
1302 J. Opt. Soc. Am. B/Vol. 13, No. 6/June 1996 V. Chernyak and S. Mukamel
Third-order optical response of intermediate
excitons with fractional nonlinear statistics

Vladimir Chernyak and Shaul Mukamel

Department of Chemistry, University of Rochester, Rochester, New York 14627
Received August 28, 1995; revised manuscript received November 28, 1995

The interplay of exciton statistics and Coulomb interactions in the optical response of semiconductors is studied
by derivation of an effective Hamiltonian written in terms of exciton operators, starting with a two-band model.
Statistical effects are incorporated through the nonboson commutation relations of exciton operators, which
contain an exciton-size-dependent parameter q that may vary from q  0 (boson statistics) through q ,, 1
(Wannier excitons) to q  2 (Frenkel excitons or Pauli statistics). A unified Green’s function expression for
xs3d that applies to excitons of an arbitrary nature is derived.  1996 Optical Society of America
1. INTRODUCTION

The nonlinear optical response of confined excitons
poses some important fundamental as well as practi-
cal problems connected with the synthesis of new mate-
rials with large susceptibilities. Excitons of different
types have been studied, e.g., Wannier excitons in
semiconductors,1 confined Wannier-type excitons in semi-
conductor quantum wells and quantum dots,2 – 4 Frenkel
excitons in molecular crystals and nanostructures,5 – 8

and charge-transfer excitons in crystals and conjugated
polymers.9 – 11 The optical response of large molecules is
determined by collective rather than individual proper-
ties of the global eigenstates.12 In such situations the
oscillator (quasi-particle) picture of the excitonic optical
response8,12,13 based on the many-body Green’s-function
approach14 seems much more attractive than the pic-
ture based on the global eigenstates.15 In the oscilla-
tor picture the nonlinear response originates from two
sources: exciton–exciton scattering,16 which is due to
the Coulomb interaction (dynamical scattering) between
excitons, and the nonboson exciton statistics (kinematic
scattering, also known as phase-space filling2). The os-
cillator picture of the optical response permits a clear
separation of these two sources of nonlinearity. It
has been rigorously established13,17 within the time-
dependent Hartree–Fock approximation18,19 for a general
many-electron system (the widely used semiconductor
Bloch–Maxwell equations1 – 3 are also based on the time-
dependent Hartree–Fock procedure).

The separation of these two sources of nonlinearity
can be made without alluding to the time-dependent
Hartree–Fock approximation. One way is to use a bo-
son representation for electron–hole operators. A boson
representation of the Frenkel exciton Hamiltonian has
been developed in Ref. 20. Boson representations for
electron–hole operators have been introduced in Refs. 21
and 22 and subsequently have been applied to semi-
conductor systems by many authors. In this approach,
effects of statistics on optical nonlinearities are repre-
sented by nonlinear terms in the expansions of the ob-
servables (polarization operators) in powers of boson
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operators. An alternative approach is to use a represen-
tation in which the observables are linear combinations of
the basic variables (operators). This approach has been
applied to Frenkel exciton systems in Ref. 23 and more
recently has been applied to semiconductor systems.24

The off-resonant third-order response in semiconductors
has been considered in Ref. 25.

In this paper we use this second approach to develop
a unified theory of nonlinear optical response of Frenkel,
Wannier, and charge-transfer exciton systems. Our for-
mulation yields equations of motion for the observables,
as well as compact expressions for susceptibilities. Ef-
fects of statistics are incorporated in commutation rela-
tions of the basic operators. This method allows us to
pinpoint the effects of statistics in optical nonlinearities
of excitonic systems.

In semiconductorlike materials (including bulk, quan-
tum wells, and quantum dots) and in Frenkel exciton
systems (e.g., molecular crystals, aggregates, and organic
superlattices), the residual Coulomb interaction is typi-
cally much smaller than the optical gap; consequently we
can neglect processes that do not conserve the number of
electron–hole pairs. This provides a justification for the
common approximations known as the two-band model in
the theory of semiconductors1,2 and the Heitler–London
approximation for Frenkel excitons.5,19 Within the two-
band approximation, the number of electron–hole pairs is
conserved, which turns the calculation of the optical re-
sponse into a finite-body problem; the ground state is the
vacuum state with zero electron–hole pairs, the linear
response involves states with one electron–hole pair, the
third-order nonlinear response involves only states with
up to two electron–hole pairs, etc. However, to obtain
the third-order susceptibility even within the two-band
model, we need to solve a four-body (two-electron, two-
hole) problem that cannot be solved exactly, and further
approximations are usually made.

In this paper we recast the two-band Hamiltonian
in terms of creation and annihilation operators for
electron–hole pairs. Because the material Hamiltonian
conserves the number of pairs, the resulting physical
picture is based on the dynamics of such pairs (rather
1996 Optical Society of America
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than on individual electrons and holes). We therefore
refer to an electron–hole pair as a particle. We then de-
rive the commutation relations of the particle operators
that show their nonboson statistics, and we express the
Hamiltonian in terms of them. Applying the equation of
motion technique,8,19 we obtain exact expressions for the
third-order optical response in terms of the one-particle
Green’s function and the two-particle scattering matrix,
which in turn is also expressed in terms of the single-
particle Green’s function. The resulting Green’s-function
expression (GFE) derived in Section 2 generalizes our
earlier result, which was restricted to Frenkel exciton
systems.12,26 The GFE provides a unified description of
optical response for all types of excitons: Frenkel, Wan-
nier, and intermediate charge transfer. Moreover, the
GPE explicitly reproduces the structure of two-photon res-
onances on two-exciton states in the third-order optical re-
sponse, which is completely missed in the Bloch–Maxwell
or in local-field approximation schemes. In Section 3 we
project all the particle operators into a subspace of exci-
ton operators and derive new commutation relations that
contain effects of statistics; we also derive an effective
Hamiltonian containing Coulomb interactions by means
of anharmonicities. Simplified expressions for the third-
order response that allow us to distinguish between the
roles of statistical and dynamical interactions of exci-
tons are derived, and limiting cases of various types of
excitons are discussed.

2. NONLINEAR RESPONSE OF
THE TWO-BAND MODEL
We consider a semiconductor described by the two-band
Hamiltonian1 – 3
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b̂n2

1
1
2

X
m1n1k1l1

V s1d
m1n1k1l1 â1
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X
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Wm1n2l1k2â1
m1

b̂1
n2

b̂k2 âl1 , (1)

where ân1 sâ1
n1

d and b̂n2 sb̂1
n2

d are the annihilation (creation)
Fermi operators of electrons and holes, respectively, that
satisfy the commutation relations

ân1 â1
m1

1 â1
m1

ân1  dm1n1, b̂n2 b̂1
m2

1 b̂1
m2

b̂n2  dm2n2 ,

(2)

and all the other anticommutators are zero. We adopt
the following convention for indices: Latin indices with
a subscript 1 (2), i.e., m1 (m2), stand for electrons (holes).
A particle (electron–hole pair) is denoted by a Latin index
with no subscript m  sm1m2d.

The total Hamiltonian of the system cHT std driven by
an external field E sr, td has the form

cHT std  cH 2
Z

drE sr, tdm̂srd , (3)

with
m̂srd ;
X

m1n2

mm1n2 srdsâ1
m1

b̂1
n2

1 b̂n2 âm1 d . (4)

Let Hn be the subspace of n-particle states. The com-
plete space of states of our model (denoted H ) can then
be represented as

H 
M̀
n0

Hn , (5)

with cH sHnd , Hn, and H0 is generated by the ground
state denoted jVl. Defining W s jd, j  1, 2 as the spaces
of single-electron and single-hole states, we can treat the
parameters of the Hamiltonian given by Eq. (1) as linear
operators ts jd : W s jd ! W s jd, V s jd : W s jd ≠ W s jd !

W s jd ≠ W s jd, and W: W s1d ≠ W s2d ! W s1d ≠ W s2d; note
that H1  W s1d ≠ W s2d.

Introducing the particle (electron–hole) operators

bB1
m1m2

; â1
m1

b̂1
m2

, bBm1m2 ; b̂m2 âm1 , (6)

we can express the commutation relations of particle op-
erators as well as the Hamiltonian in terms of an infinite
series of normally ordered operators bB1 and bB. This
can be accomplished in the following way. Expressing
the commutation relations of bB and bB1 in terms of the
electron and the hole operators â, b̂, â1, and b̂1 we can
project the Hamiltonian and the right-hand side (rhs) of
the commutation relations into the subspaces Hn , H .
We then make an ansatz and assume that the Hamil-
tonian and the commutation relations can be expanded
in a power series involving normally ordered products
of operators. Because the Hamiltonian conserves the
number of particles, each term should contain an equal
number of creation s bB1d and annihilation s bBd operators.
We can easily determine the expansion coefficients start-
ing with the zero-order terms (in bB and bB1), making use
of the fact that an operator bB1 . . . bB1 bB . . . bB containing
n creation and n annihilation operators is zero on all
Hm with m , n. This method allows us to determine
the coefficients successively, order by order. For calcu-
lating the third-order response, we need to expand the
Hamiltonian up to the fourth order and the commu-
tation relations up to the second order.27 The total
Hamiltonian is then given by Eq. (3), with

cH 
X
mn

hmn
bBm

1 bBn 1
1
2

X
mnkl

Gmnkl
bBm

1 bBn
1 bBk

bBl , (7)

and the dipole operator

m̂srd 
X
m

mmsrds bBm
1 1 bBmd . (8)

The expansion coefficients are given by

hmn ; ts1d
m1n1

dm2n2 1 dm1n1ts2d
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1 Wm1m2n1n2 , (9)
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1
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1
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fV s1d
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(10)
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where h stands for one-particle energy and G describes
the anharmonicity. The commutation relations are

f bBm, bBn
1g  dmn 2 2

X
pq

Pmpnq
bBp

1 bBq . (11)

P represents the deviation from particle boson statistics
and is given by

P  1/2fP s1d 1 P s2dg . (12)

Here P s1d fP s2dg is the electron (hole) permutation operator:

P s1d
mnpq ; dm1q1 dp1n1dm2p2dn2q2 ,

P s2d
mnpq ; dm2q2dp2n2dm1p1dn1q1 . (13)

Alternatively, Eqs. (9), (10), and (13) can be written in
operator notation:

G  21/2fts1d ≠ I ≠ I ≠ I 1 I ≠ ts2d ≠ I ≠ I

1 I ≠ I ≠ ts1d ≠ I 1 I ≠ I ≠ I ≠ ts2dg
1 1/2fV s1d ≠ I ≠ I 1 I ≠ I ≠ V s2dg , (14)

h  ts1d ≠ I 1 I ≠ ts2d 1 W , (15)

P s1dsu1 ≠ u2 ≠ v1 ≠ v2d
 v1 ≠ u2 ≠ u1 ≠ v2 ,

P s2dsu1 ≠ u2 ≠ v1 ≠ v2d
 u1 ≠ v2 ≠ v1 ≠ u2 . (16)

With Eqs. (7) and (11), the Heisenberg equation of mo-
tion for the particle operators id bBnydt  f bBn, cH g reads

i
d bBn

dt


X
m

hnm
bBm 2 En 1

X
mpq

Unmpq
bBm

1 bBp
bBq

1
X
mpq

Pnmpq
bBm

1s bBpEq 1 bBqEpd , (17)

where we have defined

En ;
Z

drmnsrdE srd (18)

U ; fsI 2 P dG 2 P sI ≠ h 1 h ≠ I dg
I 2 P

2
. (19)

After some simple algebra, Eq. (19) may be recast in the
form

U  V s1d ≠ I ≠ I 1 I ≠ I ≠ V s2d 1 P sI ≠ W 1 W ≠ I dP .

(20)

Equation (17) can be used to obtain the following closed
system of equations for k bBml and k bBm

bBnl. In clos-
ing these equations we have used the factorization
k bB1 . . . bB1 bB . . . bBl  k bB1 . . . bB1l k bB . . . bBl, which is justi-
fied for calculating the third-order response.8,27
i
dkB̂nl

dt


X
m

hnmk bBml 2 En 1
X
mpq

Unmpqk bBm
1l k bBp

bBql

1
X
mpq

Pnmpqk bBm
1lsk bBplEq 1 k bBqlEpd , (21)

i
dk bBn

bBn0 l
dt

2
X
mm0

shnmdn0m0 1 dnmhn0m0dk bBm
bBm0 l

2
X
mm0

Unn0mm0 k bBm
bBm0 l

 2sdnmdn0m0 2 Pnn0mm0 dsEmk bBm0 l 1 k bBmlEm0 d .

(22)

Solving these equations perturbatively in the external
field and switching to the frequency domain, we obtain the
GFE for the optical response functions. For the linear
response we have

R s1d  s2vsrs; vrd


X
mn

mnsrsdmmsrdfGnmsvd 1 Gmn
ps2vdg , (23)

with the single-particle Green’s function

Gsvd  fsv 1 ihdI 2 hg21. (24)

For the third-order response we obtain

R s3ds2vsrs; v1r1, v2r2, v3r3d


X

nm1m2m3

mnsrsdmm1sr1dmm2 sr2dmm3sr3d

3 Rnm1m2m3 s2vs; v1, v2, v3d , (25)

with

Rnm1m2m3 s2vs; v1, v2, v3d

;
1
6

X
perm

svj mj d

X
n0m1 0m2 0m3 0

sv2d

3 Gm1 0m1 sv1dGm2 0m2Gm3 0m3
ps2v3dGnn0 svsd

3 Gn0m3 0m1 0m2 0sv1 1 v2d . (26)

Here
Pperm

svj ,mj d means the sum over six permutations of
three pairs sv1, m1d, sv2, m2d, and sv3, m3d, and the two-
particle scattering matrix is given by

Gsvd  22P fF svdg21 1 2U fI 2 F svdU g21

3 F svdsI 2 P dfF svdg21, (27)

with

F svd ; fsv 1 2ihd 2 sI ≠ h 1 h ≠ I dg21, (28)

and h is the phenomenological exciton damping rate.
Equations (25) and (26), which generalize the GFE for

Frenkel excitons,12 express the third-order response of the
two-band model in terms of the single-particle Green’s
function Gsvd, and the two-particle scattering matrix
Gsvd. G [Eq. (27)] contains both the effects of anhar-
monicities represented by U and the nonboson statistics
represented by P.
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3. APPLICATION TO INTERMEDIATE
EXCITONS
The GFE for the optical response contains the contribu-
tions of all types of particle states, including free elec-
tron–hole pairs, weakly interacting pairs, or bound pairs
known as excitons. In this section we project these equa-
tions into the exciton subspace. To that end, we intro-
duce a basis set in H1  W s1d ≠ W s2d generated by the
eigenstates denoted jal with eigenvalues ea :

jal 
X
m

Camâ1
m1

b̂1
m2

jVl , (29)

where the wave functions Cam are obtained by solution of
a two-body (one-electron, one-hole) problem:X

n
ts1d

m1n1
dm2n2 1 dm1n1ts2d

m2n2
1 Wm1m2n1n2 Can  eaCam .

(30)

To calculate the exciton contribution we consider a sub-
set of one-particle exciton eigenstates jal and define the
exciton creation operators bBa

1 as follows:

bBa
1 ;

X
m

Cam1m2 â1
m1

b̂1
m2

. (31)

Next we introduce the exciton subspace of states V , H :

V ;
M̀
n0

Vn , (32)

where the n-exciton subspace Vn , Hn is defined as the
subspace generated by the states bB1

a1
. . . bB1

an
jVl. The op-

erators bB1
a therefore act in V , and we define the exci-

ton annihilation operators bBa as the Hermitian conju-
gates to bB1

a in V . The projection technique is based
on choosing a subset B , A in the basis set A of one-
particle eigenstates jal defined by Eqs. (6) and (29). In
our case B describes the exciton (bound) particle–hole
states. If we take all the states into account, i.e., B  A,
then Vn  Hn, and we simply formulate the exact the-
ory in terms of our chosen basis set. Projecting the
Hamiltonian cHT onto the basis V , we can obtain the com-
mutation relations of exciton operators and the effective
Hamiltonian expanded in powers of normally ordered ex-
citon operators, which have the form of Eqs. (7) and (11)
written with the basis set of eigenstates jal confined to
B , A (i.e., a [ B ). This yields

cH 
X
a

ea
bBa

1 bBa 1
1
2

X
abmn

Gabmn
bBa

1 bBb
1 bBm

bBn , (33)

where polarization adopts the form

m̂srd 
X
a

masrds bBa 1 bBa
1d , (34)

with the commutation relations

f bBa, bBb
1g  dab 2 2

X
mn

Pambn
bBm

1Bn , (35)

where the Greek indices run over the values belonging
to B .

We can obtain the parameters in Eqs. (33), (34), and
(35) from Eqs. (14), (8), and (13) respectively, by trans-
forming to the new basis set. In Eqs. (34) and (38) we
have assumed that the wave functions Cam are real:

Gabmn ;
X

mnkl

Cam
pCbn

pCmkCnlGmnkl , (36)

Pabmn ;
X

mnpq
Cam

pCbn
pCmpCnqPmnpq


1
2

X
m1m2n1n2

sCam1m2
pCnm1n2 Cbn1n2

p Cmn1m2

1Cam1m2
pCmm1n2Cbn1n2

p Cnn1m2d , (37)

masrd ;
X
m

mmsrdCam . (38)

Equation (37) can also be written by the operator nota-
tion. Here Cam1m2 and Cam1m2

p are considered as ma-
trix elements of an operator Ca : W2 ! W1 and its
Hermitian conjugate Ca

1: W1 ! W2, respectively:

Pabmn  1/2 TrsCa
1Cn Cb

1Cm 1 Ca
1CmCb

1Cnd . (39)

The Hamiltonian and the commutation relations are
formally identical to Eqs. (7) and (11). The only differ-
ence is that they use Greek (instead of Latin) indices,
which implies that all the parameters should be taken in
the eigenstate basis set [Eqs. (36)–(38)]. Therefore the
equations of motion and the expressions for the response
have the form of Eqs. (17), (21), (22), and (25)–(28), with
all the parameters being written with the eigenstate ba-
sis set. The one-particle Green’s function has a simpler
diagonal form:

Gab svd 
dab

v 1 ih 2 ea

. (40)

Next we consider a two-band model defined on a
d-dimensional infinite lattice, and for each value of
momentum k we retain only the lowest-energy s-type
exciton sa  kd. The higher-energy excitons and the
electron–hole states representing the continuum are ne-
glected. This provides the simplest model that illus-
trates the effects of statistics on the nonlinear response.
The Hamiltonian written in momentum space is

cH 
Z

dkek
bBk

1 bBk 1
1
2

Z
dk1dk2dk3dk4

3 dsk1 1 k2 2 k3 2 k4d

3 Gsk1, k2; k3, k4d bBk1
1 bBk2

1 bBk3
bBk4 , (41)

where we adopt the following convention dk ;
say2pddddk and dskd ; s2pyadddsd dskd. The com-
mutation relations for exciton operators are

f bBk1 , bBk2
1g  dsk1 2 k2d 2 2

Z
dk3dk4

3 dsk1 1 k3 2 k2 2 k4dP sk1, k3; k2, k4d bBk3
1 bBk4 ,

(42)

and the polarization operator becomes

m̂srd 
Z

dkdps bBk
1 1 bB2kdexpsik ? rdmks pdCks pd , (43)

where Ckspd is determined from the exciton wave function
Ckm:
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Ckm 
Z

dp expfik ? sRm1 1 Rm2 d

1 ip ? sRm1 2 Rm2 dgCks pd . (44)

The GFE gives the optical response in terms of the
Coulomb interaction parameters and the k-dependent
wave functions of the relative motion of electrons and
holes in the excitons. To obtain a simple physical picture
we consider long-wave excitons and neglect the depen-
dence of the relative motion wave function on the center-
of-mass momentum. Such factorization of the relative
motion holds in the effective-mass approximation (i.e.,
when the dependence of electron and hole energy on the
momentum is quadratic). It breaks down for short wave-
lengths k , a21. This means that Cks pd from Eq. (44)
does not depend on k and may be denoted Cs pd. We
further neglect the k dependence of mks pd on the same
scale and denote it simply ms pd. Furthermore, because
ms pd changes on the p , a21 scale and Cs pd is nonzero
for p # rB

21 ,, a21, where rB is the exciton Bohr radius
[i.e., the size of the region Rm1 2 Rm2 , where Ckm from
Eq. (44) is nonzero], we can replace mks pd in Eq. (43) with
ms0d and finally obtain

msrd  q1/2m
Z

dk expsik ? rds bBk
1 1 bB2kd , (45)

where

m ; ms0d, q1/2 ;
Z

dpCs pd . (46)

Equation (45) implies that mk  q1/2m, and it follows from
Eqs. (46) that q , sayrBdd.

Substituting Eq. (44) into our general expression for P
[Eq. (37)], we obtain

P sk1, k2; k3, k4d 
1
2

Z
dpfCs pdCs p 1 k3 2 k1d

3 Cs p 1 2k3 2 k1 2 k2dCs p 1 k1 2 k4d

1 Cs pdCs p 1 k3 2 k1dCs p 1 2k3 2 k1 2 k4d

3 Cs p 1 k1 2 k2dg . (47)

We now discuss two limiting expressions for P. When
kj .. rB

21, we note that the rhs of Eq. (47) is zero when
jkj1 2 kj2 j . rB

21, and, because we are interested in the
scale k .. rB

21, we can write the rhs of Eq. (47) in the
form Adsk1 2 k3ddsk2 2 k4ddsk2 2 k3d. By integrating
Eq. (47) over kj to determine the coefficient A, we obtain

P sk1, k2; k3, k4d  q2dsk1 2 k3ddsk2 2 k4ddsk2 2 k3d .

(48)

Equation (48) yields the following commutation relations
in the momentum domain:

f bBk1 , bBk2
1g  dsk1 2 k2ds1 2 2q2 bBk1

1 bBk1d . (49)

Because the nonlinear response is determined by two-
exciton states with momenta k .. rB

21, we should use the
commutation relations of Eq. (49) for large-size excitons.
This is the Wannier-exciton limit.
In the opposite limit when kj ,, rB
21s j  1, . . . , 4d we

can set kj  0 in the rhs of Eq. (47), which yields

P sk1, k2; k3, k4d  q0
21, q0

21 ;
Z

dpjCs pdj4. (50)

Equations (46) and (50) imply that q1/2 is equal to the
exciton wave function Ckm [Eq. (44)] at m1  m2 (i.e,
when the electron and the hole occupy the same site),
whereas q0 is the participation ratio of the exciton wave
function. It follows from Eq. (50) that q0 , sayrB dd , q,
and qualitatively both q and q0 provide a measure of the
exciton size. We can obtain the asymptotic expression of
Eq. (50) from Eq. (48) by setting kj  0. Because the d

functions have the width of ayrB , we obtain ds0d , q21,
which leads to P , q21.

Equation (50) leads to the following commutation rela-
tions in real space (we use Latin indices with overbars to
denote sites):

f bBn, bBm
1g  dn ms1 2 2q0

21 bBn
1 bBnd . (51)

Equation (51) with q0  1 is identical to the commu-
tation relations for Frenkel excitons. This can be ra-
tionalized as follows. For Frenkel excitons rB  0 and
k ,, rB

21 for all values of k, and one should use Eq. (50)
for P, which leads to Eq. (51).

Equations (49) and (51) resemble commutation rela-
tions for nonideal bosons written in real space and in
the momentum domain, respectively. The commutation
relation [Eq. (49)] was used by Birman28 in the study
of Bose condensation. The deviation from boson statis-
tics decreases as q decreases [see Eq. (49)]. Because q ,
sayrBdd it decreases with the increase of rB and d, which il-
lustrates that effects of phase-space filling are stronger in
low-dimensional systems and for small-radius excitons.2

We can obtain the nonlinear optical response by apply-
ing the equation-of-motion technique to the Hamiltonian
[Eq. (41)] with the commutation relations, Eq. (49). Al-
ternatively, we can use the general GFE [Eqs. (25) and
(26)], and, upon switching to the momentum domain, we
obtain

R s3ds2vs 2 ks; v1k1, v2k2, v3k3d

 m4q2 1
6

X
perm

svj kj d

Gsv1, k1dGsv2k2dGps2v3, 2k3dGsvsksd

3 Gsv1 1 v2; ks, 2k3; k1, k2d , (52)

with

Gsv, kd 
1

v 2 ek 1 ih
. (53)

G is obtained from Eq. (27) by switching to the momentum
domain. Using P in the form of Eq. (48), we obtain G ~

q21, which leads to R s3d ~ q, which gives R s3d ~ sayrBdd.
The approach developed in this paper should be of par-

ticular interest in the study of magnitoexcitons in semi-
conductor quantum wells,29 where the exciton size and
therefore the parameter q describing exciton statistics
can easily be controlled by variation of the magnetic-field
strength. The Bloch equations for magnetoexcitons have
been derived.30 However, because the Bloch equations
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are based on the time-dependent Hartree–Fock scheme,
they completely miss the two-photon resonances that are
explicitly taken into account in the GFE. In the case of
strong magnetic field when the magnetic length is much
smaller than the size of an exciton without the field (which
corresponds to the strong Landau quantization of electron
and hole levels), only the bound exciton states contribute
to the response. By application of the GFE it should be
possible to analyze the third-order response in the two-
photon resonance regime.
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