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We propose using coherent optical spectroscopy to study and

control optically-forbidden (dark) biexciton states in crystals of

cuprous oxide. These states are revealed in the correlation

spectra cross resonances due to coherence with the quadrupole

allowed 1S exciton manifold. The signal is obtained by means

of sum-over-state formalism and comparing equations of

motion for the weakly interacting quadrupole excitons with

their analogue of non-interacting quasiparticles. The dephasing

mechanisms include rapid Auger relaxation of biexcitons which
allegedly impedes the Bose–Einstein condensation of quadru-

pole excitons. An interesting effect attributed to the deviation of

the quadrupole excitons from the ortho–para excitons picture is

that the positions of the biexciton resonances are defined by the

energy splitting between Gþ
5;yz and Gþ

5;xz excitons and can be

tuned by an external perturbation. Possible quantum computing

and lasing applications of the quadrupole induced chirality

effects of the excitons and biexcitons, and coherence between

exciton/biexciton manifolds are discussed.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Cuprous oxide is a good candidate for
observing Bose–Einstein condensation (BEC) of excitons
for several reasons. The relatively large effective mass of the
electrons in the conduction band (me) and holes in the
valence band (mh) results in a small exciton radius
(aX¼ 5.1 Å), according to Kavoulakis [1] who considered
‘‘central cell corrections.’’ Equal parity of the conduction
and valence band states produces dipole-forbidden, quadru-
pole-allowed 1S exciton which is characterized by a long
radiative life-time depending on a dominating dephasing
mechanism and varies from ns to ps. At low exciton density
the measured life-time (�1.7 ns) is determined by phonon-
assisted non-radiative transitions between ortho (J¼ 1) and
optically forbidden para (J¼ 0) excitons separated by
12 meV due to spin–orbit interaction. Thanks to the small
radius, the exciton gas saturation density ns ¼ 1020 cm�3 is
much higher than the critical density nc¼ 1017 cm�3 needed
for the quadrupole exciton BEC at T¼ 2 K.

Unfortunately, BEC turned out to be an elusive goal due
to a strong recombination process that becomes effective at
gas densities above �1014 cm�3. Usually, this undesirable
effect is attributed to an exciton Auger process, i.e., upon
collision one of the excitons recombines and contributes its
band-gap energy to the kinetic energy of the remaining
electron and hole [2–6]. But there is a substantial discrepancy
between theory and time-resolved photoluminescence
(which measures the decay of exciton number following
short optical pulse excitation). The calculated direct
(2� 10�21 cm3/ns at a temperature of 70 K) [7] and
phonon-assisted Auger decay rates (3� 10�22 cm3/ns)
[8, 9] are orders of magnitude smaller than measured decay
rate (10�16 cm3/ns) [3]. Moreover, conventional Auger
theory predicts a linear increase of the Auger rate with
temperature, whereas experiment [7] shows an inverse
temperature dependence.

These discrepancies suggest that another mechanism
may be responsible for enhancement of the Auger decay rate.
Even though biexcitons have not been directly observed, it
was proposed that possible formation of bound biexciton
(exciton molecule) might be responsible for the rapid decay
[10]. Auger decay of a biexciton produces a hot electron–
hole pair with the energy gained from non-radiative
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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recombination of the other electron–hole pair. This heating
of the lattice and exciton gas could explain the difficulties
in achieving BEC of excitons in cuprous oxide, provided
that we have an unambiguous proof of the biexciton
formation. Be that as it may, in this ‘‘forbidden-gap’’
material the lowest biexciton states are optically forbidden
and may not be detected by either direct or phonon-assisted
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photoluminescence or absorption. Non-linear optical pro-
cesses are sensitive to the interactions between quasiparticles
and provide direct information on processes that are
inaccessible with linear spectroscopic techniques. Recently
some novel 2D correlation spectroscopic techniques have
been applied to study exciton and biexciton formation, their
dynamics and transport in bulk semiconductors, quantum
wells and quantum dots [11–14]. In these time domain
experiments, a train of well separated optical pulses excites
the sample and the generated x(3) signal is heterodyne
detected in one of the possible phase matching conditions.

In this work, we propose to use excited state emission
into kIII ¼ k1 þ k2 � k3 direction to establish the existence
and reveal key properties of the biexcitons in cuprous oxide.
Assuming the initial exciton/biexciton density distribution at
the given temperature, we shall determine the biexciton
binding energy and Auger lifetime (scattering coefficient).
There are two main approaches to calculate the signal. One is
based on non-linear exciton equations (NEE) and the needed
formalism can be found in Ref. [28]. The signal is given in
terms of single exciton Green’s function and is proportional
to the exciton scattering matrix. Finding the latter proved to
be computationally extensive even for much simpler systems
of the molecular assembly. To interpret the results of the
simulation one usually needs the sum-over-states (SOS)
form of the signal [21]. The SOS formalism utilizes the non-
interacting quasiparticle representation of the excitons and
biexcitons. The signal now is given in terms of various
Liouville pathways represented by the quasiparticle Green’s
functions.

In this work, instead of interpreting results of NEE
simulation, we use the SOS method directly. As follows
below from Eq. (13), the necessary ingredients to calculate
SOS form of the signal include: (1) effective exciton/
biexciton transition dipole moments; (2) their energies; (3)
the corresponding dephasing rates. We propose to find (1)
and (2) by comparing equation of motion for the independent
(quasiparticles) and weakly interacting bosons. The lowest
(1S) biexciton wavefunctions and energies are then found by
the variational principle. Due to the shared valence band,
exciton/biexciton coherence can be revealed as non-diagonal
cross resonances in the 2D response, therefore allowing one
to measure the biexciton binding or repulsion energies.
Our model allows for possible lifting of degeneracy in the
ortho-exciton manifold, which in turn alters the biexciton
binding energy. The dephasing rates (3) are found from the
phenomenological exciton/biexciton rate equations as dis-
cussed in Ref. [10]. The radiative, impurity induced and
Auger processes destroy the coherence between the ground
and exciton states; the rapid biexciton Auger destroys the
biexciton and ground state coherence; the de-coherence
between the exciton and biexciton is governed by two
competing processes—biexciton Auger recombination and
the loss rate of excitons given by their rate of binding
(capturing) into biexcitons. Based on such a dephasing
model we show that the ellipticity of the resonances is simply
related to the initial biexciton/exciton density ratio.
www.pss-b.com
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The quadrupole origin of the exciton, and in turn, exciton-
biexciton transitions makes the corresponding oscillator
strength dependent on the wave vector and polarization of
the pulses. That is the quadrupole spectrum is chiral and the
gaining or absorbing nature of the Liouville pathways depends
on the sample orientation and polarization of the incoming and
heterodyne pulses. Unlike in the molecular aggregates the
chirality can be controlled by the crystal orientation. The
orthogonal polarizations are treated as quantum bits (q-bits)
thus making coherent 2D spectroscopy a possible tool for
quantum computing. Such fs optical element opens new
possibilities for future experiments. Specific crystal orien-
tations and pulses polarization also provide the induced
negative (gain) refractive index of the material. Cu2O is a well-
studied material but has not yet been experimentally explored
with 2D femtosecond spectroscopy. Experiments to observe
the biexcitons in Cu2O should be straightforward, even at the
one-quantum level, since they have been observed in GaAs
quantum wells where the binding energy is significantly
smaller than in Cu2O [33]. Hence, we propose to utilize the
corresponding exciton/biexciton coherence for lasing, which
requires one to redirect the signal back to the crystal instead of
measuring it by heterodyne detection.

2 Quadrupole biexciton formation and
classification The yellow exciton in cuprous oxide (Oh)
is formed by Coulomb interaction between electrons in the
conduction band (Gþ

6 ) and holes in the valence band (Gþ
7 ),1

within the direct band gap Eg;k¼0 ¼ 2:17 eV (See Fig. 1).
The 1S excitons are given by the direct product of e� h with
the envelop function representation Gþ

1 � Gþ
6 � Gþ

7 ¼
Gþ

2 þ 3Gþ
5 . The triplet 3Gþ

5 states are termed ortho-excitons
(OE), while the singlet Gþ

2 level is referred to as a para-
exciton (PE). The levels are split by electron–hole exchange
interaction, and the PE lie 12 meV below the OE [15]. This
makes the 1S PE the lowest exciton level of cuprous oxide.

Due to the common even parity of the valence and
conduction band the PE are optically forbidden. Note that
this state may acquire some oscillator strength provided an
external symmetry breaking to D2h or D4h by applying the
stress on strong magnetic field. The OE are dipole-forbidden
but quadrupole allowed (Gþ

5;xy,G
þ
5;yz,G

þ
5;zx); triply degenerate.

Conventionally multi-excitons in cuprous oxide are
described within a two-band model which neglects k
dependent energy separation between different types of the
OE, i.e., assumes degeneracy of the 3Gþ

5 manifold, and
possible OE/PE mixing by spin–orbit interaction [16]. The
exciton pairs which are built from two yellow excitons can be
classified by irreducible representation of their direct product:
Gþ
6

1 No

but

www
� Gþ
7 � Gþ

6 � Gþ
7 ¼ Gþ

2 þ Gþ
5

� �
� Gþ

2 þ Gþ
5

� �
¼ 2Gþ

1 þ Gþ
3 þ 3Gþ

4 þ Gþ
5 :

(1)
te that all through the paper we use Koster notation of the representation,

when it is necessary indicate the degeneracy with the upper-script.

.pss-b.com
The biexciton Hamiltonian must be invariant under
permutation of electrons (holes) of the two excitons.
Hence, biexciton eigenstates must be characterized by two
additional quantum numbers Gþ

a;mn; where a ¼ f1; 3; 4; 5g;
m and n denote the permutational parity (�).

The statesGþ
a;�;� have an S-like envelope function, while

Gþ
a;�� have P-like envelope function. The two-exciton states

are bound if their energy satisfies EðGþ;a;mnÞ < 2EðGþ
2 Þ.

The only biexciton state satisfying this condition is
the ground state Gþ

1;�� [17]. It is worth to notice that
3Gþ

4;�þ state may well satisfy the binding condition
EðGþ; 4;�þÞ < 2EðGþ

4 Þ and may form an ultra-short living
biexciton. But in this work we focus our attention on
the biexciton ground state. As shown in Appendix A, the
Hamiltonian in terms of weakly interacting exciton creatio-
n(annihilation) operators byk;i can be written as:
¼
X
k

X3

j¼1

Ek Gþ
5;j

� �
byk;jbk;j þ

X
k

Ek Gþ
2

� �
byk;4bk;4

þ 1

2V

X
p;q;k

"
1

4
U�� þ 3Uþþ½ �

X4

i¼1

byp;ib
y
q;ibqþk;ibp�k;i

þ
X4

i;j¼1;i 6¼j

Uþþb
y
p;ib

y
q;jbqþk;jbp�k;i

þ 1

4

X4

i;j¼2;i6¼j

�1ð Þiþj U�� � Uþþ½ �byp;ib
y
q;ibqþk;jbp�k;j

þ 1

4

X4

i¼2

�1ð Þiþ1 Uþþ � U��½ �

� byp;ib
y
q;ibqþk;1bp�k;1 þ byp;1b

y
q;1bqþk;ibp�k;i

� �#
:

(2)
Here V stands for the volume of the sample, and
U��ðp; q; p� k; qþ kÞ are the Fourier transforms of the
exciton Coulomb scattering matrix elements. These are
calculated with the two-exciton wave functions that
are either symmetric or asymmetric under permutations of
the spin projections of the two electrons as well as under
permutations of the total angular-momentum projections of
the two holes. For small exciton momenta one can use
the random phase approximation [16]. This gives energy
Uþþð0Þ ¼ �U��ð0Þ / Ry1Sa

3
X, where Ry1S¼ 153 meV is

the ionization potential of the quadrupole exciton.
Note that in the above we did not use the PE/OE basis

(two level model) which is conventionally used for exciton
description in cuprous oxide. First the OE/PE separation is
not rigorous but conditional. Indeed, in this material the hole
states involve a non-zero orbital momentum (the actual
hole bands are made up of 3d Cuþ orbitals) and cannot be
characterized by a total spin and its projection of two
particles. Second reason is that we do not know a priori
the relation between biexciton binding energy EXX;Gþ

1
(for
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 The cuprous oxide band structure at k¼ 0 (G point) and
thecorrespondingexciton, two-excitonandbiexcitonstates.Theone
and two-exciton manifolds consist of the singlet Gþ

2 (PE) and triplet
3Gþ

5 (OE). The lowest optically forbidden states of the biexcitons are
formedbytheCoulombinteractionanddenotedasasymmetricGþ

1;��
and symmetric Gþ

1;��. This can be revealed through their coherence
withthetwo-excitonstates.Therestof theboundedandnon-bounded
states are shown but not investigated in the present paper.

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
brevity we hereafter omit the subscript Gþ
1 ) and exchange

splitting Dexch between the OE and PE. Whereas the PE/OE
approach implies that this two types are well separated.
Nevertheless, it was demonstrated by Bobrysheva and
Moskalenko [18] that the cuprous oxide biexcitons are
stable even for large ortho–para splitting EXX;Gþ

1
� Dexch.

However, in this case the biexciton binding energy is twice
smaller than it is in case of small splitting EXX;Gþ

1
	 Dexch.

We addressed this effect by two times reducing the effective
exciton–exciton interaction (see Section 4 for more details).

As the result, the above Hamiltonian contains attractive
interaction between Gþ

5;xz and Gþ
5;yz only, while the PE/OE

approximation does not distinguish between different OE
[16]. The second term in the Hamiltonian (2) indicates that
excitons of the same species cannot form a bound state, and
the third term implies that the overall exciton interaction is
repulsive. The detailed description of each contributing term
can be found in Appendix A.

The exciton interaction with the optical field has the form:
Hint ¼
X4

j¼1

X3

k;i¼1

dk;kjEjðk; tÞdiðk;E=EÞ byk;i þ bk;i

h i
;

where ki ¼ fk1; k2; k3; kIIIg and Eðk; tÞ is the electric field
of the photons (see Fig. 2 for details).

The effective dipole moments due to the quadrupole
transitions are related to the experimentally measurable
oscillator strength f as:
d1 ¼ dyz /
ffiffiffi
f

p
ðe2kz þ e3kyÞ

d2 ¼ dxz /
ffiffiffi
f

p
ðe1kz þ e3kxÞ

d3 ¼ dxy /
ffiffiffi
f

p
ðe1ky þ e2kxÞ:

(3)
Figure 2 (online colour at: www.pss-b.com)
The proposed experimental set up for the 2D
quadrupole spectroscopy of the cuprous oxide
oriented sample. The symbols deg and Def

represent thedipolemomentsof thequadrupole
allowed transitions from the ground state
gj i to the one-exciton ej i ¼ Gþ

5;yz;G
þ
5;xz and

two-exciton fj i ¼ Gþ
1;��; 2G

þ
5;yz; 2G

þ
5;xz;G

þ
1;þþ

states correspondingly. The kIII related Feyn-
man diagrams illustrate the absorptive (i) and
gain (ii) contributions to the S(3) response
function.

www.pss-b.com
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The quadrupole nature of the OE makes the non-linear
response chiral, i.e., it depends on the corresponding wave
vector and polarization of the optical pulses and heterodyne
through the effective dipole moments (3). It is analogous to
the chiral response of organic molecular aggregates [19] but
unlike them the quadruple chirality can be controlled by the
crystal orientation. In the next section we investigate the
causal non-linear x(3) response of the cuprous oxide crystal
and some chirality effects on the spectra.

3 Correlation spectroscopy of quadrupole
biexcitons In analogy with nuclear magnetic resonance
[20], 2D-spectroscopy has recently been implemented to
study electronic and vibrational coupling in molecules [21–23]
and in semiconductors [24–26]. In this section we utilize the
unique sensitivity of this spectroscopy to couplings among
various exciton resonances to predict the spectral signatures
of biexcitons in cuprous oxide. We use the excited state
absorption part of the general four wave mixing signal
heterodyne detected in the following phase matching
direction kIII ¼ k1 þ k2 � k3. The first two pulses promote
the coherence between the ground state and exciton (during
t1 interval) then two-exciton (t2 interval) states. The third
pulse probes the formation of the biexciton during t3 interval.
Depending on whether it interacts with the ket or with the
bra, one has two possible Liouville pathways. In one of these
pathways the third pulse dexcites the two-exciton ket and
makes the coherence between the exciton and the ground
state. In the other pathway the third pulse excites the bra
and creates the coherence between the exciton and two-
exciton manifolds. The signal arises from the third order
polarization:
Pð
s

S
3ð Þ
s;a

www
3Þ tð Þ ¼
X
a;b;g

Z1
0

Z1
0

Z1
0

dt1dt2dt3S
3ð Þ
s;a;b;gðt1; t2; t3Þ

� Egðt � t3ÞEbðt � t3 � t2ÞEaðt � t3 � t2 � t1Þ
(4)
and can be heterodyne detected with the fourth pulse at time
t. To study the biexciton formation it is convenient to
define 2D spectrum by the Fourier transform of the response
function with respect to t2 and t3, keeping time interval t1 as
a control parameter (see Fig. 2):
;b;gðt1;V2;V3Þ ¼
Z1
0

Z1
0

dt2dt3S
3ð Þ
s;a;b;gðt1; t2; t3ÞeiV2t2þiV3t3 :

(5)
To calculate this response function we take into
account the only optically active excitonic transitions

Gþ
5;yz

��� E
¼ byk;1 gj i and Gþ

5;xz

��� E
¼ byk;2 gj i which are capable

of forming the lowest biexciton states due to their mutual
attraction. Using the center of mass approach one can
introduce the symmetric (þþ) and asymmetric (��)
.pss-b.com
biexciton creation operators for the lowest biexciton states:
Gþ
1;��

��� E
¼ By

K;��; 1S gj i

¼ 1

2
ffiffiffiffi
V

p
X
l

C1S; lðbylþK=2; 1
by�lþK=2; 1

� by
lþK=2; 2

by�lþK=2; 2
Þ gj i;

(6)
where K and l are the wave vectors of the center of mass and
relative motion of the excitons constituting the biexciton;
CJ;l is the biexciton envelope function (for the lowest
biexciton state the angular momentum of the exciton
molecule J is equal to 1S).

The commutation relations for the exciton and biexciton
operators are given by:
bl;i; b
y
l0;j

h i
¼ dl; l0di;j þ O nea

3
X

� �
;

BK;i; B
y
K0;j

h i
¼ dK;K0di;j þ O nfa

3
XX

� �
;

;Gþ
1;þþ

; by
k;1ð2Þ

i
¼ � 1

2
ffiffiffiffi
V

p

� C

Gþ

1
;K=2�k þC


Gþ
1
;k�K=2

� �
bK�k; 1ð2Þ;

;Gþ
1;��

; by
k;1ð2Þ

i
¼ 1

2
ffiffiffiffi
V

p

� C

Gþ

1
;K=2�k þC


Gþ
1
; k�K=2

� �
bK�k; 1ð2Þ:

(7)
Here ne(f) and aX(XX) are the exciton (biexciton) density
and Bohr radius correspondingly.Oðnea3

XÞ andOðnfa3
XXÞ are

the contributions from the phase-filling factor and show the
deviation of the excitons and biexcitons from the true bosons.
At low exciton density (nea

3
X � 1) the equation of motion

for the exciton and biexciton states in the center of mass
approximation assume the form (29,30) and (31,32),
see Appendix B. The increase of the electron/hole density
leads at first to the disappearance of the biexcitons as bound
compound quasiparticles. With further increase in the
excitation level, the excitons begin to dissociate too, and
our model is no longer applicable.

The second terms in the equation of motion for the
biexciton (31,32) are due to broken ortho (para) - symmetry
of the excitons. Due to an external perturbation, the
degeneracy of the 3Gþ

5;k excitonic levels can be lifted.
Therefore, the biexciton can be formed by hybridization of
the two-exciton transitions (see Section 4 for details).

Let us first consider the conventional biexciton for-
mation and neglect possible lifting of the OE degeneracy. To
proceed further and obtain the non-linear signal in SOS form
we also need equations of motion in terms of an effective
independent-Boson model for exciton and biexciton quasi-
particles. To do so, we recall that in case of exciton
condensation the average value of the creation (destruction)
operator is a macroscopically large quantity bkh i=

ffiffiffiffi
V

p
¼

b0h i=
ffiffiffiffi
V

p
¼ � ffiffiffiffiffi

n0
p

, where the condensate density n0� ne.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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We also take into account the small Bohr radius of the
quadrupole biexciton within the hydrogen-like envelope
function approximation:
H

E
�

� 20
CGþ
1
;l ¼

8
ffiffiffiffiffiffiffiffiffiffiffi
pa3

XX

p
ð1 þ l2a2

XXÞ
2
: (8)
This gives the following estimate for the average value of
the last two commutators in Eq. (7):
Dþ
1

Dþ
2

� 1

2
ffiffiffiffi
V

p C

Gþ

1
;K=2�k þC


Gþ
1
;k�K=2

� �
bK�k;1ð2Þ
� �

¼ � 1

2
ffiffiffiffi
V

p C

Gþ

1
;�K=2 þC


Gþ
1
;K=2

� �
b0;1ð2Þ
� �

¼ O
ffiffiffiffiffiffiffiffiffiffi
n0a

3
X

q	 

:

D�
1

The commutators (7) can be therefore simplified in
the limit of small biexciton and exciton density
nea

3
X �

ffiffiffiffiffiffiffiffiffiffi
nea

3
X

p
� nfa

3
XX � 1 to:
D�
2

bl;i; b
y
l0;j

h i
¼ dl;l0di;j; BK;i;B

y
K0;j

h i
¼ dK;K0di;j;

BK;Gþ
1;þþ

; by
k;1ð2Þ

h i
¼ 0; BK;Gþ

1;��
; by

k;1ð2Þ

h i
¼ 0:

(9)
In this case the bosonic Hamiltonian (the interaction
between excitons is given implicitly in the energy of the two-
exciton manifold) has the form:
S
3ð
s
¼

X
k

E Gþ
5;yz;k

� �
byk;1bk;1 þ E Gþ

5;xz;k

� �
byk;2bk;2

þ
X
K

E Gþ
1;þþ;K

� �
B
y
K;Gþ

1;þþ
BK;Gþ

1;þþ

þ E Gþ
1;��;K

� �
By
K;Gþ

1;��
BK;Gþ

1;��

�
X4

K;j

E � Dþþ
1 ðK; kjÞ By

K;Gþ
1;þþ

bkj;1 þ bykj;1BK;Gþ
1;þþ

	 


�
X4

K;j

E � Dþþ
2 ðK; kjÞ By

K;Gþ
1;þþ

bkj;2 þ bykj;2BK;Gþ
1;þþ

	 


�
X4

K;j

E � D��
1 ðK; kjÞ By

K;Gþ
1;��

bkj;1 þ bykj;1BK;Gþ
1;��

	 


�
X4

K;j

E � D��
2 ðK; kjÞ By

K;Gþ
1;��

bkj;2 þ bykj;2BK;Gþ
1;��

	 


� Hint:

(10)
Here we have introduced the exciton/biexciton dipole
transition moment DðK; kiÞ and the biexciton manifold
energy EðGþ

1;þþ;KÞ, EðGþ
1;��;KÞ. The corresponding

equations of motion obtained by using the independent
boson model are given in Appendix B, Eqs. (33–36). Note
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
that Eqs. (33,34) are different from Eqs. (30,31) due to
simplified commutation rules [27].

Comparing Eqs. (31,32) with (35,36) we obtain the
biexciton energy:
Gþ
1;��;K

�
¼ E G

y
5;yz;K=2

� �
þ E G

y
5;xz;K=2

� �
� 1

4V2

X
l;l0

U�� � Uþþ½ �C

Gþ

1
;l0CGþ

1
;l:

(11)
The corresponding transition dipole moments of exciton/
biexciton:
þðK; kjÞ ¼
d1ðkjÞffiffiffiffi

V
p CGþ

1
;K=2�kj

þCGþ
1
;kj�K=2

� �
þðK; kjÞ ¼ � d2ðkjÞffiffiffiffi

V
p CGþ

1
;K=2�kj

þCGþ
1
;kj�K=2

� �
�ðK; kjÞ ¼

d1ðkjÞffiffiffiffi
V

p CGþ
1
;K=2�kj

þCGþ
1
;kj�K=2

� �
�ðK; kjÞ ¼

d2ðkjÞffiffiffiffi
V

p CGþ
1
;K=2�kj

þCGþ
1
;kj�K=2

� �
:

(12)
The biexciton energy in Eq. (11) can be minimized using
an appropriate trial wave function, thereby one can obtain the
effective dipole moments (12). Thus one can calculate the
Green’s functions of the bosonic equations of motion for
exciton/biexciton and, as it was discussed in the Introduction,
the response function (5) can be recast in a SOS form [21]:
Þ
;a;b;gðt1;V2;V3Þ

¼
dsegD

g
e0fD

b
efd

a
geexpð�iEegt1 � �hgegt1Þ

ðEfg � �hV2 þ i�hgfgÞðEe0g � �hV3 þ i�hge0gÞ

�
Ds

fe0d
g
ge0D

b
efd

a
geexpð�iEegt1 � �hgegt1Þ

ðEfg � �hV2 þ i�hgfgÞðEfe0 � �hV3 þ i�hgfe0 Þ:

(13)
Here the subscript g is the ground state; e, e0 stand for

the exciton manifold Gþ
5;yz, G

þ
5;xz, G

þ
5;xy and f runs over the

biexciton manifold (Gþ
1;þþ, Gþ

1;��); the super-script at the

exciton deg and two-exciton Def transition dipoles denotes
the projection on the electric field of the corresponding
pulses.

The imaginary part of the response function (13) gives
the non-linear absorption of the previous pulse by the system
whose refractive index is modified by the other pulses.
Therefore the absorption can be either positive or
negative depending on the pulse polarization and timing,
while the real part of the response function reveals the
dispersive properties of the induced refraction. Consequently,
for dipole-allowed transitions, the first term in the response
function (13) is referred to as the absorptive terms (See the
Feynman diagram (i) in Fig. 2). The second set of terms is
referred as gain terms (diagram (ii)). For the chiral
quadrupole transition the gain or absorptive nature of each
term in the response function may be controlled by the crystal
www.pss-b.com
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orientation and laser polarizations. The difference between
these two contributions is determined during the t3 interval
when the two excitons are interacting. The mutual exciton
scattering is the source of the non-linear signal. If it were not
so, this two terms would cancel each other. In other words,
there are no cross resonances along �hV3 ¼ 2e1;2 in the
corresponding 2D spectrum (see more details in Section 4).

We recall that instead of resorting to the bosonic form of
the equation of motion one can obtain the Green’s functions
for the weakly interacting exciton model given by the
Hamiltonian (2) using NEE approach. In this case the
complete set (not only the lowest states investigated here) of
biexcitons are given by the poles of the scattering matrix. In
the recent work of S. Mukamel et.al. [28] the authors
demonstrated intimate connection between the SOS and
NEE approaches, the pros and cons of the model. Although
the NEE provide more detailed than SOS description of the
phenomena, it requires computing the scattering matrix
which would require numerical solution of the Bethe-
Selpeter many body equation, which is an expensive
computational task. Hence, this paper is focused on
demonstrating how one can be able to observe the dark
biexciton formation by utilizing methods of non-linear
femtosecond spectroscopy. Our SOS model is rather simple
and therefore can describe only the lowest biexcitons but
cannot determine the biexciton dependence on the exciton
density or screening. It is rather a guideline for future
experiments than a complete ab initio simulation. We
anticipate that such experiments would be able to prove (or
disprove) the biexciton existence in cuprous oxide. In
the next section we investigate the 2D quadrupole
spectrum under different excitation conditions and sample
orientations.

4 Numerical results and discussion Unfortunately
there is no simple analytic solution of Eq. (11) and one must
resort to an approximate solution for simulation of the 2D
spectrum (13). Here we use 1S trial wave function (8) to
minimize the biexciton energy (11) with respect to the
variational parameter (biexciton radius) aXX. We assume the
following form of the exciton–exciton interaction up to
the third order in the exciton radius [29]:
www
U�� ¼ � 26p

3
Ry1Sa

3
X 1 þ 1

ð1 þ a3
Xm

2
e l� l0j j2=m2

XÞ

" #�1

:

(14)
As we mentioned earlier, the factor 26p/3 is half of the
regular 52p/3 on account of large ortho-para splitting. The
exciton effective mass m2

e=m
2
X ¼ 0:14, binding energy

Ry1S¼ 153 meV and Bohr radius aX¼ 5.1 Å are given by
the ‘‘central cell correction’’ model [1]. They are modified by
non-parabolicity of the conduction and valence bands,
the coupling of the exciton electron and hole with the
longitudinal optical phonons and by the dielectric function
dependence on the distance between the electron and hole.
.pss-b.com
The original parameters (without central cell correction) the
reader can find, for instance, in Ref. [16]. The corrections are
essential in cuprous oxide and affect not only the exciton but
also biexciton parameters. This is one of the reasons why we
make our own numerical estimates of the biexciton binding
energy rather than simply citing already existing results.

The expression above is valid for jl� l0j < mX=mhaX ¼
3:9=aX. Therefore the summation can be changed into
integration:
1

V

X
l

! 1

p2

Z3:9=aX
0

l2dl:
Numerical simulation yields that the minimum of
the biexciton energy (11) occurs at aXX¼ 165 Å. This
corresponds to the biexciton binding energy EXX ¼
0:031Ry1S ¼ 4:743 meV. The corresponding biexciton
oscillator strength is therefore given by [16]:
fXX=fX ¼ ðaXX=aXÞ3 ¼ 3:4 � 104. Now let us comment on
the accuracy of our approach compared to those previously
reported in the literature. A variational calculation by [31]
yields a biexciton binding energy 3.3 meV. More elaborate
variational calculations by [18] gives 6.2 meV. In contrast,
Huang [32] applied a Feynman’s path-integral approach to
the general biexciton binding energy and predicted 13 meV
for our electron–hole mass ratio. Since there were no direct
observation of the biexciton formation, our simple model is
just as good as others, and serve here more illustrative point.
As well as some approximation for the transition moments.

Since biexciton formation is always accompanied by
Auger recombination, we assume that the ground state of the
system has finite densities of thermalized exciton ne and
biexcitons nf at the temperature of 70 (40) K. Note that this
does not affect our statement that first two pulses promote the
system from its ground state, since out of all possible multi-
exciton formation we consider only the biexcitons. The laser
pulses promote the excitons or biexcitons from the thermal
ground state distribution and the subsequent system
relaxation is described by the kinetic equations [7]:
dne
dt

¼ � ne
t
þ nf
tA

� 2Cn2
e þ 2Cn
nf

dnf
dt

¼ � nf
tA

þ Cn2
e � Cn
nf :

(15)
Here 2C ¼ 10�16 cm3=ns is the average recombination
(capture) coefficient; tA¼ 70 ns is the biexciton lifetime [3];
t is the exciton life time which is mostly defined by
impurities and assumed to be much lager then the Auger life
time tA. Note that C is much lager than the conventional
exciton (biexciton) Auger rate. The reason is that the
conventional Auger process involves the recombination in
this forbidden direct-gap crystal.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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The mass-action equilibrium density is given by:
� 20
n
ðTÞ ¼ n2
e

nf
¼ mkBT

4p�h2

	 
3=2

e�EXX=kBT ;
where the biexciton mass is assumed to be twice the free
exciton mass m. The response function (13) dynamics (t2, t3)
occurs on the fs time scale, whereas the population
dynamics is much slower (ps to ns). Therefore we treat
the lifetime as the dominant dephasing mechanism. From
Eq. (15) it is straightforward to deduce the effective
dephasing rates for the ground state to the exciton
(biexciton) transitions:
geg ¼
1

t
þ 2Cn

gfg ¼
1

tA
þ Cn
:

(16)
As for the exciton/biexciton dephasing rate we notice
that the loss of the excitons contribute to the gain of the
biexcitons asCn2

e and the loss of the biexcitons contributes to
the gain of the exciton manifold as nf=tA þ 2Cn
nf . Both
processes contribute to the exciton/biexciton dephasing:
Figure 3 (online colour at: www.pss-b.com) 2D correlation spec-

2gef ¼

1

tA
þ 2Cn
 þ Cne: (17)
trum of the cuprous oxide. The Im part correspond to the non-linear
absorption and Re part reveals the dispersion. The laser pulses are
oriented parallel to the Ejjj½001� direction and kjjj½110�.
In Fig. 3, we present the 2D correlation spectrum when
the system is initially at equilibrium ne ¼ nf ¼
n
 ¼ 1:2 � 1018 cm�3, and the non-equilibrium exciton/
biexciton distribution nf � ne. The cross-resonances in
Fig. 3 indicate the correlation between the exciton (Gþ

5;yz,
Gþ

5;xz) and two-exciton (Gþ
1;��, 2Gþ

5;yz, 2Gþ
5;xz, Gþ

1;þþ)
manifolds schematically presented in Fig. 2. Note that the
central cross resonance (correlation between one exciton e
and two non-interacting excitons 2e) is not visible due to
much smaller two-exciton transition oscillator strength
comparing to those of biexcitons. For the given crystal
orientation and laser polarizations the Feynman diagram
(i) is absorptive and diagram (ii) shows gain (see also Fig. 2).
At higher temperature (T¼ 70 K) the cross resonances are
slightly shifted due to non-resonant contributions. And the
cross resonances are elongated along the �hV3 axis due to
higher biexcitons dephasing rate. The elongation is not due to
disorder as has been observed in other experiment [33].
For the non-equilibrium case (nf< ne) this effect is less
pronounced.

We next examine the chiral properties of the quadrupole
2D spectrum. Since both exciton and biexciton transition
dipole moments depend on the wave vector we vary the
crystal orientation and laser polarization T¼ 40 K (see
Figs. 4 and 5). An interesting practical application of
chirality is to an optical logical element for quantum
computing. If one defines the signal polarization as a
qubit E?¼ 1, Ejj ¼ 0 then the logical OR between the
second and the third pulses can be probed by the fourth
signal for the k¼ [112] crystal orientation. Indeed, E

jj
4

11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
reveals this logical operation at the exciton-biexciton
resonance �hV2 ¼ 4:0597 eV and V3¼ 2.0322 eV. A more
thorough investigation of the quantum computing possibi-
lities by utilizing the quadrupole chirality and coherency
between excitons and biexcitons will be of interest.

Another fascinating effect of quadrupole chirality along
the main axis of the crystal (kjj½001� or kjj½110�) is revealed
by the coherent signals. For these crystal orientations it is
possible to select either absorptive or gain terms of the
response function (See Fig. 5). The possibility of gain only
allows one to have lasing at the corresponding V2þV3

frequency, the absorptive terms will allow laser field
detection at those frequencies.

To achieve the lasing, instead of heterodyne detecting
kIII signal, we split it in two beams and direct it back into the
crystal in the following fashion. The first beam serves as k2

signal and the second is k3. The laser energy is provided by
the one-exciton manifold (E2

1) and the necessary coherence is
given by the coherence between the one-exciton and two-
exciton manifold (�k3). Lasing occurs at the frequency
specified by the given time delays between pulses. Although
the efficiency of the proposed lasing per cycle E2

4=E
2
1 is low

due to the small oscillator strength of the quadrupole
transitions and rather small radius of the biexciton, the
proposed laser will have very narrow line-width determined
by the exciton/biexciton dephasing rate (17).
www.pss-b.com
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Figure 4 (onlinecolourat:www.pss-b.com)Chiralityeffects in the
2D quadrupole correlation spectrum =Sð3Þðt1 ¼ 0;V2;V3Þ for the
cuprous oxide, T¼ 40 K, ne¼ nf. The sample is oriented in kjjj½112�
direction and we used the notationE

jj
j jj½111�,E?

j jj½110�. The squares
mark the absorptive and circles stand for gaining contributions to
the response function.

Figure 5 (online colour at: www.pss-b.com) Chirality effects
along the main crystal axis allows selective absorptive or gaining
non-linear response. This figure represent =Sð3Þðt1 ¼ 0;V2;V3Þ of
2D spectrum for kjjj½001� sample orientation and E

jj
j jj½100�,

E?
j jj½010�. The exciton/biexciton equilibrium ne¼ nf is assumed

at the exciton temperature T¼ 40 K. The squares stand for the
absorptive and circles stand for gaining contributions to the
response function.
So far we have considered the case of the degenerate OE
levelGþ

5 . Now let us turn to a general case when the degeneracy
may be lifted. In this case the biexciton branches are further
split. To describe this effect we note that the equations of
motion (29–32) can be brought to the bosonic form by
introducing the creation operators for the mixed biexcitons:
www
By
u;K ¼ XKB

y
Gþ

1
;þþ;K

þ PKB
y
Gþ

1
;��;K

;

By
l;K ¼ �XKB

y
Gþ

1
;��;K

þ PKB
y
Gþ

1
;þþ;K

:

Here XK and PK are the Hopfield coefficients, which
represent the symmetric and asymmetric fraction of the
biexciton in cuprous oxide:
XKj j�2 ¼ 1 þ
E Gþ

5;yz;K=2
� �

� E Gþ
5;xz;K=2

� �
2 E Gþ

1;þþ;K
� �

� E Gþ
1;��;K

� �� �
0
@

1
A

2

;

PKj j2 ¼ 1 � XKj j2:
.pss-b.com
It is clear that the two branches are reduced to what we
discussed above if the exciton degeneracy is considered.

The mixed biexciton energies are:
;K ¼
E Gþ

1;þþ;K
� �

þ E Gþ
1;��;K

� �
2

�
 �

E Gþ
1;þþ;K

� �
� E Gþ

1;��;K
� ��2

=4

þ 4
�
E Gþ

5;yz;K=2
� �

� E Gþ
5;xz;K=2

� ��2

!1=2

:

(18)
This mixing effect may be observed in a strong external
magnetic field due to strong Zeeman splitting between the
ortho-exciton levels. The above expression suggests that
the biexciton resonances may be manipulated by lifting the
degeneracy of the OE.

5 Conclusions We have demonstrated how 2D coher-
ent correlation optical spectroscopy can be employed to
study the optically forbidden biexciton states in cuprous
oxide. Although the direct optical excitation of these dark
states is not possible, the proposed non-linear optical
experiment allows to measure the coherence between
quadrupole-allowed 1S exciton manifold and the biexcitons.
The biexciton binding energy may be restored by measuring
the spectral distance between the cross resonances in the
correlation spectra. The ellipticity and size of these
resonances gives the information on the initial exciton/
biexciton density distribution. Direct evidence and energies
of the biexciton states are crucial for explaining the
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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extremely fast Auger relaxation in bulk cuprous oxide
crystals. The biexciton induced Auger process heats the
system and limits the exciton density at a given temperature,
impeding the possible BEC of the quadrupole excitons.
According to our theory the positions of the biexciton
resonances are defined by the energy splitting between Gþ

5;yz
and Gþ

5;xz excitons, which can be tuned by an external
perturbation. We attributed this effect to the broken ortho–
para symmetry of the cuprous oxide quadrupole excitons.

We also demonstrated exciton and biexciton chirality
effects on the 2D spectrum by varying the crystal orientation
and pulses polarization. These are useful for quantum
computing and lasing applications. For the quantum
computing application we proposed to use the two
Appendix A: Exciton–exciton interaction in cuprou
for the quadrupole excitons in cuprous oxide, starting from the
bosons. In the boson representation, when the excitons are treat
the exciton–exciton interaction has the form:

H ¼
X
k

X4

i¼1

Eex;iðkÞayk;iak;i þ
1

2V

X
k1;k2;k01;k02

dðk1 þ k2; k
0
1

� Uþþðk1; k2; k
0
1; k

0
2Þ
 X4

i¼1

ayk1;i
ayk2;i

ak02;iak01;i þ 2
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j¼

þ Uþþðk1; k2; k
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1; k
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2Þ þ U��ðk1; k2; k

0
1; k
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2Þ½ � ayk1;

�
þ Uþþðk1; k2; k

0
1; k

0
2Þ � U��ðk1; k2; k

0
1; k

0
2Þ½ � a

y
k1;

�
Here EexðkÞ is the exciton creation energy. Symmetric a

U��ðk1; k2; k
0
1; k

0
2Þ.

The exciton creation operators are denoted in terms of crea
motion (fðqÞ) as:

a
y
k;i¼1;2;3;4 ¼ 1ffiffiffiffi

V
p

X
q

fðqÞay
a0kþq;s1

b
y
b0k�q;s2

:

Here a0 ¼ me=mex; b
0 ¼ mh=mex and the net spin indexes

i ¼ 1 ! ðs1 ¼ 1=2; s2 ¼ 1=2Þ;
i ¼ 2 ! ðs1 ¼ �1=2; s2 ¼ �1=2Þ;
i ¼ 3 ! ðs1 ¼ 1=2; s2 ¼ �1=2Þ;
i ¼ 4 ! ðs1 ¼ �1=2; s2 ¼ 1=2Þ:
The wave functions of the Gþ

2 and 3Gþ
5 excitons are writte
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¼ � iffiffiffiffiffiffi
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�
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orthogonal light pulses polarizations as quantum bits.
Coherence between the exciton/biexciton manifolds pro-
vides the coherent manipulation of the q-bits by focusing on
different points on the 2D quadrupole spectra. That is
properly polarized and timed heterodyne signals reveal the
information on incoming q-bits. We illustrated this idea by
describing the optical logical element OR for the given q-bits
and sample orientation. Such ultrafast (fs) optical element
could have interesting applications. Specific crystal orien-
tations and pulses polarizations provide the induced negative
(gaining) refractive index of the system. We, therefore,
propose to utilize the corresponding exciton/biexciton
coherence to induce lasing by returning the signal back to
the crystal.
s oxide In this appendix we derive the Hamiltonian specific
conventional Hamiltonian describing the weakly interacting
ed as structureless quasiparticles, the Hamiltonian describing

þ k02Þ

3;4
1;2

ayk1;i
ayk2;j

ak02;jak01;i

!

3a
y
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ak02;4ak01;3 þ ayk1;1
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3a

y
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ak02;1ak01;2 þ a
y
k1;1

a
y
k2;2

ak02;3ak01;4

�
:

(19)

nd asymmetric exciton–exciton interactions are denoted as

tion operators for the electron (a), hole (b) and their relative

(20)

are:

n as [30]:

q;�1=2
b
y
b0k�q;1=2
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0j i; (21)

=2
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�
0j i; (22)
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�
0j i; (23)
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Therefore from (20), the creation operators for the Gþ
2 and 3Gþ

5 excitons have the following form:
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2

p byk;2 þ ibyk;1

� �
:

(25)

Above we also listed creation operators aG5;2;x;y;z
for the Td group (CuCl-for example [16], page 149). Using the

transformations (25) along with the bosonic Hamiltonian (19) one gets the cuprous oxide Hamiltonian.

Appendix B In this appendix we derive equation of motion for the exciton and lowest biexciton state for the pulses
scheme known as kIII technique. The equations of motion for one and two exciton state can be written as following:

i�h
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(26)

Due to the normal ordering of the operators, one can perform the factorization in the center of mass of the biexciton
momenta K as following:

X
p;q

byp;ib
y
q;ib

y
pþq�k;j 6¼i

D E
¼
X
l;K

by
lþK=2;ib

y
�lþK=2;i

D E
byK�k;j6¼i

D E
: (27)

Using the orthogonality conditions:

1

V

X
l

C

J;lCJ0;l ¼ dJ;J0

1

V

X
J

C

J;lCJ;l0 ¼ dl;l0 ;
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and keeping the resonant term J¼ 1S only, one has:
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lþK=2;ib

y
�lþK=2;i
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: (28)

For the low density excitation limit one can simplify the last two equations in the system (26) using the following identity:
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:

Putting Eqs. (27,28) into (26) one gets the equations of motion for the exciton and biexciton variables for the weakly
interacting bosons model:
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(32)

The corresponding equations of motions within the independent boson model are listed below:
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