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We study the nonlinear optical response of molecular assemblies consisting of coupled two-level mole-
cules with arbitrary geometry including inhomogeneous broadening and exciton dephasing. An analyti-
cal expression for the third-order optical susceptibility is derived based on a certain closure of the
equation-of-motion hierarchy. An exact expression for the third-order response of small crystalline ag-
gregates with exciton population relaxation is derived, and used to show that for low relaxation rate T’
the cooperative part of the nonlinear response scales as I' /2 in d =1, and up to logarithmic correc-
tions, as I'"! in d =2 and 3. We show that cooperative enhancement is caused by exciton scattering.
This is to be contrasted to other cooperative effects such as superradiance, which are related to the size

of molecular coherence domains and therefore scale as T’

~4/2_ In a numerical study for dipole-dipole in-

teractions in d =1, 2, and 3 dimensions we find that the local-field approximation is valid only in selected

cases, and in general fails to reproduce the magnitude and the resonance structure of '

(3)

PACS number(s): 42.50.Fx, 42.65.—k, 36.40.+d, 73.20.Dx

I. INTRODUCTION

In recent years a number of studies have appeared in-
vestigating the optical response of molecular and semi-
conductor nanostructures. A main point of focus has
been the effects of exciton confinement on the magnitude
of the nonlinear optical response [1-7].

Previous theoretical works considered the nonlinear
optical response of a system of N coupled two-level mole-
cules [8,9]. The nonlinear susceptibility was expressed as
the sum of Liouville pathways, and it was found that
there are two contributions, both of order N2. These
contributions interfere destructively for moderate to rap-
id dephasing rates, resulting in a susceptibility propor-
tional to the number of molecules N. In a subsequent
study [10], the same results were obtained using an
equation-of-motion approach which rigorously maps the
system onto a collection of coupled anharmonic oscilla-
tors which represent one or more excitons. In the oscilla-
tor picture the interference is built in naturally and we
obtain a starting harmonic reference system in which the
excitons are bosons: cooperative enhancement is then ob-
tained through exciton-exciton interactions.

Using equations of motion for the oscillators them-
selves (instead of the N-molecule exciton states), it has
been shown that the nonlinear response contains two con-
tributions. The first contribution is a local nonlinearity,
that is also present even with no coupling between the
molecules and is proportional to N. The second contribu-
tion is caused by the coupling of molecules and represents
a nonlocal nonlinearity. The magnitude of the nonlocal
contribution depends on the laser detuning as well as the
ex;:iton dephasing rate, and may become of the order of
N-. )

So far the theories used to study cooperativity con-
cerned themselves with one-dimensional regular lattices
with nearest-neighbor interactions [8—11]. The main
purpose of the present work is to remove these limita-
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tions by considering a molecular assembly with arbitrary
geometry, and to incorporate the more realistic dipole-
dipole interactions. We derive a general expression for
the nonlocal contribution in terms of a specific matrix
element of the two-exciton Green function, which, in
turn, can be related to a matrix element of the two-
exciton scattering (7)) matrix [12]. For a small crystalline
aggregate this particular matrix element of the T matrix
is inversely proportional to the amplitude of returning to
the origin for a particle that is hopping over the lattice.
Mathematically, the Schrddinger equation is closely re-
lated to the diffusion equation. Making an analytical
continuation to imaginary times we can therefore estab-
lish a general formal connection between enhanced non-
linearities and the probability of returning to the origin in
a random walk. Apart from being an interesting theoreti-
cal observation, this connection immediately shows that
the dimensionality is going to be of prime importance, as
the total number of returns to the origin in a random
walk diverges in one and two dimensions, and is finite in
three dimensions [13].

An apparently related cooperative effect is the
enhanced radiative decay rate (superradiance) observed in
molecular assemblies [4,14—16]. Superradiance can be
most conveniently described using the concept of a
molecular coherence size (coherent domains). In the ab-
sence of dephasing it was shown [10] that both the super-
radiance and the enhanced nonlinearity are limited by the
coherence size A, the optical wavelength. The present
study of the effects of dephasing points out a fundamental
difference between the two phenomena. Enhanced non-
linearities are best described in terms of the coherence
among elementary excitations (excitons) whereas superra-
diance is related to the coherence among molecules
(coherence domains). This difference is clearly shown by
examining the scaling of both phenomena with the de-
phasing rate in various dimensionalities.

The rest of the paper is organized as follows. In Sec. II
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we define the model studied and present the equations of
motion for the oscillators. In Sec. III we calculate the
nonlinear optical response of this system, and in Sec. IV
we specialize to a frequency-domain third-order (X(3))
measurement. In Sec. V a further simplification is
presented resulting from the study of small crystalline ag-
gregates. In Sec. VI we study the cooperativity enhance-
ment factor, and in particular its behavior in various di-
mensions. Here we show that exciton scattering rather
than coherent domains is the more appropriate picture
for cooperative enhancement. In Sec. VII we present nu-
merical results for the nonlinear susceptibilities of period-
ic structures with dipole-dipole interactions.

II. THE FRENKEL EXCITON MODEL

We consider a molecular assembly containing N cou-
pled two-level molecules with an arbitrary geometry and
dimensionality. We start with the Frenkel exciton Ham-
iltonian [17-19]

H=#3Q,B!B, + % S J,(BLB,+B!B,)
n 2 n,m
— S E, ()P, . (1)
n

The B, operators are Pauli creation (B") and annihila-
tion (B) operators for excitons at molecule, or site, n.
The index n runs over all the molecules in the system,
and may also run over internal degrees of freedom. The
B’s commute, except when acting on the same site. So we
have

(B,.B,, 1=[B),B}1=B2=(B/*=0, @)
and
[B,,Bf1=5,,(1—2B/B,), 3)

where §,,, is the Kronecker delta.

Q,, is the isolated-molecule transition frequency, and J
is the coupling between two molecules. By convention
we take J,, =0, J,,, =J ., and real. The coupling allows
for exciton migration among molecules but does not
change the number of excitations. In molecular crystal
language this is known as the Heitler-London approxima-
tion [17]. J,,, can represent dipole-dipole interactions as
well as short-range exchange exciton couplings. Finally
E is the external field, P,=u,(B, -i-B,;r ) is the dipole
operator, and u,, is the transition dipole moment of mole-
cule n.

Equation (3) states that there can only be one exciton
on a molecule. Excitons are therefore not true bosons; in-
stead they can be thought of as hard-core bosons. As an
interesting note: superfluid helium is also not an ideal
Bose fluid, but rather a hard-core Bose fluid, since ‘He
atoms have short-range repulsive forces. Pushing this
analogy to high exciton density, excitons may be expect-
ed to undergo a Bose condensation in intense laser fields
[20]. Recent experiments have attempted to observe Bose
condensation of Wannier exciton systems in semiconduc-
tors [21], but no firm evidence for a condensation has
been given yet. We feel that Frenkel exciton systems are
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more promising candidates for observing Bose condensa-
tion, as much higher exciton densities can be attained
without destroying their boson character. The treatment
of Bose condensation is beyond the scope of the present
article which is restricted to weak excitations and third-
order response. However, we believe that the exciton
coupling mechanism and Green-function approach
developed here could be used in a future microscopic
theoretical treatment of this important problem.

We use the Heisenberg picture throughout this paper.
The Heisenberg equation of motion for an operator 4 (t),
#d A (t)/dt =i[H, A}, yields

%%Bn =—Q,B,— S J,nB,+23J,.B}B,B,
E, (1) t
+u,—5—(1=2B/B,) @)

There are two nonlinear terms in Eq. (4). The source
of nonlinearities is that two-level molecules are not har-
monic oscillators. The nonlinear terms correct for the
difference. The last term in Eq. (4) implies that an excit-
ed molecule cannot be excited again, and therefore con-
stitutes a local, or intramolecular nonlinearity. This type
of nonlinearity has been referred to in semiconductors as
phase-space filling [3]. The Bloch equations commonly
used in the calculation of the nonlinear response contain
only this nonlinearity. There is one additional nonlineari-
ty; the coupling between sites is also nonlinear due to the
on-site exclusion. This additional term states that the in-
teraction between molecules » and m depends on whether
the molecule at n is excited or not, since the molecule can
only be excited once. We will refer to this term as the
nonlocal or intermolecular nonlinearity [10].

Equation (4) contains no relaxation mechanism. In or-
der to make the model more realistic, we incorporate ex-
citon population relaxation and pure-dephasing mecha-
nisms into the equations of motion. We first introduce a
simple model for exciton dephasing corresponding to re-
laxation of population resulting in a finite exciton life-
time. The model assumes a coupling to a heat bath (Q,)
with a coupling zn[V,’:(Q,, )BY+V¥,(Q,)B,]. The cou-
pling operators ¥, at different sites are assumed to be un-
correlated, so that each molecule has its own heat bath.
Using standard procedures from the theory of relaxation
[19], we can then incorporate the effects of the baths by
adding a damping term to the equations of motion. To
second order in ¥V,, and assuming a very short correla-
tion time of the bath, we find that the following relaxa-
tion term has to be added to the equations of motion:

d ¥ t
dt lifetime " BniBn‘. +1 Bnm

BB ...B

LT TS T

=,—%ﬂ' T v e
> VB, , (5a)

where the (site-independent) population relaxation rate y
is given by

y= fo""dr< V,(T)V,(0) ) punexpli, 7) . (5b)
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1t should be emphasized that the relaxation term may
only be added to the time evolutlon of a normally ordered
product, that is, all the B are to the left of the B’s. As
we can bring any product of operators to a normally or-
dered form using the commutation relations, this is not a
limitation. It can easily be verified that this relaxation
model guarantees conservatlon of probability, i.e.,
(d/dt)(B, B +B, B )=0.

The second relaxatxon mechanism corresponds to pure
dephasing resulting from fluctuations of the isolated-
molecule frequency. For this use the Haken-Strobl model
[19,22], which assumes a coupling to another heat bath,
(Q,) with a coupling 3,[V,(Q,)B, B ]. Again each
molecule has its own heat bath which has a very short
correlation time. This will introduce an additional damp-
ing term, such as Eq. (5), but now the right-hand side de-
pends on whether different indices are equal. The pure-
dephasing contributions to the equations of motion
occurring in this paper are

d __t o
91 | B =5 $ B ) (6a)
) ,
i (B, B, )=—1(B, B, ), 7 (6b)
d t =—f(1—-5. . Bt
o PD(B,,IB,,Z) (1 8nl,n2)(Bnan2}, (6¢) |
d ¥ — _ S ‘ -
dr PD<B"1B”2B”3>— f‘(m "1 ny " Onyny)
t
X(B, B, B, ), (6d)
where .

f=2 fo‘”dr( Vit Va0 g (6e)

is the pure-dephasing rate. We use the notation
r=f +y for the total dephasing rate in the sequel.
Equation (4) together with Eqgs. (5) and (6) form the basis
for the theory and calculations developed in this paper.

HI. THE NONLINEAR OPTICAL RESPONSE

For weak fields, the polarization (and the expectation

values of the B, and B,f operators) is small, so to find the
nonlinear response we can make a perturbation expansion
in the number of B’s provided they are normally ordered.
We are interested in the response of the system to exter-
nal electric fields, in particular in the expectation value of
the dipole operator {P,(¢)) as this is what is observed in
optical measurements. In the Heisenberg picture the ex-
pectation value of an operator is taken with respect to the
state without excitons (vacuum), so { )={0[[0). In Eq.
(4) we then need the expectation value of a product of
three B’s. It is possible to derive entirely general formu-
las for the nonlinear response in terms of Green functions
for up to three excitons. For the sake of simplicity we
will not do this, but rather use a certain factorization de-

scribed below. If we set the pure-dephasing rate [ to
zero, the only dephasing mechanism is population relaxa-
tion, so that the system is in a pure state, and therefore

(BY---B'™B---BY=(B'---B'WB---B)Y,

for any number of exciton creation and annihilation

-- operators. On the other hand, note that

(B,B,,(1))5{B,(1)}(B,,(2)) ®)

as can be seen by taking, for instance, n =m. If pure de-

- ~phasing is present, the factorization Eq. (7) no longer

holds. Recently Dubovsky and Mukamel [11] proposed
the factorization

(B}B,B,)=(B}){B,B,)+(B}B,)(B,)
+(B}B,)(B,)—2(Bf)(B, )(B,) .
%)

This factorization generallzes Eq. (7) so that also the exci-
ton populatlon (BYB) is treated explicitly, which is
needed in order to describe, e.g., extra resonances in de-
generate four-wave mixing and coherent Raman spectros-
copy. The specific form of Eq. (9) follows from a maximi-
zation of entropy argument. An attractive feature of this
factorization is that it allows us to obtain simple numeri-
cal calculations for small crystalline aggregates.

Before proceeding with the calculation let us first com-
ment on the local-field approximation [1,23-25] which is

commonly used in nonlinear optics, and will be a con-

venient reference in the following calculation. By taking
expectatlon values of all operators in Eq. (4) and factonz-
ing  (B!B,B,)=(BI)(B, )(B ) and (B/B,)

={(B! )(B )we can recast Eq. (4) in the form
d 2 (2)
- (B.)=—i0,(B,) +ip, P (1—2(B}Y(B,))
—%(B,,), (10)
with the local field at site n
EPN=E,(0)+ 3 J,,{(B,(1) . (11)

m (#n)

In Eq. (10) we have converted the dynamics to that of a
single molecule in a local field. Equation (10) is closed
and can be solved for the nonlinear response [11,19]. We
shall refer to that solution in Sec. IV.

When solving the equations of motion we find that we
have to solve for single (one B) and double (two B’s) exci-
ton operators; for the triple B term we can use Eq. (9).
Denoting the order with respect to the applied field as a
superscript, we have to first order

E (2)
(1 — (1) i
: dt(B ) anm(B JALE ) P (12)
where we used the notation
_ .
Fon=—0,8,,—Jum +z——2 Spm - (13)
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For the Hermitian conjugate we find

d
ol

E (t
BJ>‘1>=2F:,,,<B,I>“’+#”"T): - (14)

1d G)—
o (BP= 5 E

I

For the third-order expectation value we find, using the
equation of motion for B, Eq. (4) and the factorization

Eq. (9),

(Bm )(3)_{_22]""!((3:)(1)(3”3}” >(2)+<Bn )(l)(BIBm y2)
m

+(B,, Y V(BIB,Y?—2(B}Y (B, (B, )V

E, (t)

-2, - (BT)(I (B, M

We therefore also need the equation of motion for the
expectation value of two exciton operators { BB ) as well
as (B'B). Equations of motion for higher-order mo-
ments of B can be derived (trivially using
[AB,H]=A[B,H]+[ A,H]B. For the product of two
B’s we find, to second order in the external electric fields,

l%<Ban)(2)= 2 Fr(uzn),nm <Bn’Bm’>(2)

E, (

(B

E (t)

F Ll "; (B,)1, (16)
where we introduced transition elements pu,
=(1—8,,, Jt,,and the two-exciton operator F?,

Fr(trzn),n ‘m' _an) n'm’ +Dnm,n’m' ’ . . (17) _

where F'® describes the dynamics of noninteracting bo-
sons

F(z) _an'8m

nmnm

m'+me’8nn' (18)

whereas D takes care of the on-site exclusion

= _an (Snn'+8mm’ >8n’m'_26nm 8nn"Fn'm’
+28nm Snm’smn'Fn'm' . (19)

Dnm,n'm'

As a check, we note that if {B,B,(t =0))=0 then the
equations of motion give (B, B,(t))=0 at all times as it
should.

In the calculations we use a different way of accounting
for the on-site exclusion in the dynamics, which is to
make the hard-core-on-site exclusion into a soft core and
to take the hard-core limit in the end. To derive the new
equations of motion, we change the Hamiltonian H, Eq.
(1), by assuming that the B’s are Bose (rather than Pauli)
operators and satlsfy the standard Bose commutation re-
lations [B,,,B ]=96,,, instead of Eq. (3). To account
for the excnon repulsion we add an interaction
Vi=3,AB, B 'B,B, to the Hamiltonian. For finite A we
have a soft-core model of excitons. By taking the A—
limit in the end we recover the hard-core boson model.

Deriving the equations of motion using this modified
Hamiltonian we find that all the expressions given so far

(15)

hold, except that instead of the exclusion operator D we
have to use

Dr(l}n)n ‘m' —}"snmanm'amn’ . (20)

This is a much simpler operator than D, a diagonal N XN
matrix.

In the local-field approximation we simply factorize
{B,B,,)¥=(B,)V(B, )" in Eq. (15), and set D =0.
We thus do not need Eq. (16). The additional dynamical
variable describing the deviations from the local-field ap-
proximation is thus { B, B,, Y¥— (B, Y (B,, Yy,

( The) equation of motion for the exciton population
B'B

u,E,(t)

P (B,

1d "
_E(BIB"!): 2 Fr(nznnm (BJ’Bm’>_
Pt

E _(t
+ﬂ"~%'-”—£—)<31>, @1)

where we have used the notation (2') to indicate that we
are dealing with the two-exciton operator (B'B Y, which
is different from the two-exciton operators defined before.
We have

F(2'

nmnm

=F2 . +p@ 22)

nm,nm nmnm

with the noninteracting operator F,

Fr(uzn)n m’ —irsnn’smm’—Jnn'amm’+Jmm’8nn’ (23)
and the interaction operator is
'Dl(l'f;l)n 'm’ = —i8nm 871?1’8"17)1’F . (24)

This again is a diagonal N X N matrix. The equations of
motion (12), (15), (16), and (21) map the problem of the
nonlinear response onto that of N +N(N—1)/2+N?
coupled oscillators.

Before proceeding to calculate the optical response we
note the following. The equations of motion (12), (15),
and (16) depend only on the dephasing rate f‘+y (wheth-
er it comes from pure dephasing or finite lifetime makes
no difference). The only place where it makes a difference
is Eq. (21) since p® depends only on the pure—dephasmg
rate. If I'=0 we can factorize (BB, Y=(B})(B,,)
and Eq. (21) is not needed. Pure dephasmg thus intro-
duces a new class of relevant variables, (BB, ) [26,27].
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IV. FREQUENCY-DOMAIN RESPONSE

We shall now calculate the third-order response of the
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where the one-exciton Green function G is the inverse of
the F,,, matrix, i.e.,

system for a cw experiment, that is, we take for the exter- 1
. nal field Gum (@)= o+ F @7
3 P N - —7 2 - ,‘ ) ° »
E,(ty=1 3 (E{e im‘t+E,(,’)*e iy (25)  The linear response is then given by
i=1
and solve the equations of motion for the term propor- (Plo))=Sa,, (0))EL (28a)
tional to E'! ?Z)Em We will solve the equations of nl % rm 1 m
motion in terms of one- and two-exciton Green functions. ith
To first order in the apphed ﬁelds, the expectatlon wi
b _ T 1
values are found to be @ (@)= 5 [ G (01)+ G — 00t . (28)
1 .
p Y=L 5 ) (i) 26
(B, 24 ; [% G (@1 ) Er 26) To second order we have
]
{B,B,, ><2’=—z [ S G wm(@;F 0 ) e EP Bl 0)) DVt W ES( B, (0,)) V)] (29)
Lj tnm’

Here the two-exciton Green function G‘?) is given by

G2 . 1 l S (0)
nm,n'm' .

nm,n'm (c‘)l_’-c‘h)=

o+, +F?

It is desirable to express the two-exciton Green function

in terms of a scattermg (T) matrix, using the noninteract-

ing Green function G® [12]. In this way we can pin
down the contribution caused by the on-site repulsion of
the two excitons. The T matrix is defined through

G(2)(wl+w2)=§(2)(ml+w2)
— G, 40,)T (0, +0,)G P (0, +,) .
' 31

We have dropped the indices here, all the products are
understood to be matrix products. We have the Green
function for noninteracting bosons

G o+ w,)= ——1—_(2) T (32)
o to,+F ‘
The T matrix is given by [12]
T(o,+@,)=D[1+DG (0, +w,)] ! (33)
It represents the scattermg of two exc1tons All fwo-

exciton operators F'®, D, T, and G are N>XN? ma-
trices. In the soft-core treatment of the on-site exclusion,
however, the operator D* is an N X N matrix, and hence
also T™ is an NXN matrix, a considerable
simplification. Next we define a new N XN Green func-
tion G which is a projection of the full noninteracting
Green function

Gron =G - o (34)
We find that T™* is given by
TN vt =8 S M1 +AG )L, (35)

[
where the inverse is the inverse of an N X N matrix. In
the limit A— o0 we have T'®’=T. Notice the structure
of the Green function relevant for T: the matrix elements
needed represent two excitons initially at the same site,

- moving over the molecules independently, both excitons

ending up at the same site again. _
The Green function for noninteracting bosons G® can
be expressed as a convolution of one-exciton Green func-

tions. Alternatively, if we compute the single-exciton
eigenstates [¢f;) we have

B LA

Glow)= ? CO_—FI—I:‘/—Z (36)
and

_ [ 29,2 (1<

GV(p)= 4y JAALS AN

(@) J}J‘, o—hy— A, il 37

For the exciton population (BTB) we have the solu-
“tion

<BIBm)(2)_zﬁ7 2 G2 i (0

X[an'anm Sm'm]G::’nl(—a):;)]
X:u'mlEm](wl)ﬂnlEnl(w?a) ’ (38)

&)3)

ml(wl‘)‘“

with a new Green function, as indicated by the prime.
This Green function is the inverse of F®, in a way en-
tirely similar to G'*. We then define the nonmteractmg
two-exciton Green function

(2))'—‘

oy~ ay)=(0,—w3+F nm,n'm' 39

and interaction part DM s given by Eq. (24). Again we
introduce the corresponding T'!" matrix through

¢D=(1+G TG (40)



In terms of the projected Green function G,
2) _ A2
GEl=G2.. , 1)

the T matrix is now given by

T(f) (601

npnpanyny

—w3)= —if‘[l—ifé(zl)(wl—%)]n—lf,,z
(42)

The inverse, again, is that of an N X N matrix.

The third-order response is given by the solution to Eq.
(15) using the factorization Eq. (9). As a note of caution
we point out that the expressions of the optical suscepti-
bility are often misleading and due to interference effects
the true resonances in our expressions are not always the
ones suggested by the Green functions. For example, we

(P,,(ms))=———~2

3
4% permmy,m,,my
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can use the identity

z Gr(uzn,)n 'm' w3)[5n’n1Gm',ml(w2)

_'Sm'mlG:',nl ( _w3)]
=G,,,,,,ll(c02)Gn"',,1 (—w3) . (43)

In contrast to G(2'), the combination at the right-hand
side has no resonance at w,=w;. Applying this equation
makes the actual resonances more apparent, a desirable
goal.

Putting together all the Green functions introduced
above, the expectation value of the nonlinear polarization
with frequency o, =+, + @5, at site #, is finally given
by

s E‘”E‘Z’E“ [Yn,ml,mz,mS(“’l’a’z""S)+7’n,m1,m2,m3( w1, — 0, —03)], (44)

where we have a sum over permutations of the applied electric fields and the third-order hyperpolarizability y is given

by
Yumympmy —Mubtm oy 2 Gop (@

Bpfyny

with the cooperative enhancement factor A,

)Gr:; my ( w3)Gn2,ml(w1 )Anl,nz,n3,m2(wl’w2’w3) (45)

C oy (2) (p) —_
Anl’n2,n3mz(wl’w2’w3)'—Snl,n28nl,m26n1,n3 28)11,713%Jnl,mG’rzlm,nzmz(C')l_}-c"Z)(1 ny m2)+An nz,n3,m2( 1 C‘73’w2)’
(46)
where the pure-dephasing contribution is
(p) — = ~2) — )T —
n[;,nz,n:;,mz(wl 0)3,0)2)—5”2,13 Z Gnlns,n4n4(w CO3) n4n4,n2n2(w1 0)3)
fysitg
X (8, n o0 Gy (@2)+8, HEJHP,,GG,,G,,,‘Z(@Z) . 7

The local nonlinearities give the 8 term in Eq. (46), the
nonlocal nonlinearities result in the second and third
terms. We call 4 an enhancement factor as it gives the
polarization of the entire system compared to the polar-
ization resulting from the use of only the local nonlineari-
ties of Eq. (4). The reference system used here seems to
be a natural choice. The one-exciton Green function can
be measured in an experiment as the linear response, see
Eq. (26). The cooperativeness-enhancement factor as
defined here can then in principle be extracted from ex-
periment.

Let us try to give an explanation of the derivation of
Eqgs. (45) and (46). For this discussion we neglect the
pure-dephasing contributions for which a similar descrip-
tion can be given. We do this using a hypothetical time
ordering, hypothetical since this results holds for a cw ex-
periment, and a sum over certain time orderings has been
performed in order to arrlve at Eqgs. (45) and (46). First
the w; field creates at B exciton at site m 3. This exciton
propagates through the system ending up at ny=n,.

6

[

Due to the factorization Eq. (7) this exciton does not in-
teract with other excitons. Next an exciton is created at
m; by o;. This exciton propagates to n, and then two
processes occur, corresponding to the first two terms in
Eq. (46). In the first term the two excitons are at the
same site, n,=n, creating an exciton population. Now
comes the w, electric field, which interacts with the popu-
lation at m,=n, to crate an exciton with energy o, that
propagates to site n where it is observed. In the second
contribution to Eq. (46), the w, field excites a molecule at
m,, which can be any molecule, except n,, since a mole-
cule can be excited only once. The two excitons then
propagate from (n,,m,) to (n; m). The system is then in
a state that can be described as exciton population at 7,
exciton at m. Finally the collection of three (two plus
one rather) excitons interact through the nonlocal non-
linearity, creating an exciton at n, which propagates to n
and is observed there.

Using the T matrix [Eq.(31)], Eq. (46) can be recast in
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the form
Anl,nz.ns,mz(wl’wbm:!): A (1?+ A “)+ A(X)_l_ AFP) 3 (48)

where

A“’=6,,1,,,25,11,,,,25,,p,,3 , ' (49)

(x) Ty —
Aplonynym, (@)1 0,)=28
myng,ng

We used here an equation such as (43) in order to obtain
the one-exciton Green function in 4", We also used the
fact that J,, =0 in order to simplify the results by setting
By —> My

AY gives us the nonlinear optical response of the
reference system in which we neglect the B'BB contribu-
tion and pure dephasing altogether. It has a local non-
linearity but as far as the dynamics goes the excitons are
treated as noninteracting bosons. Note that we cannot
write a simple zero-order Hamiltonian for this reference
system using the Pauli operators B since we include the
couplings J,,,, in the linear terms and neglect them in the
nonlinear terms. Writing a Hamiltonian will require
transferring to the Bose operators as is done for the soft-
core treatment of the two-exciton dynamics. However,
by considering the equations of motion the reference set
of oscillators emerges naturally. The first and second

terms in Eq. (48), AV A”), combine to the traditional
local-field approximation [1,10] and the other two terms

A™ and AP describe the contribution due to exciton-
exciton interactions. Both of these contributions are due
to exciton scattering described by the T matrix.
Equations (45) and (48) are a generalization to arbi-
trary geometry and couplings of results due to Spano,
Dubovsky, and Mukamel [8,10,11]. These equations pro-
vide a clear physical picture of cooperative effects which,
apart from the local-field term, depend on certain matrix
elements of the scattering T matrices. These in turn de-
pend only on two-photon resonances as they depend only
on the combinations ®,+, and @, —w;. In the absence
of pure dephasing, a variety of different experiments
should be measuring the same quantities, 4(w,+w,).
Finally Eq. (46) can be generalized in a straightforward
way to time-dependent couplings, as would be required
for considering nonlinear optical properties of liquids
where the motion of the nuclei is included, or systems
with phonons. Inhomogeneous broadening is present in
the expressions derived so far. In the present oscillator
picture there is no mysterious canceling of very large
terms [8,9] since the cancellation is naturally built in.
Similar advantages of the oscillator picture exist also for

J

7~(2)
nyng 2 ‘Inl,mGrtlrrl,n4n4 (wl+w2)T

the factor 4 ‘P gives the local-field correction

AD=T, Gy o (@08, 4 s (50)

and the on-site exclusion gives rise to

(w'l+m2)c“;;§3,5,,,2,,,2(w1+w2) . (51)

ngny,ngng

[

conjugate polymers where the elementary excitations are
electrons and holes rather than excitons [28—30].

V. OPTICAL SUSCEPTIBILITIES
OF SMALL PERIODIC STRUCTURES

The expressions for the optical susceptibilities simplify
considerably if we consider an aggregate with a size small
compared to optical wavelengths. In this case we can
treat the entire system as a single point particle as far as
the radiation field is concerned. We can then define the
total polarization { P(w)) as the sum of { P,(w)) over all
sites n. We can further drop the m, m,, and m; indices
of the fields in Eq. (44) since the filed can be considered
uniform. In addition we consider a regular cubic lattice
of identical molecules, so that the system is translational-
ly invariant. Using these assumptions, Eqgs. (28) assume
the form

A Plw)) =alo)E M w,;) (52a)

and
2
a(m;)=§z{6(co1)+G*(—wl)] , (52b)

where the relevant combination of matrix elements of the
one-exciton Green function is

1

00,1172 629

Glw)=3 G, le)=
m
where Q,=Q+J, and J=3,,J,,,. Due to the transla-
tional variance, G,, depends only on the distance
|n —m| (note that n and m are to be considered vectors in
more than one dimension). The one-exciton resonance is
shifted from the single molecule frequency Q to Q,.
The third-order polarization is given by

(P(ws )) =X(3)( _w,;wnwz,wg)E“)(COl)E(Z)(COZ)E(”(CO_?,) ’
(53)

(3) 5

where '’ is given by

X ~0g;0,0,0)=—=Np* 3 [G(0;)G(0;)G*(—v;) 4 (0,0, 0;)

perm

FGH(—0,)G*(— ;)G (@y) A*(— 0oy, — oy —a3)] , (54)



where we still have to perform the sum over permuta-
tions of the applied electric fields. In order to express the
two-exciton quantities we define

(2) — ~(2) (
65,.:1 - E Gnn +s,mm +s, * (55)
m

s and s, denote the relative distance vectors for the initial
and final two excitons. This matrix is simplified from
N2XN? matrices to an N XN matrix as the center-of-
mass motion of the two excitons can be factorized out.
The T matrix is now a 1 X 1 matrix given by

T(w,+a,)=[CH (0, +@;)]7" . (56)

The T matrix is inversely proportional to the Fourier
transform of the amplitude of the return of the two exci-
tons to the origin. The noninteracting Green function for
pure dephasing is ' '

-1

G2 ’(a)l—w3)=8”1m .

5,5,

(57)

For the cooperative enhancement factor we find in this
case

A(0),050,)=AD+ 4D 404 40) (58)
where

AV=1 - (59)
and

AV=JG(w,) . - (60)

The contribution of pure dephasing to the enhancement
factor is

7
1+ .
w0, —Q, +il/2

—ift

Wy —iC

A(p)(ml—a)3;w2)=

(61)

An important aspect of this expression is that the struc-

ture of the underlying lattice has completely disappeared.

In order to probe the structure of the lattice using pure

dephasing a nonuniform initial condition is needed.
Finally

Ao+, +iT)=2 3, J; GVo(0;+0)T(0,+,)
sl,xz B

XG&;Z(wﬁ-wz) . (62)

As shown here, the interaction contribution 4 depends
only on a single complex quantity o, +w,+iI". We can
find more explicit results using Eq. (37) for the nonin-
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teracting two-exciton Green function. The eigenfunc-
tions of the one-exciton evolution are simply plane waves,

(K =exp(ik+s)/V'N. The noninteracting two-exciton
Green function is given by

ik(s; —s) 1

2w’

(2) =1 <
GS,SI (w1+a)2) N %e

where z=w,+w,—2Q+iI’ and J(k) is the Fourier
transform of J,

nm?
J)=e*J, ... (64)
5
The scattering operator is given by
-1
= 1
T(w,+aw,)=N % 7 —27 (k) ] (65)
and the total cooperative enhancement factor [Eq. (58)] is
A (0p,0,03)=A4(z)+ 4P (66)
with
-1
e N 1
AD=T550 | 2 7= } ' €

Notice that J(0)=J. Equation (66) expresses the
cooperative enhancement factor in any dimension entire-
ly in terms of one-exciton energies. It is exact for a lat-
tice; apart from the factorization assumption, which is
exact if there is no pure dephasing, no further approxi-
mation is made. The function 4(z) is the quantity of
prime importance to cooperative enhancement in small
crystalline aggregates.

V1. COOPERATIVE ENHANCEMENT:
EXCITON SCATTERING
OR COHERENCE DOMAINS?

In this section we analyze the origin of the cooperative
enhancement obtained in the previous sections. For the
sake of clarity we consider a simple cubic lattice in one,
two, or three dimensions and assume that all the transi-
tion dipoles pu point in the same direction. We take the
infinite lattice limit (but still smaller than optical wave-
lengths) and we restrict the interaction to the nearest
neighbor. Since the effect of pure dephasing is to add a
single, noncooperative contribution [Eq. (66)] we shall
hereafter neglect pure dephasing; we set £=0. Under
this assumption our expression for the hyperpolarizabili-
ty 7 is actually exact since we no longer need the factori-
zation approximation Eq. (9). We then find [31]

—1

A(z)= :;j #f_"ﬂdkx f_:dky f_ﬂﬂdkz[ —z+2T +J (cosk, —1)+Jy(cosk, —1)+J,(cosk,—1)] ™1 | . (68)
The one- and two-dimensional cases are contained in this i/2
by setting J, =J, =0 or J, =0, respectively. A= |1~ 8J (69)
In one dimension the (single) integral can be performed z—27

and we obtain
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For low dephasing rates I (I’ <J), the enhancement fac-

tor on resonance scales as I' ~!/2, agreeing with previous
results [10]. The next question is what the analogous be-
havior is for two and three dimensions, and in what way
it depends on the interactions. Actually 4 can be ex-
pressed in terms of elliptic integrals [12], but this gives
little information about its behavior. We are most in-
terested in the maximum enhancement. For this we have
to be on resonance, so we consider z =zy *ZJ +il". We
need only to consider the behavior of the integral for
small wave vectors k. In three dimensions we readily find

—1 3 1 3
g k ==
Azg)~— [d o= Teonst (70)
and in two dimensions -
Alzp )~ +const . Y

I"ll"

In practical cases, the value of the logarithm changes
only slightly. These dephasing dependencies are due to
the structure of Eq. (67) which tells us that A is propor-
tional to 1/z divided by the number of times the exciton,
which has a lifetime 1/T, returns to the origin. In one
dimension this number diverges as I'"!/2, in two dimen-
sions it is proportional to —InI", and in three dimensions
it is finite.
This scaling of the optical nonlinearities with I'" reveals
|

JAN A. LEEGWATER AND SHAUL MUKAMEL

46

an important characteristic of the nature of enhance-
ment. It is tempting to think of it in terms of coherence
domains—the simplest way of thinking about enhance-
ment is in terms of collections of molecules reacting
coherently to the electric fields. Based on the one-
dimensional result, the length of this coherent region is
then assumed to be proportional to I'"'/2, In d dimen-
sions a signal proportional to the coherence volume
r— —d4/2 js then expected. The enhanced radiative decay
rate in molecular assemblies (superradiance) [16] indeed
scales as ' "¢/2, Qur analysis based on the exact’ solutlon
of ¥ shows a very different scaling [I'"1/2, (I'Inl")~

and ! for d =1,2,3, respectively] which suggests that
the coherence domain picture is not applicable for optical
nonlinearities. Instead of coherences between the mole-

" cules, coherences between the elementary excitations (ex-

citons) are underlying the cooperative enhancement.
Coherences among molecules provide two large terms
that cancel [8]. Therefore the more natural picture is in
terms of the elementary excitations.

In the next section we shall analyze the full dlpole-
dipole coupling. One characteristic of that coupling is
that it can change sign upon direction. In concluding
this section we therefore consider nearest-neighbor cou-
plings with a variation of sign which should provide a
qualitative feeling for the effects of dipolar couplings. As

. the couplings have a different sign there is potentially a

divergence of the integral. We have in two dimensions

: -1 e
f dkf dy—lI‘+Jcosk —J cosk, f(FH_f

where f(T") is a regular function for I'—-0. Equation (72)
shows that for an interaction with different signs

A(z,)= —+const (T—0), (73)
150. [ [ \l I 1 - T o
100.

g 50.
0.
50 L 1 L 1 [ N

—15 —1.0 -05 0.0 05
Aw/T

1.0 15

FIG. 1. Two-photon absorption Imy**Y —w;w, —w,®) for di-
poles in three dimensions, Aw=w—Q,, at dephasing rate
I'/7=1, Q/J=10% Solid line: numerical results for a
79X79X79 lattice. Dashed line: local-field approximation,

note that J=0. The absorption is enhanced by a factor 7.

|
|
|
!

THG (Arb, units)

11"+x
T =f(D)+In(—iD /T +1)=In(—iT/J—1),

dx

(72)

0.0
Aw/J

FIG 2. The third-harmonic signal |y*'(—3w;w,0,0)|* for
dipoles in three dimensions at dephasing I'/J =1. Solid line:
Numerical results for the response near the single-photon reso-

-~ nance ;, Ao=w—CQ,. Dashed line: local-field result at the

same resonance. The enhancement now is 48, the square of the
enhancement of the TPA (Fig. 1). The dot-dashed curve shows
the three-photon resonance (Aw=w—Q, /3). It is actually a su-
perposition of two curves, one dashed, the other dotted corre-
sponding to the numerical solution and the local-field results,
respectively. Note the complete absence of enhancement for
“this resonance.
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FIG. 3. The geometry of the two-dimensional lattice. The
arrows denote the direction of the transition dipole of the two-
level molecules. The dipoles only have a component along the x
axis, the component along the y axis is zero. In this paper we
study three cases for the angle 6: (i) 6=90" (H aggregates), so
the dipoles are perpendicular to the plane; (ii) 6=0" (J aggre-
gates), the dipoles lie in the plane; (iii) skew to the plane at the
“magic angle” §=35°, or more accurately (cos8)>=2. For the
magic angle the one-exciton energy shift is J=0, and the local-
field approximation gives no enhancement.

which is valid in both two and there (or more) dimen-
sions. Even though the integrand can be very large, the
integral is finite. Notice the behavior of A: in two or
more dimensions we find an enhancement, but (up to log-
arithmic corrections) it is always proportional to T ™!, In
the local-field approximation we find an enhancement
which is also proportional to I'"!, but with a different
prefactor that may be zero. We expect the results of this
section to hold also for long-range interactions. This is
supported by our numerical results.

VII. NUMERICAL CALCULATIONS
FOR PERIODIC STRUCTURES
WITH DIPOLAR INTERACTIONS

In this section we consider dipole-dipole interactions
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Magic angle
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TPA (Arb. units)
o
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o
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0.00 L L 1
—20. —10. 0 10. 20.

FIG. 5. Two-photon absorption Imy"—w,;w,,01, —o)).
The solid lines are numerical results for two-dimensional di-
poles at the magic angle for a 199X 199 lattice, the dashed line
is the local-field approximation. Here we have taken
01=0.7Q,+Aw, and @,=1.3Q,. For these frequencies the
one-photon frequencies are nonresonant, but the two-exciton
term in the cooperativity-enhancement factor is resonant. We
have plotted the signal for five dephasing rates, from bottom to
top I'/J=0.5, 1, 1.5, 2, and 2.5. The TPA probes the two-
exciton resonances which are missed completely by the local-
field approximation.

where r is the vector pointing from site n to m and
?=r/r. We express energies in units of J =u?/a?, where
a is the lattice spacing. We start with the three-
dimensional lattice.

In the following calculations we aim for the infinite lat-
tice, but our numerical results use finite lattices with
periodic boundary conditions. For the three-dimensional

I =Jp .ﬁ.ﬂ : (74)  calculations we have taken a 79X79X79 simple cubic
wn ool "’ lattice, using the minimal-image convention [32]. The
250. I I
In plane (b)
150.

50.

TPA (Arb. units)
&
o

—150.

I | ] ] ]

—250. | | ! ] L
-15 -1.0 -05 0.0 05 1.0

Aw/]

-10 05 00 05 10 15

Aw/T

FIG. 4. Two-photon absorption Imy"*N —o;0, —,w) for dipoles in two dimensions, Aw=w— ), at dephasing rate I'/J=1. In
both figures the solid line is the numerical result for a 199X 199 lattice, and the dashed line is the local-field result. In (a) the dipole
moments are normal to the plane (H aggregates). In (b) the dipoles are in the plane (J aggregates). The crucial difference between (a)
and (b) is that for J aggregates the couplings have different signs. The TPA for dipoles at the magic angle is very similar to the three-

dimensional result, Fig. 1.



462 JAN A. LEEGWATER AN D SHAUL MUKAMEL

I&

10.

! 1 1

Normal (a)
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TPA (Arb. units)
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1. | I ]

0.
-40. —-30. —20. -10. 0. 10.
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- —30. —20. —10. 0. 10. =20.
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FIG. 6. As in Fig. 5 for (a) H aggregates = 90° and (b) J aggregates 6=0". The dephasmg rates shown range from I'/J =0.5

(lowest) to I /J =2.5 (highest).

two-photon absorption as well as third-harmonic genera-
tion depends in a trivial way on the isolated-molecule
transition frequency Q. We have taken Q"lO‘J in the
following calculations.

We first consider two-photon absorption (TPA)
Imxm(*‘aw o, —o,n). We calculate the signals near a
resonance, and find that for TPA we have to take only
two, identical terms in the sum over permutations in Eq.
(44). Other contributions are off resonant and can be
neglected using the rotating-wave approximation. There
is one resonance for TPA. In Fig. 1 we present results
comparing the TPA signal for dipoles in three dimen-
sions. We see that the cooperativity gives a large
enhancement of the signal, even for the quite strong
damping I' /J =1, and essentially no shift of the reso-

nance. Since the signal depends on the detuning we have
expressed all frequencies in units of J.

We next consider third-harmonic generation (THG),
¥ —3w;0,0,0)|2. For THG all six terms in Eq. (54)
are identical. In this case there are two resonances in the
model, a single-photon resonance at ®=0 and a three-
photon resonance at ®=/3. In Fig. 2 we plotted the
THG signal near these two resonances. Note the absence
of cooperativity near = /3. For this resonance the
two-photon levels are nonresonant so only the first term
in Eq. (58) contributes and 4 ‘=0, to a very good ap-
proximation. This argument is valid irrespective of the
dimensionality of the model, and the couplings. As the
aggregate is much smaller than an optical wavelength we
have J=0 which no longer holds if the system size is
larger. In both Figs. 1 and 2 the local-field approxima-
tion misses the enhancement entirely as J =0.

TPA (Arb. units)

Aw/J

FIG. 7. Same as in Fig. 5 for one dimension, I"'/J =0.5. The

solid line is the TPA for a dipole-dipole interaction 3

Jum=Jln —m|"3. The dotted line is the result of using a
nearest-neighbor interaction with strength J, so that 4 is given

by Eq. (69).

’ TPA (Arb, units)

0.0 l- | | I
-30. —-20. -10. 0. 10. 20.

Aw/J

FIG. 8. Same as Fig. 5 for three-dimensional dipoles. From
top to bottom: I'/J=5.5,4.5, 3.5, 2.5.
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We next turn to two-dimensional aggregates where we
consider three different orientations of the transition di-
pole (Fig. 3) [14-16,33]: (i) perpendicular to the plane (H
aggregates), (ii) in the plane (J aggregates), and (iii) skew
to the plane at the “magic angle” so that u‘T, =0, and
(£2,)*=2. The magic angle is 6=35". For the magic
angle the one-exciton energy shift /=0, and the local-
field approximation gives no enhancement. In the follow-
ing we used the minimal-image convention and a square
199X 199 lattice.

In Fig. 4 we show that the relative signs of the cou-
plings J in the x and y directions are very important in
determining the accuracy of the local-field approxima-
tion, at moderate to high I'. In Fig. 4(a) all the signs are
equal, in Fig.4(b) they are not, and even though J is
nonzero, the local-field approximation is not very accu-
rate.

In order to observe directly the cooperative enhance-
ment factor we consider a two-color experiment first for
two-photon absorption. We took frequencies such that
single-photon transitions are off resonant so we see only
the two-photon resonances in the cooperative enhance-
ment factor. In Figs. 5 and 6 we show results for the
three models in two dimensions. Notice in particular the
complete absence of a resonance in the local-field approx-
imation. We expect the dip at Aw in Fig. 5 to be much
more pronounced at lower dephasing rates, but ' /J =1
is about the lowest value for which we have reliable re-
sults. In Fig. 7 we show similar TPA results in one di-
mension, and in Fig. 8 the three-dimensional case. In
Fig. 7 we also compare the difference between taking a
nearest-neighbor interaction and dipole-dipole interac-

10.

T 1 T I

Magic angle /I

SFG (Arb. units)
™

0. B 1 I i ] 1
-15. —-10. 5. 0. 5. 10. 15,
Aw/3

FIG. 9. Sum-frequency generation (SFG)
Ix**( — @y; @y, —@,)]% The solid lines are numerical results
for two-dimensional dipoles at the magic angles for a 59X 59
lattice and I'=0.1J. The dashed line is the local-field approxi-
mation result. We have taken »,=0.7Q; + Aw, and v,=1.3Q,.
For these frequencies the one-photon frequencies are non-
resonant, but the two-exciton term with the cooperativity-
enhancement factor is resonant. These curves depend also on
the isolated-molecule transition frequency; we have taken
0}=100J. The local-field approximation misses the two-photon

resonances.

10. I

SFG (Arb. units)
S

-

0. DN~ T !
-30. —-15. 0. 15.
Aw/T

FIG. 10. Sum-frequency generation (SFG) in a three-
dimensional lattice with dipole-dipole interactions, as in Fig. 9
now with I'=0.3J. Solid line: numerical results for a
(79X 79X 79) lattice. Dashed line: local-field result.

tions. We did similar calculations in two and three di-
mensions, reaching similar results.

Another experiment that addresses the cooperativity-
enhancement factor is sum-frequency generation (SFG)
for single frequencies off resonance. For SFG we find
that we have to consider all six terms in the sum over
permutations, so that the resulting spectrum is more
complex and moreover depends on the ratio Q/J. In
Figs. 9 and 10 typical results are shown. The line shape
of the SFG resonance is dispersive, unlike the previous
resonances.

We have used periodic boundary conditions in all our
numerical calculations. This is an approximation for the
infinite system, but it is not intended to represent a true
finite system. We varied the lattice size in order to estab-

10 .

T T TTTTy T

T 1 171rrg

3D

j I .

T Illllll

1o el

1
T
1

100 1

107" 10° 10

r/J

FIG. 11. The ratio R of the maximum two-photon absorp-
tion signal for three-dimensional dipoles to the local-field result
for various LXL XL lattices. From bottom to top at
r'/J=0.1: L =1,13,19,25,31. For I'/J>0.3 we have reliable,

converged results for the infinite lattice.

1t g 1 Pl 1t
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lish how good a finite lattice approximates the infinite lat-
tice. This depends on the dephasing rate; in Fig. 11 we
plot the maximum of the two-photon absorption versus
the local-field maximum for various dephasing rates. For
T /J 21 our results are valid, for lower dephasing rates
larger lattices are needed.
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