
excited (i.e., that the incident light is resonant with the a exciton). The Heisenberg equations generated by our model
Hamiltonian [we denote F(k,q)=F, ,(k+q, k,q)],

By=[datiop b+ [dk a0, 91,2+ [dq [dx Fie,@ P o\ 0B, +5 1)), (C5)

having the following forms (we treat the ?,,k as perfect bosons, i.e., [?ak, g Lk.]=8aa,8kk.):

Pa(t)=—i0 P ()i [ dqFk,q) ¥ pyr o(DEQ,D) (Cé6a)
bt)=—ioby(—i [ dqF*(k,q)P fr (T (1) , (C6b)

where 7}, now denotes the energy of a excitons with center-of-mass momentum #k. We will consider the dynamics
described by Eq. (C6) using several approximations equivalent to that used in the context of the Bogoliubov-Tyablikov
method of solving the dynamic systems described by Hamiltonians similar to Eq. (C4) (see Refs. 29 and 30). However,
unlike in the standard Bogoliubov-Tyablikov approach, we will not consider equations for consecutive Green’s func-
tions obtained by averaging operator products, but we will stay within the operator picture.

The main approximation employed in the following is that the phonon bath remains in a thermal state, e.g., it is not
modified by the exciton-phonon interaction:

by(t)=By(0)e" " . (o)
This picture is expected to be correct in the low-exciton-density limit,? which is exactly the limit of our interest. We
should stress also that in a more general case than the one described by Eg. (C5) we get a finite relaxation time of pho-
non modes into the thermal equlhbnum state due to anharmomc phonon phonon scattering.

—iw, t

We now formally solve Eq. (C6a) [£%q,t)= q(0) +b Yo 1,
(=200 ¥ —i [dqF(k,q) fo‘dt' P ’?a, k+q(t')§0(q,t') , (C8)
and insert this solution into the integral on the left-hand-side of Eq. (C6a), which brings us to [F(k,q)=F*(k+q, —q)]
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—ify, (1—1")

Pult)=—i0 a0~ [da [dq [ dr' F(k,q)F(k+q, —qe
X P rqmq(tEAGDEN—q', 1)) + R, (1), (C9a)
with

=iy, (t—1")
Na(=[dq[dq [ ar Fe,@F (eta, —ae ™ ™9 0ot

X[E%q,0E%~q',t')—(E%q, 08 —q',1))1—i [dq F(k, )P, 10 ™p).  (Cob)
The thermal averages over the phonons are
(E%q,1))=0, (C10a)
(8%q,0EA—q',t')y =8(q—q)nge ™ ™ +(ng+1)e T T (C10b)
ﬁwq/kT_

where ny=(e 1)~ Next, we approximate { N «(?)) =0, which is equivalent to a factorization approximation
of the polarization-phonon-operator products (both averages of the phononic operators obviously vanish). We next
rewrite Eq. (C9a) as o

?ak(t)=—mk?ak(t)—fo’dt'Gk(z—t')?ak(t')+Nk(z) , (C11)
where
Gy(r)=[dq|F(k,q)e " [n e +(n +1)e ] . (C12)

Finally, we consider the Fermi golden-rule limit, which is expected to hold for weak electron-phonon coupling. This is
again equivalent to the lowest-order iteration in the electron-phonon coupling and excitonic density for the exciton
mass operator (compare to Ref. 29). To this end, we get [y (T)= [ G, (1)d 1]

P o)== P (D=7 TP () + R (1), 7 (C13)
where ,
yk=1rqu|F(k,q)]2[nqﬁ(wq+ﬂk+q)+(nq+I)B(a)q—ﬂk+q)] . ’ (C14)

Our final equation, (C13), has the form of a simple dissipative-operator equation (i.e., Langevin operator equation).
We can describe it intuitively as a phonon-mediated process which converts the coherent exciton polarization created
by a coherent driving electromagnetic wave into an incoherent polarization, which builds up from the noise-source term
N ««(t) following the approximation (N «x(2))=0. The noise term has a relatively complicated from [see Eq. (C9b)];
however, we restrict our investigation to the coherent component of scattered light and therefore we did not need to
employ Eq. (C9b). Finally we will assume that the decay rate does not vary much in the regime of the wave vectors of
interest, i.e., we denote y, =y,.

Equation (C13) represents the limit of linearized exciton dynamics. The next step of our analysis is the evaluation of
low-order nonlinear corrections. One type of nonlinear contribution is obtained when the linearized commutator
[P, ?Zk]=8(k—k’) is replaced by the full expression given by Eq. (B5), when deriving the time derivative of ¥ (7).
However, this contribution only modifies the noise term N «k(2); such a conclusion is reached since in the electron-
phonon factorization approximation this term has a zero average. Another nonlinear correction is obtained when the
lowest-order perturbation of the phononic motion is considered, e.g.,

by(1=by(0e ™'~ [ar [ak Fk,qre TR 0Py (C15)
We next insert Eq. (C15) into Eq. (C6a), which eventually leads us to a modified form of Eq. (C13):

P () ==iQ P () =y (D2 () + N )+ F 80 , (C16)
where

Flw=—[ar [dq [dk Fl,qIF (K, =@ P p4q(0F L, 4oy ()P (e 7%

—F*(K, = )P, oy (0P )P, o (0™ T (€17)
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In the following we will employ the Markovian approxi-
mation for the memory kernel in Eq. (C17). We insert

P =P (e T T 0 (C17):

F®w=[dqfdx' D(k,K',q)

X Py gL (0 yete),  (CI18)
where [from the hermicity of H,, we have
F(k,q)=F*(k+q, —q)]

D(k,k',q)=—F(k,q)F (k',q)
X[(iwg+iQy =iy q+2y )7
Flio_, +iQe—iQ_+2y)7'].
(C19)

The function D(k,k’,q) can be described as the (non-
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linear) coupling between excitonic modes with different
center-of-mass momentum, mediated by phonons. In the
following we will assume that D (k,k’,q) is approximately
constant in the regime of the wave vectors of interest. In
this case the phonon-assisted nonlinear interaction be-
tween excitons can be described by an additional term in

t)=idy, [ dk, [ dk, P (0P ], ()

X P ki, 44, (1) 5 (C20)

with

kph:"—iD(ko,ko,q“_—O) .

The nonlinear term described by Eq. (C20) has the form
of a weakly anharmonic oscillator with fourth-power
nonlinearity.

(C21)

APPENDIX D: LINEAR AND WEAKLY NONLINEAR DYNAMICS OF EXCITONIC POLARIZATION

In this appendix we present the explicit form of the nonlinear terms in the Heisenberg equation for the excitonic
creation operator. We then derive the equation of motion describing averaged excitonic polarization in the weakly non-

linear regime.

The equations of motion for the operators @,(¢) and ?mn(t) are given by Egs. (2.6) (£(1)=i[H, 2(1)], see Egs.

(B5)-(B10), where 8,,,=1—8_,),

fgg(t)=iE[VDD(r,,—rj)?jjménm( +VPP(r—1) 2 j5(0)D g 1o
—i2800 3 [VPP(r,—1)Con D + VPP, —1)D 1 Crn T, (D1a)
j
Faey==i 3 [V, =1))Con ()= V= 1D (] ¥ 5()en
J
=28 3 [V, —1))C o (01D () =V ay —1)D (0 1 (D] (D1b)
j
FO=— [T”@mm(t)Z' P omiwOFT D () Yo (D], (D1c)
Foa=—i8,, 3 VPM(r,—r)[C};()—Dy(1)]
j
+2i8 o, 3 [V 1,—1)D 0 () VPM (1, —1)C o (D11 C55(1) — D (0] (D1d)
j
FONty=—pu( At,r)D oy (1) + A1, 1)C o (N Epm — 28t A (1,1,)C (0D o ()4 A(1,1)D 1 (1)C (1)) . (Dle)

As shown in Sec. II, Egs. (2.6)-(2.9), the equation of
motion for operators Y. (¢) can be recast in the follow-

ing form:
?ak(t>=~i(E +E)P () —g (0 A(k, 1)
+ E f(s) (D2)
s=1
where
Fu ()= 2 eXp[ik(an)]¢a("n_"m )q 0 (2)

n,m

In order to evaluate nonlinear effects in the regime of
weak nonlinearity, we will calculate the nonlinear forces
7 ()(¢) assuming that the operators entering into these
terms obey linearized dynamics. This corresponds to an
iterative treatment in the finite-exciton-density nonlinear-
ity. We will further neglect terms corresponding to
higher than third order in the electromagnetic field and
excitonic polarization. We also restrict ourselves to a=1
excitons so that ¢,(0)g, =p.

The equation describing the quantum average of the
a~exciton polarization has the form (in the following cal-
culations of excitonic nonlinearity, only a=1 will be con-

sidered)
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. 5 A Here we employed exp(3, A =11 exp(A ,) for com-
= — ( o a

Yi()=—(E +E)Y,(1)+4(0) 0+ 3 (FEO) - muting 4,4, (a#B) and expled)=arT+a, 4 if

(D3)
The average of f 5)(¢) will be approximated as follows:
(FUDY=Te[F 50 (0], (D4)

where p; (¢) is the density matrix calculated assuming a
partially linearized interaction (i.e., its time evolution is
governed by a quadratic bosonic Hamiltonian). When
dissipation is neglected, the density matrix of our system
corresponds to a superposition of coherent states, i.e.,

t)gi¢wh(t)><¢coh(t)l ’ (DS)

where the coherent state of the matter is defined as®*

[Yeon(t)) =exp | 3 [dkpu()?% [IQ),  (D6a)

Pal)={ T (1)) . (D6b)
We rewrite
Pom(? )3 2 fdk ¢a(rn_rm)¢7ak( t), (D7)
and get

[ecn(t)) =exp [ 3 @un()T 0 ]10) . (D8)

n,m
Following the linear-optics limit result [? P om’ ]
=810 mm» We get

l¢coh(r)>=N‘1n®m T+ (072 110) . (DY)

(oD (Com + D o oo £))
= 2[¢nl(t ¢ml(t)+‘plm ‘pln t)]

fdk fdk2 ik-&‘1+ik2-Rm,¢;
"‘1""2 1

—ik‘R_;+ik, R
nl 2 ml g% _
+e ¢a1(r,

Fa (71—

A 2=0. Since the bosonic picture relies on the assump-
tion than all sites are weakly excited [i.e., @,,, (¢) << 1], we
can approximate a; =N "!a, =eN !, where N is a nor-
malization factor.

Equation (D9) describes the evolution of the excitonic
system in the limit of linearized dynamics. Such lineari-
zation is obviously valid only when ¢, (t)<<1, which
means that the k-space oscillator can be highly excited
lie., { P, (2)) > 1] only when the excitation distribution
is sharply peaked around some values of k.

In order to evaluate the quantum averages of operators
represented by Egs. (Dla)-(Dle), we need to calculate
averages of various operator products (@nm 'm’
D, ¥ s etc) with the time-dependent density matrix
pr(t) describing the evolution of the system governed by
linearized equations. If the phonon-induced dissipation is
disregarded, and the RWA approximation toward
exciton-photon interaction is applied, the density matrix
has a simple form [Eq. (D5)]. We will approximate the
average describing the linearized phonon-perturbed sys-
tem by the coherent-state result plus a phenomenological
correction describing the “incoherent” excitonic popula-
tion (i.e., excitons scattered by phonons) and the density
of free carriers:

(6nm)E<¢coh(t)lenml¢'coh(t)>+8nmnT . (D10)

The averages of interest have the form [we neglect in our
calculations higher than third-order products of the am-
plitudes { ¥, (1)) ]

(ry—1; )¢a2( )

ra) (R L (P (1)) (D11)

We next make use of the assumption that the incoming light beams are resonant with the a=1 excitonic line; this al-
lows us to consider the term in Eq. (D14) with a;=a,=1 only (i.e., { Y, ) =0 for a71). The next important approxi-
mation is that wavelengths of interest are much longer than the radius of the a=1 (ls) exciton, this allows us to ap-

proximate ¢,(r,—ryle *s=d(r,—ry Je T, Altogether, we obtain

(Beon DN (Coma + Do) eon( 1)) == [ dk, [ dky Gl (ki kX Py (0( P, (1)), (D12a)
G2k, ky)= ge‘i“‘l"‘l""’[cpl(rn—r,)qsl(r )+ —ra)yr—r)] . (D12b)
Similarly, we get
oo 1 D e o)) = i (1= [ e [y Gl Ui KN Ty (1) (R (01) (D13a)
Gl (ki kg)=e g (36 = P K ()] P (o F D) (6 By B
= @Qum(?) ; (@i D@y () +@f 1 ()]~ QO @I D@ T 3 (D (D] (D13b)



42 OPTICAL PROPERTIES OF WANNIER EXCITONS IN THE . .. 2975

<¢coh(t)|?nm(éll+ﬁll)l¢coh(t)>8n18ml_fdke n¢1(r nex(rl)
—fdklfdszdksGgm,(kl,kz,kg( ANONIG SIS FPNEINI
(D14a)
Gk ki ky)=e" 1T g (1 e — 1)+ $2r,— )] (D14b)
(Weon D P Cy =D lereon()y = [ dk, [ dk, [ dk; Gy kp ks Py (DR (0P, (), (D15a)

ilk; +ky +ky)T,

G ik, ky k) =e "y (r,— 1) $3(r; — 1) +¢3(r,— 1)1, (D15b)

where n,(r,t) is the exciton density,

nexras) = 3 9Tl = [k, [die TR (0N Ry, (0 (D16)

We next employ Egs. (D12)-(D15) to express the nonlinear terms (D1a)-(D1e) in the form of products of the ampli-
tudes { ¥,,(¢)) and { 4(k,1)),

V() =i(Q + AP Yy () +p(1—8,) 4 (1,k)

+ [dk, [ dk, [ di;8(k—k —ky~k;)[AMi¥ 15, Vi o Vi, Hhot 4 (k)Y S Vi 1, (D17)
where A] and A, have the form
A =9 (0, I, +¢H0);+24H0) | +12(T*+ T")$3(0) , (D18a)
A=1,, (D18b)
where the integrals I, 1,, and I are (« is the lattice constant)
1= (217' 1972 f dra =% ®yPr) (D19a)
Iz—(_zq;g_/z _3f drl f dr2¢1(l'1 ¢1 I, ¢1(r]—“r2 (Dlgb)
=1 -3 DD .42
L= 570 [ arvPPmgin) . (D19c)

These integrals are calculated from discrete sums by switching to the continuum limit. The asterisk implies that the in-
tegral is performed with an exclusion of small vector lengths corresponding to |r| <a. The latter restriction is necessary
to get correctly the correspondence between the discrete sum and its integral representation. The vector k is chosen to
be perpendicular to the dipole direction € and it corresponds to a frequency of light resonant to the 1s excitonic line,
ie., |kel=0, ;.

We next consider the interaction with the phonon bath. Equation (D17) should then be modified by three additional
terms representing damping of excitonic polarization, phonon-induced noise, and phonon-mediated nonlinearity [see
Appendix C, Eq. (C17)]. Since the average of the phonon noise vanishes, we obtain after a factorization of the product
of excitonic polarization operators corresponding to Eq. (C20) a simple equation of motion describing the dynamics of
the averaged excitonic polarization,

Y )= (Q+Ar)+y, 1Y 1, () +u(1—8,) 4 (1,k)
+ [dk, [ dk, [ dk, 8(k—ky—ky—ky)[Ai Yy (DYF o (¥ (D +Au(1=87) A (6k)YE _, (Y, (] .
(D20)

This equation describes the excitonic polarization in the linear and weakly nonlinear regime since it was derived under
the weak-nonlinearity approximation when higher than third-order nonlinear terms can be disregarded. The terms Ay
and 87 describe the effect of “incoherent” excitons as well as free carriers. We will assume that this density is much
lower than that of excitons associated with the coherent polarization of the medium and will therefore disregard these
terms. Equation (D20) corresponds to Eq. (4.1) in the main text. The parameter A, in Eq. (D20) is given by

M=A+Ay,, (D21)
where A, is given by Eq. (C21).
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